
Enabling Containerized, Parametric and Distributed Database
Deployment and Benchmarking as a Service

George Kousiouris
Dept. of Informatics & Telematics, Harokopio University of Athens

9, Omirou Str. 177 78, Tavros, Greece
gkousiou@hua.gr

Dimosthenis Kyriazis
Dept. of Digital Systems, University of Piraeus

Karaoli & A. Dimitriou 80, 18534 Piraeus, Greece
dimos@unipi.gr

ABSTRACT
Containerized environments introduce a set of performance
challenges that require extensive measurements and
benchmarking to identify and model application behavior
regarding a variety of parameters. Databases present extra
challenges given their extensive need for synchronization and
orchestration of a benchmark run, especially in microservice-
oriented technologies (such as container platforms) and dynamic
business models such as DBaaS. In this work we describe the
adaptation of our open source, baseline load injection as a service
tool, Flexibench, in order to enable the automated, parametric
launching and measurement of containerized and distributed
databases as a service. Adaptation and synchronization needs are
described for ensuring test sequence and applied through a case
study on MySQL. Therefore a performance engineer can directly
test selected configuration and performance of a database in a
given target workload with simple REST invocations.
Experimentation starts from adapting the official MySQL docker
images as well as OLTP Bench Client ones and investigates
scenarios such as parameter sweep experiments and co-allocation
scenarios where multiple DB instances are sharing physical nodes,
as expected in the DBaaS paradigm.

CCS Concepts
• Information systems ➝ Database management systems •
General and reference ➝ Cross-computing tools and techniques➝

Measurement • General and reference ➝ Cross-computing tools

and techniques ➝ Performance

Keywords
Container Platforms; Benchmarking as a Service; Databases

ACM Reference format:
George Kousiouris and Dimosthenis Kyriazis, 2021, Enabling
Containerized, Parametric and Distributed Database Deployment and
Benchmarking as a Service. In Companion of the 2021 ACM/SPEC Int’l Conf.
on Performance Engineering, April 19-23, 2021, Virtual Event, France. ACM,
NY, NY, USA. 4 pages https://doi.org/10.1145/3447545.3451188

1. INTRODUCTION
Container environments have attracted significant attention in
recent years due to the ease of management, advanced packaging
and ability to rapidly update, scale and in general manage the
respective applications. However, adding an extra layer of
virtualization typically introduces further performance delays[1]
and needs for extensive benchmarking and measurement of the
target application in the new system, for a variety of setups.

Especially when targeting database configurations, a critical aspect
of this process includes the extensive need for automation and
synchronization of operation sequence, in order to ensure a
functional database in which the parameters can be defined
dynamically and not statically as is the case in many DB offerings.
In order to do that, the respective database docker images need to
be adapted in order to enable a fully parameterized deployment, in
essence being converted in an as a service offering. This includes
(Figure 1 left) means of automating deployment and dynamically
creating configuration files (e.g. retrieving IPs of the launched
containers prior to the launching of the database daemons).
Parameter space exploration is also important [2], varying
parameters such as data nodes and replication factors as needed by
parameter sweep experiment setups. However, to vary such
parameters before an experiment typically needs a number of
manual processes to configure and set up the System Under Test.

Another need for synchronization (Figure 1 right) stems from
either the database benchmark setup (e.g. load preparation and run
phases of YCSB [3]) as well as potential needs to investigate
multitenancy aspects in cases of DB as a Service offerings.
Concurrent executions of discrete DB instances on the same
node/cluster will create interference effects. In this case, suitable
synchronization points need to be included and enforced along the
way in order to ensure that the measurement phase of all deployed
DBs initiate at the same time. The final aspect relates to the fact
that common database benchmarks such as YCSB typically do not
include or support distributed mode of operations, which means
that the execution framework needs to coordinate and orchestrate
their lifecycle.

In this work, and in order to fulfill the aforementioned challenges,
our baseline Flexibench tool [4], which enables stress testing as a
service through virtualized load injector clusters, is extended in
order to include a new adapter for launching of DB experiments.
The adapter ensures strict sequence of deployment and
preparation of the experiment (adapted to the needs of Figure 1) as
well as deployment and management of the YCSB client nodes.
This enables the inclusion of the investigated System Under Test
(a MySQL distributed database) in the service graph to be deployed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
ICPE ’21 Companion, April 19-23, 2021, Virtual Event, France.
© 2021 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8331-8/21/04...$15.00. https://doi.org/10.1145/3447545.3451188

LTB 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

77

https://doi.org/10.1145/3447545.3451188
https://doi.org/10.1145/3447545.3451188

on the container platform. Thus the framework automates and
enables the service oriented launching of experiments,
significantly alleviating the efforts of a performance engineer. The
remainder of the paper is structured as follows. In Section 2 related
work is presented, while in Section 3 the overview of the
Flexibench framework is presented. In Section 4 the DB adapter is
presented, while in Section 5 the different validation experiments
for its operation are presented and Section 6 concludes the paper.

