
An Empirical Evaluation of the Performance of
Video Conferencing Systems

Richard Bieringa∗
Vrije Universiteit Amsterdam
R.Bieringa@student.vu.nl

Abijith Radhakrishnan∗
Vrije Universiteit Amsterdam

A.Radhakrishnan@student.vu.nl

Tavneet Singh∗
Vrije Universiteit Amsterdam
T.S.Tavneet@student.vu.nl

Sophie Vos∗
Vrije Universiteit Amsterdam

S.O.Vos@student.vu.nl

Jesse Donkervliet
Vrije Universiteit Amsterdam

J.J.R.Donkervliet@vu.nl

Alexandru Iosup
Vrije Universiteit Amsterdam

A.Iosup@vu.nl

ABSTRACT
The global COVID-19 pandemic forced society to shift to remote
education and work. This shift relies on various video conference
systems (VCSs) such as Zoom, Microsoft Teams, and Jitsi, conse-
quently increasing pressure on their digital service infrastructure.
Although understanding the performance of these essential cloud
services could lead to better designs and improved service deploy-
ments, only limited research on this topic currently exists. Address-
ing this problem, in this work we propose an experimental method
to analyze and compare VCSs. Our method is based on real-world
experiments where the client-side is controlled, and focuses on VCS
resource requirements and performance. We design and implement
a tool to automatically conduct these real-world experiments, and
use it to compare three platforms on the client side: Zoom, Mi-
crosoft Teams, and Jitsi. Our work exposes that there are significant
differences between the systems tested in terms of resource usage
and performance variability, and provides evidence for a suspected
memory leak in Zoom, the system widely regarded as the industry
market leader.
ACM Reference Format:
Richard Bieringa, Abijith Radhakrishnan, Tavneet Singh, Sophie Vos, Jesse
Donkervliet, and Alexandru Iosup. 2021. An Empirical Evaluation of the
Performance of Video Conferencing Systems. In Companion of the 2021
ACM/SPEC International Conference on Performance Engineering (ICPE ’21
Companion), April 19–23, 2021, Virtual Event, France. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3447545.3451186

1 INTRODUCTION
Due to the COVID-19 pandemic, many organizations, businesses,
and educational institutions have adopted a new online work struc-
ture [13, 16]. Meetings occur through video conference systems
(VCSs), which operate as cloud services that allow hundreds of mil-
lions of users to communicate online with audio and video streams.
∗These authors have an equal and leading contribution. The others have proposed the
research problem, helped manage the project, and contributed to writing the article.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’21 Companion, April 19–23, 2021, Virtual Event, France
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8331-8/21/04. . . $15.00
https://doi.org/10.1145/3447545.3451186

0 50 100 150 200 250 300
Time (s)

0

1000

2000

3000

4000

5000

6000

M
em

or
y

(M
B)

W
ar

m
up

 T
im

e

ZOOM, 4 Clients
TEAMS, 4 Clients
JITSI, 4 Clients

Figure 1: VCS memory-consumption over time.

However necessary, the performance of these systems is not well-
understood. Existing research does not focus on today’s popular
systems used in professional and educational settings, or has a dif-
ferent focus than performance (e.g., studying societal impact [27]).
Addressing these issues, in this work we aim to understand the
performance of VCSs by designing a comprehensive set of real-word
experiments and by using them to evaluate several popular VCSs.

Spurned by the Internet revolution, VCSs allow users to com-
municate with others online using audio and video streams, using
their device’s webcam and microphone. This provides support for
a wide variety of use-cases, from personal calls between a handful
of friends, to professional meetings with 4-10 people, to online
academic conferences with hundreds of participants [20].

As many societies locked down or restricted activity during the
COVID-19 pandemic, VCSs became indispensable for professional,
but also for entertainment and social purposes. Their market is
growing rapidly, as exemplified by the yearly increase of over 100
million users for market-leading VCS Zoom [4], which now has
over 300 million daily users [26]; anecdotally, Zoom could offer
superior performance and scalability [20].

Other rapidly growing services include (Microsoft) Teams [6]
and the open-source system Jitsi.

It is important to understand the performance of VCS services.
However, no common methods exist to evaluate the performance of
VCSs. Studies of VCSs exist [19, 22, 27, 30], but we still lack a good
understanding of the performance of today’s popular systems. In
contrast, Figure 1 depicts an exemplary result from our real-world
experiments, comparing the client-side memory consumption over
time for Zoom, Teams, and Jitsi. Notable in the figure is the large
and increasing difference between Zoom and the other VCSs, which
we identify as a performance bug and analyze in Section 5.2.2.

