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ABSTRACT
We utilize the Clemson supercomputer to generate a massive work-
load for testing the performance of Microsoft Azure IoT Hub. The
workload emulates sensor data from a large manufacturing facility.
We study the effects of message frequency, distribution, and size
on round-trip latency for different IoT Hub configurations. Signifi-
cant variation in latency occurs when the system exceeds IoT Hub
specifications. The results are predictable and well-behaved for a
well-engineered system and can meet soft real-time deadlines.
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1 INTRODUCTION
Commercial clouds have been shown to be useful for massive com-
puting and data-intensive workloads [6, 7]. In this paper, we study
Microsoft Azure IoT Hub using a massive synthetic workload gen-
erated by the Clemson supercomputer. The workload emulates
proprietary, large-scale data from many thousands of sensors in a
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large manufacturing facility[1] [3]. The use of sensors within man-
ufacturing has rapidly increased due to initiatives such as Industry
4.0 that involve the collection and use of data throughout all aspects
of the manufacturing process. Data can be analyzed historically,
say, for predictive maintenance and for optimization of existing
processes. Processing of data may require meeting a soft real-time
deadline for managing problems on the manufacturing line.

We aim to characterize the workload that can be processed in
the cloud in a fixed time period. Since IoT Hub is a shared resource,
we want to know how performance may be impacted by workload
[4]. We also aim to provide advice regarding the number and char-
acteristics of cloud-connected sensors that can be connected to IoT
Hub for soft real-time analysis.

2 BACKGROUND – AZURE IOT HUB
In this section we describe the Azure IoT Hub protocols, pricing,
throttling limits, and partitions.

Protocols. Azure IoT Hub uses HTTPS, AMPQ, or MQTT to fa-
cilitate communication between a sensor and the cloud. MQTT
is the preferred protocol when using IoT Hub. It is a secure and
lightweight protocol designed for Internet of Things connectivity
and utilizes the publish-subscribe message model. Azure IoT Hub
implements MQTT v3.1.1.

Each IoT sensor has a unique connection string between it and
the IoT Hub. The connection string is the concatenation of the IoT
Hub hostname, the unique sensor ID, and the shared access key.
These connection strings map the cloud-side systems processing the
messages to exactly one actively connected sensor, enabling secure
messages. IoT Hub can route messages to other Azure services.
IoT Hub provides units, which refer to the number of instances
deployed on the cloud. Sensors are still registered to an IoT Hub
and are not bound to any particular unit.

Pricing. Iot Hub is split into three editions, which vary in the limits
available to users. It is further divided into Basic and Standard tiers,
which share throttling limits, but Standard has more features. IoT
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Table 1: Iot Hub Editions and Throttling Limits

Edition Max. S2Ca Send Operations Max. Messages per Day

B1/S1 100 per secb 400,000 per unit
B2/S2 120 per sec per unit 6,000,000 per unit
B3/S3 6000 per sec per unit 300,000,000 per unit
aSensor-to-Cloud bThis is 12 per sec per unit if it results in a higher value.

Hub is charged not based on consumption but at a flat rate based
only on tier, edition, and days of provisioning.

Throttling Limits. Different editions have different throttling
limits. For example, there are limits for daily message allowance,
maximum aggregate messages per second, and maximum new con-
nections per second. This information is summarized in Table 1.

Partitions. When creating a new IoT Hub using the online Azure
portal, one can request between 4 and 32 partitions, with a default
of 4. However, it is possible to request up to 128 partitions if one
creates their IoT Hub using the Azure Command Line Interface.
Note that partition count does not affect price. New messages are
tagged to the end of a partition and stored for a specific retention
time. Each sensor is deterministically assigned to a partition using
its unique ID and, thus, partitions grow independently. Messages
sent from a sensor ID go to the assigned partition and retain their
order.

3 SOFTWARE AND CONNECTIVITY
ARCHITECTURE

Here we describe the supercomputer environment, synthetic work-
load client, experiment loop and connection.