Figure 1: Synchronization Needs of Database experiments

aaS

2. RELATED WORK
Specialized benchmark management solutions or investigations
have appeared, including test lifecycle management processes,
targeting at specific use cases and domains (e.g. cloud hosted
DBMS systems elasticity aspects in [5]), security aspects[6] and
HPC applications[7]. Mowgli[16] is a framework for managing
NoSQL DBMS experiment lifecycles on target Cloud platforms is
presented. Differences with Flexibench in this case include the
focus of the latter in containerized environments and not VMs, the
ability to include synchronized concurrency tests as well as the
incorporation of SQL solutions. DeathStarBench[10] is a
benchmark suite containing example applications as benchmarks
for containerized deployments. Similarly, μSuite[11] and
Teastore[12] target microservices and containers, however their
main goal is to define and implement a baseline benchmark test
application that can be used to measure containerized
environments. Comparison of containerized environments and
their related overheads are examined in [8]. Overall however,
container performance evaluation is still an open issue [9].

While these works cover a range of issues, they do not enable a
full scale and adapted deployment and according measurement of
a specific database configuration in mind for container platforms.
The ability to regulate specific parameters of the database
deployment enables a more accurate performance measurement of
the target system as well as the ability afterwards for creating
generalized prediction models[13]. The latter can aid in predicting
a given setup’s QoS on varieties of configurations and workloads.

3. FLEXIBENCH MAIN FRAMEWORK
Flexibench (or Application Dimensioning WorkBench) is a layered
benchmark and load injection as a service execution framework,
that is based on a layered architecture[14]. On top, a REST API (as
well as a UI layer) is available in order to submit test execution
setups (Figure 2). The call is forwarded to a middle test
synchronization layer, which undertakes the role of preparing and
launching containerized stress tests through a back-end container
platform (based on Docker Swarm). The framework is based on
Node-RED, an event driven application framework on top of
node.js, enabling the decoupling between test coordination and
offloaded test execution (on the container platform). It is available
as open source1. A demonstration of the base abilities of the
framework is available through demo videos2.

Figure 2: Flexibench Architectural Overview

4. FLEXIBENCH ADAPTERS FOR DBs
In order to enable the extension towards the abilities mentioned in
the Introduction, the adaptation started from the official MySQL
database images available on Dockerhub (mysql/mysql-cluster). In
order to support a fully parameterized configuration and
execution, alterations needed to be performed both in the main
Dockerfile of the image, as well as the startup script and MySQL
configuration file. The latter needs to be populated by the obtained
dynamic qualified names of the DB nodes, while the actual DB
daemons have not started. These names follow a naming
convention based on the test name, which is linked to all created
virtual resources (e.g. virtual network, volumes etc) and ensures
virtual separation of the different test instances. Thus startup
needs to wait until a shared sync file is populated and proceed
afterwards in the db daemon setup. To adapt to different types of
DBs, the process is largely similar, however it needs to follow the
specific configuration templates of each DB type.

For the client side, YCSB was selected as the main load injection
tool, but through its more abstracted version in OLTP-Bench[15],
that may enable future incorporations of more benchmarks and
load injectors that are included in the latter. Adaptations in this
case included alterations in the dockerfile, startup script in order
to synchronize between the load and run phases of all parallel
experiments, reporting adaptation in order to be ingested by the
framework afterwards etc. The latter is necessary also for
grouping results from the distributed YCSB client containers.

1 Flexibench Tool Repository, available online at: http://bigdatastack-

tasks.ds.unipi.gr/gkousiou/adw
2 Flexibench Tool Main Functionality Demo, available online at:

https://youtu.be/dtAsAtc_v0s

LTB 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

78

Figure 3: Overview of a) Adapter Diagram b) Node-RED flow
programming adapter for DB Launch coordination

YCSB parameters that are passed in this case refer to the set rate
per client, the number of threads per client as well as the workload
file variant that contains the operation mix. The overall flow and
setup (Figure 3) are completely parameterized, therefore discrete
instances of the benchmark (including the database under test) can
be deployed on demand (and through a REST interface). DB
parameters that may be toggled include number of data nodes and
API nodes, replication factor, record count (size of database).
Metrics obtained from each run are the ones reported by YCSB
itself (min/average/max latency and throughput, percentiles etc.).

5. EVALUATION
In order to test and evaluate the framework execution, a number
of experiments were performed by invoking the REST API of the
framework. Results are also retrieved via REST API calls. A demo
video for the DB co-allocation scenario is also available3.