HotCloudPerf 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

65

https://doi.org/10.1145/3447545.3451186
https://doi.org/10.1145/3447545.3451186

Server

Data center
1

Web

Desktop

Local
Network Internet

3

6

Client

OR

44 75

User Legend:
User actions Video data Audio data

2

Figure 2: The VCS system model.
Obtaining meaningful performance results for VCSs is challeng-

ing. First, VCSs operate in heterogeneous and unstable environments.
Users can interact with VCSs through various applications (e.g.,
Web-based and native applications) running on a variety of hard-
ware configurations (e.g., PCs, laptops, phones), and connect to
other users over the Internet, which only offers best-effort service.
Second, these systems operate under complex workloads, which con-
sist of a number of users, the configuration of enabled audio and
video streams per user, and the quality of these streams provided
by the user’s webcam and microphone. Third, commercial VCSs are
typically complex yet opaque systems: they are closed-source and
do not expose their design or configuration parameters, and a large
part of their operation occurs in cloud datacenters. To address these
challenges, we focus in this work on the research question: How do
popular video conferencing systems perform? This article provides a
general overview of our research which is covered in more detail in
the technical report of our work [15]. Our main contributions are:

(1) The design of an experimental method to evaluate and com-
pare the performance of popular VCSs (Section 3). Ourmethod
includes a comprehensive set of real-world experiments, e.g.,
focusing on scalability and performance variability.

(2) The design and implementation of an automated tool for real-
world experimentation with VCSs (Section 4). The tool im-
plements our method, orchestrates real-world experiments,
and simplifies repeating and reproducing experiments.

(3) A performance analysis of Zoom, Teams, and Jitsi using our
experimental method (Section 5). We compare the scalability
and performance variability of these systems on the client-
side, and evaluate how these systems respond to changes in
workload and deployment configuration.

(4) To foster the reproducibility our work, we release the com-
plete dataset alongside a comprehensive technical report, on
Zenodo [15].

2 VCS MODEL
Commercial VCSs are typically offered as cloud-based services and
use a client-server architecture. In this architecture, users run client
software which connects to a server controlled by the VCS operator.

We have created a model that depicts a typical architecture of a
VCS (see Figure 2). The user starts a client (1) on their device to
start or join a video conference. The client is typically available as
a Web Application (2), running in a Web browser, or as a Native
Application (3) such as a desktop app. The client sends the user’s
audio and video input (4) through a local connection (e.g., Wi-Fi,
Ethernet) (5) and a remote network (i.e., the Internet) (6), to the
VCS server (7). Although the system is distributed, the user is
not aware of the distinction between the clients and the servers,
and perceives the video conferencing system as a single system.
The server receives a continuous stream of audio and/or video

data from each client, and forwards this to all other clients. As an
optional step, the server can re-encode the data to reduce bandwidth
requirements or provide better support for devices connected via
unreliable networks.

3 DESIGN OF A METHOD TO COMPARE
VIDEO CONFERENCING SYSTEMS

Motivated by the challenges introduced in Section 1, we design
an experimental method aiming to evaluate VCS performance in
real-world conditions. We first define a set of requirements for our
method (in Section 3.1) and then design a method that addresses
each requirement (in Section 3.2).

We followed the AtLarge design process for distributed sys-
tems [21]: we iterated and co-evolved the requirements and the
method, testing each against practical and theoretical considera-
tions, and later through a prototype (in Section 4) and in practice
through actual experiments (in Section 5).

3.1 Definition of the Experiment Requirements
We define six main requirements (Rs):

R1 Work with popular VCSs. No VCS standard currently exists;
instead, we need compatibility with a variety of VCSs.

R2 Replicate easily. For the experiments to be verifiable and re-
usable by the research community, they should be easy to
replicate. A user-friendly interface could help.

R3 Measure resource usage in scalability experiments.We focus
on weak scalability (i.e., workload varies proportionally to
the amount of resources) [18] as opposed to strong scalability
(i.e, workload stays fixed) [12] to understand how resource
consumption scales under increasing load.

R4 Measure performance variability. VCS services are commonly
deployed in clouds and connect to clients over the Internet.
Both environments are unstable, which can lead to signifi-
cant performance variability [28].

R5 Compare VCS performance under audio±video workload. In
practice, VCSs do not have to manage audio-video work-
loads for each client, continuously. Users often mute their
microphone and disable their camera, e.g., when listening
during a presentation, when becoming active speakers. Thus,
it is interesting to compare is the impact of audio, video, and
combined workloads on VCS performance.