Palmetto Supercomputer.We utilized up to ten nodes from the
Clemson Palmetto supercomputer to emulate thousands of sensors
by executing clients across multiple cores and nodes. The Clemson
network mimics the network of a manufacturing facility with a
wide variety of applications, multi-level network policies and pro-
tocols, and different SLAs [5]. Palmetto has fast, direct access to the
Internet, and there is typically minimal contention for outbound
Internet traffic. Packets from Palmetto to the Azure East US 2 region
follow a path connected by a shared 100Gb path to the Internet gate-
way, to a 10Gb link for commodity traffic, to the Microsoft internal
network. 100 pings from Palmetto to a VM hosted in that region
resulted in an average latency of 20ms and a standard deviation of
0.846ms.

Client Data Generator. The synthetic data generator is written in
C++ to ensure a small memory footprint. The generator represents
a single physical sensor that reads data periodically and sends it
to IoT Hub. For example, ten instances of the generator running
simultaneously simulate ten sensors. Parameters that differentiate
data generation behavior are shown in Table 2. Each instance writes
its own individual log file that contains message ID, send time,
asynchronous callback receive time, and the callback status.

Experiment Loop. The client generates a message modeled after
the specified parameters, immediately sends it to IoT Hub, and logs
the send time. These messages are JSON strings with a size specified
in bytes. The SDK creates a thread for everymessage callback, which

Table 2: Synthetic Data Generator Parameters

Parameter Range

Statistical Distribution Constant OR Pareto
Inter-message Gap Time 10 ms - 1000 ms

Message Size 512B - 32,768B
Experimental Run Time 5 min - 90 min

Network Protocol MQTT

asynchronously listens for a response. The number of individual
messages is based on the runtime specified. Between each message,
the main thread sleeps while the asynchronous thread waits to
receive the response from IoT Hub and logs the receive time and
message status. We measure round-trip latency, calculated using
the logged send and receive times, with sub-millisecond precision.
The status of a message can be OK (IoT Hub successfully processed
the message), destroyed (IoT Hub could not or would not process the
message and rejected it), or other. Time costs of other services that
could be used to process the data from IoT Hub are not included.
Some of the latency we observe is due to the SDK thread creation
for the asynchronous message receipt. This is consistent with the
measurement of the end-to-end latency in a production application.

Each instance of the client data generator is a sensor fromAzure’s
perspective. As such, we refer to our data generator as a sensor
for the remainder of this paper. The initial connection between the
sensor and Azure requires setup and has higher than normal la-
tency, so we disregard the first 5% of messages. Steady state latency
measurements are representative of a production environment.

Experiments use the default of four partitions except when com-
paring the latency performance of different partition counts. We
choose the shortest message retention time of one day.

Validating Data Generator. We validated the generator by con-
firming the intermessage gap times (IMT) followed the expected
distribution by measuring the gaps between network packet send
times. We specified either a constant distribution with a fixed IMT
or a Pareto distribution with a variable IMT. A Pareto distribution
models sensors with bursty send characteristics, which captures
many real-world scenarios. Inputs into the data generator were the
sending frequency, distribution parameters, and the message pay-
load. We ran this validation on the Clemson Research Datacenter.

While the generator was sending messages, we tracked the sent
packets using the sniffing tool tcpdump to accurately record the
host timestamp of packets sent. For constant IMT, we calculated the
median and standard deviation of the resultingmessage distribution.
Here, we observed a standard deviation less than 0.5 ms. For the
long-tailed Pareto distribution, we tested the observed timestamps
with a Kolmogorov-Smirnov (KS) test to evaluate the goodness of
fit of the resulting distribution. The KS test results showed that the
generated IMTs were a good fit for Pareto distribution. The d-value
was 0.03 and the 𝑝-values were .88.

4 EXPERIMENTAL STUDY
The experiments isolate and measure the effects on IoT Hub perfor-
mance of various counts of client sensors, message sizes, intermes-
sage gap times (IMT), and IoT Hub partition counts. By testing a
large range of parameters we have a high confidence that a specific
real world workload is represented in the experiments.

LTB 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

74



Figure 1: Latency CDF of 10 sensors, Edition 3, constant IMT
of 200 ms.

Effects of Different Message Sizes. We examined whether in-
creasing the message size correlates with increased IoT Hub round-
trip latency. To observe the effect of message size on latency, we
conducted experiments using 512B, 2048B, 8,192B, and 32,768B mes-
sages sizes across the three editions of IoT Hub Basic tier. We test
only the Basic tier since both tier versions have the same throttling
limits. We repeated 30 trials for each of the 12 permutations of
message size and edition, with each trial being run sequentially to
avoid interference. Fixed parameters were 10 sensors, constant IMT
of 200ms, runtime of 120 seconds.