Figure 4: Client setup variations and according achieved

throughput

5.1 Client Side Bottleneck Investigation
One of the dangerous points in benchmarking is the case when the
client side load generation can not achieve the desired number of
requests due to their own resource inadequacy or client
implementation. This situation might be mistakenly considered as
a bottleneck at the benchmarked service side. Therefore
alternative configurations of the load generation clients need to be
investigated. Figure 4 demonstrates this process for an indicative
YCSB execution towards a target DB. The database itself has been
tested beforehand and has been found to be able to service a ~2500
operations/sec rate, thus any shortcoming with relation to this
figure can be attributed to the client setup. Client generation is
performed through one Swarm node. Different client setups have

3 Flexibench DB Co-allocation demo, Available at :

https://youtu.be/TIv7rCVNGY8

been tried out, with rates set as 200,600 and 1000 operations/sec
per client container, local threads set as 1,4 and 10 and client
containers set as 1,3 and 6 accordingly.

Increasing the number of containers (on the same node) while
maintaining 1 thread per container reduces the per container
request rate but increases the total sum of the generated requests.
Changing the number of threads per container is more beneficial
(Figure 5).

5.2 DB Launch and Analysis experiments
In this test, the scope included the performance of benchmarks
against a bundled data service (clustered MySQL), regulating the
execution of both the clients and the db containers. However it
needs to be stressed that the aim of these experiments is to
validate the framework and not to actually extract conclusions
regarding the performance of the services, given that the available
Swarm installation was very small (2 nodes, one for the clients and
one for the service, each with 4 cores and 8GB of RAM). Each
benchmark run phase was set to 5 minutes, with primarily insert
operations. The vanilla installation of MySQL was used.

Figure 5: # of local threads effect on 1 client container

5.2.1 Parameter Sweep Tests for a single DB
In this scenario the database is launched with a varying
configuration of 2 or 4 data node containers, each of which has
two mysql threads (thus acting in total as 4 and 8 nodes), plus a
management and API containers. Typically in clustered DB
configurations increasing the number of nodes increases
availability but reduces performance due to the synchronization
and/or locking cases between the nodes, especially when
replication is applied (in our case it was set to 2). For the case of 4
datanodes used (Figure 6a), average latency starts from 5
milliseconds and reaches 34 milliseconds in the 2000 requests per
second rate. Maximum and 99th latency values show a larger
increase but still within reasonable ranges (with an outlier
observed at 800 requests/sec). However for the case of 8 data
nodes used (Figure 6b), an increase in the request rates indicates
that after the level of 1800 requests there is a very high increase in
latency which reaches around 4300 milliseconds, an aspect that
may be attributed (at least partially) to data synchronization needs.

Figure 6: Investigation of query latency results for diverse

request rates and a) 4 data nodes b) 8 data nodes

LTB 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

79

5.2.2 DB co-allocation scenarios for DBaaS
Collocating database services of different customers on the

same node is a common strategy in DBaaS environments.
However in order for the provider to respect potential
performance guarantees issued to their customers, they need to
model the effects of this collocation on the performance of each
DB service instance, comparing to standalone DB performance.

For the experiment, initially the DB is launched and benchmarked
in a standalone (baseline) mode for a variety of different client
rates with a single REST API call. Then two similar but distinct
instances of the same configuration are deployed and collocated
on the same node and according client rates are launched. This
step is easily performed through Flexibench through the parallel
mode of testing (1 REST call with 2 configurations and the parallel
mode selected). In this process it also enforces the workflow
mentioned in Figure 1. In Figure 7 the results of such an analysis
are portrayed. From this it can be seen that for small numbers of
queries/second there is no significant difference in the
performance of the collocated DBs compared to the standalone
mode. However when insert queries/second rise above the level of
~400/second then there is a clear degradation of the performance
of each DB compared to the standalone version. Further testing
was performed to check accumulated values of 800 queries per
second (Figure 8).

Figure 7: Investigation of collocated DB instances
performance in comparison to baseline (standalone)

execution

Figure 8: Investigation of different request rates per DB
service that add up to the threshold value of 800

6. CONCLUSION
The execution, coordination and deployment of multiple variations
of a system such as a distributed database includes various
configuration steps, both for the SUT setup as well as for the client
distributed setup. The presented framework achieves the
automation of this process and enables the submission of test
variations through REST interfaces, through a coordination logic
that guarantees test synchronization and successful execution of
containerized deployments. Thus it enables the investigation and

extensive performance analysis of diverse configurations without
significant effort from the performance engineer.

7. ACKNOWLEDGMENTS
The research leading to the results has received funding from the
European Union's funded Projects BigDataStack (GA No 779747)
and PHYSICS (GA No 101017047).