R6 Compare VCS performance under web- and app-based work-
load. Access to the cloud server can be web- and app-based.
Thus, it is interesting to compare their performance impact.

3.2 Design of an Experimental Method
This section presents our experimental method, and how it meets
the requirements discussed in Section 3.1. Our method defines a set
of real-world experiments aimed to observe specific VCS behavior.
An overview of these experiments is shown in Table 1.

To meet R1, we design our experiments using the model pre-
sented in Section 2. Our experiments collect the system-level met-
rics network bandwidth, CPU usage, and memory usage. These
metrics are available for all VCSs, and are important to the user,
who needs to run the VCS client on their own machine. Importantly,

HotCloudPerf 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

66

the experiments definitions do not restrict the system under test
(SUT); the VCSs shown in Table 1 are those evaluated in Section 5.

To meet R2, our method defines all parameters it aims to control.
It uses a fixed audio and video workload for each experiment. The
video and audio are a webcam recording of a person talking to
their computer screen; the technical details of this workload are
provided in Table 2. This workload is provided as input to the VCS
client, but the method does not limit the encoding used by the client
before sending the data to the VCS-server. To limit the duration
of each experiment, the method further limits the extent of each
experiment (to 5 minutes) and the number of repetitions (here, 4
times). To fully meetR2, we need a specialized tool that can enforce
these aspects automatically; we design it in Section 4.

To meet R3 through R6, the method defines one real-world ex-
periment for each. To meet R3, we define Experiment 1, focused on
scalability. This experiment observes system behavior for 2, 4, and
6 clients in the same video conference. Our second (and last) step to
meet R4 is defining Experiment 2, focused on performance variabil-
ity. This experiment observes VCS behavior over time, which allows
studying its performance variability. To meet R5 and study how
audio and video streams affect VCS performance, we define Experi-
ment 3, which compares system behavior when disabling audio or
video in the workload. To meet R6, we define Experiment 4, which
compares the behavior of the web-based and native applications of
the same VCS.

Limitations: Our method proposes a limited set of actions to-
ward addressing specific requirements. Beyond the scope of this
work, future methods could further consider: beyond R1, standard-
izing a model for VCSs, focusing on both their main functions and
their non-functional aspects; beyond R2, considering other aspects
that facilitate reproducibility, from infrastructure for convenient ex-
perimentation [14, 17], to methodological aspects of reproducibility
in the cloud [25, 28]; for experimentation, environment and config-
uration parameters, including variable resource performance and
availability, different audio and video codecs, diverse user behavior,
and more experience-related metrics [22]. During our experiments,
we primarily focused on web clients due to its reproducibility. To
include the performance of natives apps to realize R6, we inves-
tigated the performance of Zoom app while other popular native
apps (e.g., Teams app) were not considered due to time constraints.

Table 1: Overview of experiments. Scale is the number of
clients, Chan. is the use of Audio, V ideo, or Audio+Video
(A+V). Systems under test (SUT) are Zoom, J itsi, and Teams.

ID / Focus Workload SUT (§5.1)
Section Scale Chan.
1/§5.2.1 Scalability 2, 4, 6 A+V Z, J, T
2/§5.2.2 Variability 2, 4 A+V Z, J, T
3/§5.3 Audio/Video 2, 4 A±V J
4/[15] Web/App 2, 4 A+V Z, Z Desktop

Table 2: Experiment Workload.

Video Audio
Bitrate 570 KB Bitrate 1.41 MB
Resolution 1280x720 Sample Rate 44100 Hz
Format MJPEG Format WAV

4 TOOL FOR EXPERIMENTATION
In this section, we introduce the design of our experiment tool.
The tool enables automatic, repeatable, real-world experiments
which allows the user to evaluate the performance, scalability, and
performance variability of VCSs. The experimental tool is tied to
particular technology, but its operational principles are general and
allow the tool to help meet R2. Section 4.1 discusses our high-level
design. Sections 4.2 and 4.3 detail two core components.

4.1 Overview of the Tool Design
Figure 3 presents an overview of our experiment tool design. The
tool follows a client-server architecture, using multiple Automated
Meeting Clients (1) and anOrchestration Server (2). The clients con-
nect to the orchestration server over the Internet. Once connected,
the server can use the clients to run experiments, by instructing the
clients to join a video conference. The clients start their VCS soft-
ware, join the specified video conference over the Internet, and start
capturing specific metrics. Post-experiment, clients send their mea-
surement data back to the server, which stores it in the file-based
Results Storage (3) for later analysis.