During an initial run we exceeded the message throttling limit
for the B1 edition IoT Hub. This caused the subsequent trials of
larger message sizes to yield latencies with very large outliers. We
re-ran this experiment and confirmed that B1, B2, and B3 all follow
the same latency pattern for large message sizes. For space reasons
we only include the results from B3.

Figure 1 shows the Cumulative Distribution Function (CDF) of
B3 messages. 2048B and 8192B messages follow nearly the same
trace, crossing the 50% probability mark at 32ms. 32,768B messages
show a higher latency until the curve plateaus. The 512B messages
follow the other message sizes at first when P(L) < 50%. However,
between 38ms to 41ms latency, the distribution dips as a result of
the high standard deviation. As latency increases though, the 512B
curve joins the message sizes in plateauing so that all message size
cross the 95% probability mark at less than 60ms.

Effects of Varying the Intermessage Gap Time. Sensors may
send data at various frequencies ranging from thousands of times
a second to once a minute. Very high send rates can overwhelm
the message consumers even if throttling limits are obeyed. We
designed an experiment inwhich data is sent to the cloud at different
IMTs, holding the message size constant at 2048B, and keeping the
overall message sending rate for each IMT within throttling limits.
We provisioned one unit of B3 Edition IoT Hub with 4 partitions,
and generated messages for about 300 seconds in each trial, sending
data at three constant IMTs of 10, 100, or 1000 ms.

We repeated this experiment using the Pareto distribution for
IMT. We chose shape and corresponding scale parameters that
would produce median IMTs of 10, 100, and 1000 ms. For example,
for shape 2, scales of 7, 71, and 707 produce messages with medians
of 10, 100, and 1000 ms, respectively.

Finally, we split the experiment into three groups. Each group
ran six trials per IMT, so 18 trials in total per group for the three
IMTs. Group 1 had one sensor sending messages at the specified

Figure 2: Latency of 1 sensor, 4 partitions, constant IMT dis-
tributions.

IMT, while Group 2 had 10 sensors. Group 3 had one sensor sending
messages with the Pareto distribution.

For both constant and Pareto trials, the mean latency is between
31.1 and 53.9 ms. When high frequency runs (those with a median
IMT of 10 ms) are removed the mean latency falls between 31.1 to
33.1 ms. The standard deviations of Pareto runs are higher than
their constant counterparts but results are similar to constant trials.

For both constant and Pareto distributions, the target median
IMT of 1000ms has very few spikes in latency, and the target median
IMT of 100 ms has slightly more spikes. However, with a target
median IMT of 10 ms, spikes are very frequent and considerably
worse in latency as seen in Fig. 2. In all figures, relative send time
refers to the amount of seconds elapsed since the first kept message
(after the 5% drop). For the constant distribution, these spikes have a
regular pattern, but this was not the case for the Pareto distribution.

Due to the way partitions work, all messages from a single sen-
sor go to a single partition in the underlying Event Hub. IoT Hub
ensures that all messages associated with a single sensor are per-
sisted in the order they were received. To preserve order, IoT Hub
imposed hidden limits on the fastest send rate in our trials (IMT 10
ms). The processing pipeline temporarily pauses reading of new
messages until it has flushed some of the existing messages to the
underlying Event Hub. The end result is a short latency spike.

Effects of Varying the Partition Count. Once an IoT Hub parti-
tion number is set it cannot be changed. The partition count does
not affect the cost. But, increasing the number of partitions increases
the number of concurrent readers for incoming messages. We tested
whether latency decreases as the partition count increases.

We created four B3 edition IoT Hubs with partition counts of 4,
8, 16, and 32. We sent messages at a constant IMT of 10 and 100 ms
for each partition. Each IMT was repeated for five trials using ten
clients, 2048B messages, and a 300 s duration. This is well below
the 6000 messages per second throttling limit for the B3 edition of
IoT Hub. However, the latency was extremely high for 4, 8 and 16
partitions. There is no load balancing between partitions within IoT
Hub, and a sensor always sends to the same partition as previously
stated. Thus, whenever a small number of sensors sends to a small
number of partitions, there is a high likelihood that partitions will
experience an unbalanced load. Our worst case scenario would be
when all 10 of our sensors send to a single partition. The IoT Hubs
with fewer partitions have a greater probability of higher average
latencies that rise drastically over time.
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Figure 3: Latencymean of 10 sensors, constant IMT of 10ms.