8. REFERENCES
[1] M. Grambow, J. Hasenburg, T. Pfandzelter, and D. Bermbach. 2019. Is it

safe to dockerize my database benchmark? In Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing (SAC '19). Association
for Computing Machinery, New York, NY, USA,341–344.
DOI:https://doi.org/10.1145/3297280.3297545

[2] Silva, M., Hines, M.R., Gallo, D., Liu, Q., Ryu, K.D. and Da Silva, D., 2013,
March. Cloudbench: Experiment automation for cloud environments. In
2013 IEEE International Conference on Cloud Engineering (IC2E) (pp. 302-
311). IEEE. DOI: 10.1109/IC2E.2013.33

[3] Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R. and Sears, R., 2010,
June. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing (pp. 143-154). ACM.

[4] Kyriazis, D., Doulkeridis, C., Gouvas, P., Jimenez-Peris, R., Ferrer, A.J.,
Kallipolitis, L., Kranas, P., Kousiouris, G., Macdonald, C., McCreadie, R. and
Moatti, Y., 2018, July. BigDataStack: A holistic data-driven stack for big
data applications and operations. In 2018 IEEE International Congress on
Big Data (BigData Congress) (pp. 237-241)

[5] Seybold, D., Volpert, S., Wesner, S., Bauer, A., Herbst, N.R. and
Domaschka, J., 2020, January. Kaa: evaluating elasticity of cloud-hosted
DBMS. In Proceedings. The 11th IEEE International Conference on Cloud
Computing Technology and Science (CloudCom 2019) (Vol. 2019, pp. 54-
61).

[6] Osman, A., Hanisch, S. and Strufe, T., 2019, June. SeCoNetBench: A
modular framework for Secure Container Networking Benchmarks. In
2019 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW) (pp. 21-28). IEEE.

[7] Wang, Y., Evans, R.T. and Huang, L., 2019. Performant container support
for HPC applications. In Proceedings of the Practice and Experience in
Advanced Research Computing on Rise of the Machines (learning) (pp. 1-
6).

[8] Kozhirbayev, Z. and Sinnott, R.O., 2017. A performance comparison of
container-based technologies for the cloud. Future Generation Computer
Systems, 68, pp.175-182.

[9] Bachiega, N.G., Souza, P.S., Bruschi, S.M. and de Souza, S.D.R., 2018, April.
Container-based performance evaluation: A survey and challenges. In
2018 IEEE International Conference on Cloud Engineering (IC2E) (pp. 398-
403). IEEE.

[10] Gan, Y., Zhang, Y., Cheng, D., Shetty, A., Rathi, P., Katarki, N., Bruno, A.,
Hu, J., Ritchken, B., Jackson, B. and Hu, K., 2019, April. An open-source
benchmark suite for microservices and their hardware-software
implications for cloud & edge systems. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems (pp. 3-18).

[11] Sriraman, A. and Wenisch, T.F., 2018, September. μ Suite: A Benchmark
Suite for Microservices. In 2018 IEEE International Symposium on
Workload Characterization (IISWC) (pp. 1-12). IEEE.

[12] v. Kistowski, J., Eismann, S., Grohmann, J., Schmitt, N., Bauer, A. and
Kounev, S., 2019, March. TeaStore-A Micro-Service Reference Application
for Performance Engineers. In Companion of the 2019 ACM/SPEC
International Conference on Performance Engineering (pp. 47-48).

[13] Kousiouris, G., Kyriazis, D., Gogouvitis, S., Menychtas, A., Konstanteli, K.
and Varvarigou, T., 2011, June. Translation of application-level terms to
resource-level attributes across the Cloud stack layers. In 2011 IEEE
Symposium on Computers and Communications (ISCC) (pp. 153-160).

[14] BigDataStack Project Deliverable 5.1, Available at:
https://bigdatastack.eu/deliverables/d51-dimensioning-modelling-and-
interaction-services-bigdatastack

[15] Difallah, D.E., Pavlo, A., Curino, C. and Cudre-Mauroux, P., 2013. Oltp-
bench: An extensible testbed for benchmarking relational databases.
Proceedings of the VLDB Endowment, 7(4), pp.277-288.

[16] Seybold, D., Keppler, M., Gründler, D. and Domaschka, J., 2019, April.
Mowgli: Finding your way in the DBMS jungle. In Proceedings of the 2019
ACM/SPEC International Conference on Performance Engineering (pp.
321-332).

LTB 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

80

https://bigdatastack.eu/deliverables/d51-dimensioning-modelling-and-interaction-services-bigdatastack
https://bigdatastack.eu/deliverables/d51-dimensioning-modelling-and-interaction-services-bigdatastack