Users can run large numbers of experiments by using the Ex-
periment Scheduler (4), which schedules sequentially batches of
experiments submitted by users using file-based descriptions.

Docker Container

Automated Meeting Client
1

Web
Client

Measurement
Tools

Meeting
Modules

5

7

6

Bot detection
Avoidance

8

Docker Container

Orchestration Server
2

State
Machine

Session
Storage

REST
API Front end

9 10

11 12 Experiment Scheduler
4

Results
Storage

3

Experiment
Definitions

User

Figure 3: Design of the experiment tool.

HotCloudPerf 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

67

The next two sections discuss the detailed designs of the Auto-
mated Meeting Client and the Orchestration Server. Our technical
report [15] details the design of the Experiment Scheduler.

4.2 Automated Meeting Client
This section discusses the main components of the automated meet-
ing client. This client (component 1 in Figure 3) joins online con-
ferences and measures the performance of the VCS. To simplify
deployment and measurements, clients run in a containerized envi-
ronment; we use the popular container environment Docker [2].

The meeting client contains a Web Client (5) to support Web-
based VCS applications. The Web Client connects to the video
conference URL used in the experiment. Internally, the Web Client
uses a headless Google Chrome browser (63% market share [1]).
When performing experiments using a desktop application, the
application replaces the Web Client (see our technical report [15]).

The Web Client interacts with the VCS using the Meeting Mod-
ules (6). These modules use NodeJS [8] and Puppeteer [9] to per-
form scripted actions. The tool can be extended to support different
VCSs by using custom meeting modules for each VCS, which imple-
ment actions to set-up a user, join the video conference, and enable
the audio and video feeds.

Once the client is connected to an online video conference,
it measures performance using a set of Measurement Tools (7):
tcpdump [11], dpkt [7], and scapy [10] to capture network traffic
and calculate network bandwidth usage, and Linux’ ps (process
status) command to measure CPU and memory usage.

VCSs often use bot detection mechanisms to prevent malicious
clients. Examples of such mechanisms are captchas, which require
the user to complete a small puzzle before they are allowed to use
the service. To prevent the detection of our automated clients and
bypass captchas, our tool includes Bot-Detection Avoidance (8). This
consists of a set of tools and practices which is covered in more
detail within the technical report [15].

4.3 Orchestration Server
This section discusses the components that make up the Orchestra-
tion Server (component 2 in Figure 3), which creates and manages
experiments conducted on various VCS platforms, keeps track of
clients, and collects results after an experiment ends.

The State Machine (9) controls the life-cycle of every experi-
ment. It consists of a chain of states that correspond to the logical
steps needed to run an experiment from start to finish. The chain
progresses in lock-step with each client in the experiment.

The server keeps track of each client’s state through an in-
memory Session Storage (10). When a client connects to the or-
chestration server, the server assigns it a unique identifier. This
identifier is used to keep track of the client’s state and allows the
server to issue commands to individual clients.

The REST API (11) is used to handle communications between
each client and the server. It also exposes endpoints which allow
users to manually create, manage, and monitor experiments. Ex-
periments are defined as JavaScript Object Notation (JSON) objects
and contain details such as the platform the experiment is to be
conducted on, the duration of the experiment, the URL of the con-
ference room, and the password of the conference room (if present).

Finally, the orchestration server exposes a Front End (12), which
is a web application allowing users to create, modify, and monitor
experiments. At runtime, the user can see which clients are per-
forming the experiment and the time remaining until completion.

5 REAL-WORLD EXPERIMENTS
This section presents our real-world experiments and their results.
We start by explaining the experimental setup (Section 5.1), followed
by an analysis of the results (Section 5.2).

For the experiments shown in Table 1, our Main Findings are:
MF1 Different VCSs show large differences in resource usage, and

respond differently to increasing numbers of clients. For
example, Zoom uses on average up to 12× more bandwidth
and 3× more memory than Teams and Jitsi.

MF2 The behavior over time of CPU, memory, and bandwidth
consumption seems in general regular, but does not stabilize
in all cases.

MF3 VCSs use more resources when both audio and video chan-
nels are enabled, but their effect on resource usage is complex.
(See our technical report [15].)

MF4 Zoom app consumes significant less resources than Zoom
Web. (See our technical report [15].)