Figure 4: Average latency (ms) of 1000 sensors, constant IMT
of 333 ms, varying partitions.

Sixteen partitions have a more gradual climb in latency than 4 or
8 partitions for the trial shown in Figure 3, but this was not always
the case. In some trials that used different unique sensors, the 16
partition IoT Hub performed similarly or even worse than the 4 and
8 partition IoT Hubs. This can be explained by unbalanced loads,
perhaps due to deterministic sensor ID hashing.

A count of 32 partitions handles this load well. 65% of the mes-
sages have a latency under 50 ms, 83% have a latency under 100 ms,
and 97% of the messages have a latency under 200 ms. A possibility
still exists for unbalanced sensor assignments between partitions,
even with 32 partitions. However, the best performing workload
for Azure IoT Hub, and the one for which the design is optimized, is
one with a large number of partitions and with messages that come
from a large number of sensors with a modest message frequency.

Another set of experiments tested latency characteristics across 4,
8, 16, and 32 partitions with 1000 sensors. Each sensor sent messages
with IMT of 333 ms, or about 3 messages per second. Figure 4 shows
that the performance of 4 partitions is poorer than higher partition
counts but also that this workload is manageable for IoT Hubs
across all numbers of partitions. Latency spikes are present, but
they are less extreme with no evidence of latency rising over time.

With 1000 sensors across all trials, IoT Hubs with 8, 16, and
32 partitions have 80% probability of latency under 50 ms, 91%
probability of latency under 100 ms, and 99% probability of latency
under 200 ms. The CDF for 4 partitions follows a slightly different
curve with 74% probability of latency under 50 ms, 94% probability
of latency under 100 ms, and 99% probability of latency under 200
ms. These results confirm that IoT Hub is best equipped to handle
a large number of sensors sending at a modest rate.

ScalingExperiments.To simulate large-scalemanufacturingwork-
loads, we tested a large number of client sensors executing on 40
core nodes and sending to Azure IoT Hub within throttling limits.

Our first trial consisted of 1000 sensors placed on 1, 2, or 4
computing nodes, each sending messages to an IoT Hub with a
single B3 unit. The messages had a constant IMT of 200 ms, which
was 5000 messages per second in total. This is close to, but never
exceeding, the throttling limit (6000 msg/sec). All trial runs lasted 90
minutes and sent a total of 27,000,000 messages. Each CDF follows
the same curve with a 66% probability of latency under 50 ms, an
85% probability of latency under 100 ms, a 95% probability of latency
under 200 ms, and a 99% probability of latency under 300 ms.

We scaled up this experiment by increasing the number of re-
ceiving IoT Hub units. We ran 2000 sensors sending to 2 units of
IoT Hub and 4000 sensors sending to 4 units of Iot Hub. We simu-
lated these sensors on 1, 2, or 4 Palmetto computing nodes. During
these larger trials we sent 10,000 messages per second and 20,000
messages per second respectively. We stayed below the throttling
limits given for the multiple IoT Hub units. Trials continued to be
run for 90 minutes. Message latency did not show any substantive
change as the count of sensors was scaled up. The CDFs from each
experiment all follow the same curve. Azure IoT Hub behaved as
expected under these large, stable workloads, even with message
send rates above 80% of its throttling limit.

5 CONCLUSIONS
Azure IoT Hub is designed to scale horizontally and achieves the
best results when a large number of sensors send data at an ag-
gregate rate within the IoT Hub’s throttling limit. This benefits
manufacturing plants with a vast array of sensors sending indepen-
dent data streams to the cloud. However, individual sensors should
avoid sending data at high frequencies to not overwhelm IoT Hub’s
message consumers. Adding partitions reduces latency without
increasing cost, while message size is optimal at a few kB. Knowing
this, it is relatively simple to determine the configuration and flat
rate cost of an IoT Hub deployment based on a plant’s needs. Our
generator’s source code, scripts, and data are all public [2].
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