5.1 Experiment Setup
This section describes our experimental setup. In our experiments,
all automated clients run on separate physical machines. All mea-
surements are obtained from a client running on amachine equipped
with an 8th generation 4.2 GHz 8-core Intel i7 processor and 16GiB
RAM memory. The machine connects to the orchestration server
and video conferencing sessions over the Internet, using a Wi-Fi 5
(IEEE 802.11ac) connection limited to 100Mbps upload and down-
load bandwidth.

Our experiments evaluate the Web-based applications of Zoom,
Microsoft Teams, and Jitsi, and the Zoom desktop application; Ta-
ble 1 summarizes their use per experiment.

5.2 Experiment Results
This section presents the results from our experimental results. An
overview all experiments is available in Table 1. See our technical
report [15] for detailed (and more) results.

5.2.1 Performance and Scalability (leads to MF1). Figure 4 shows
the results of the scalability experiment. The results show large
differences in the resource usage by different VCSs, and that VCSs
respond differentlywhen increasing the number of participants. The
plots show the usage of system memory, CPU cores, and bandwidth
on the horizontal axis, and different configurations of number of
clients and VCSs on the vertical axis.

The results indicate that, on average, Zoom has higher resource
usage and performance variability than Teams and Jitsi. Zoom’s av-
erage memory usage ranges from 3,182MB for 6 clients to 3,794MB
for 2 clients, which is more than 3× the average memory usage of
Teams and Jitsi, which do not exceed an average memory usage of
921MB in all cases. Zoom’s average bandwidth usage ranges from
306KB/s for 6 clients to 332KB/s for 2 clients. This is an increase
of over 54% compared to Jitsi, which uses on average 216 KB/s for

HotCloudPerf 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

68

0 1000 2000 3000 4000 5000 6000 7000
Memory (MB)

2

4

6

Nu
m

be
r o

f C
lie

nt
s

ZOOMWEB
TEAMS
JITSI

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Number of CPU Cores

2

4

6

0 100 200 300 400 500 600 700 800
Bandwidth (KB/s)

2

4

6

2019, 2508

1079, 1132, 2199

1464, 3045

Figure 4: Effect of the number of clients on VCS client resource usage: memory (left), CPU (middle), and bandwidth (right).
White dots show the arithmetic mean. Text labels in the right-most plot indicate outliers above 800KB/s for Zoom.

2 clients. Teams’ average bandwidth usage does not exceed 26 KB/s
in all cases, which is only 8% of Zoom’s peak average bandwidth
usage of 332 KB/s.

Surprisingly, not all systems show increased resource usage
when increasing the number of clients, for example, Zoom’s re-
source usage goes down for all three metrics. Because its average
CPU and bandwidth usage remains stable for more than 2 clients,
we conjecture that Zoom switches to a more efficient mode of opera-
tion for calls with more than 2 participants. In contrast, the resource
usage of Teams is similar for 2, 4, and 6 clients. We conjecture this is
caused by Teams’ only showing clients the video from the current
speaker. Jitsi’s CPU and bandwidth usage decreases when moving
from 2 to 4 clients, but increases again when scaling to 6 clients.
We were unable to find the cause of this behavior.

5.2.2 Variability (MF2). Because performance variability does not
happen uniformly over the duration of the system’s operation, we
use Experiment 2 to capture when and how variability occurs. The
results of this experiment appear in Figure 5 and (partially) Figure 1,
and explain the large performance variability observed in Figure 4.

Before plotting, we clean the data by removing zero values, which
improves plot readability. Because all clients use as input the con-
tinuous audio and video streams detailed in Table 2, zero values are
likely caused by measurement errors or unstable network condi-
tions. This operation removes about 2% of the data points.

Overall, the figures show that VCS resource consumption be-
comes regular after a warmup phase, but does not stabilize in all
cases. The plots in the figure show time on the horizontal axis and
usage of different resources on the vertical axis. The curves and
shaded areas show the mean and interquartile range respectively.
The experiment evaluates Zoom, Teams, and Jitsi, for 2 and 4 clients.

Figure 1 shows the memory usage is stable for both Microsoft
Teams and Jitsi, but increases up to 5GB before stabilizing for Zoom.
We explain the linear memory increase as a memory leak in Zoom
web; reports in public forums support our conjecture [3, 5]. (The
stabilization to 5GB is a memory limit for a single tab in Google
Chrome.) This suggests users with a memory-critical system should
reconsider using Zoom web. This result explains the large variabil-
ity in memory usage observed for Zoom in Figure 4 (previous page).
The left-side whisker (lower values) corresponds to Zoom’s mem-
ory usage at the start of the experiment, which is comparable to
that of Teams and Jitsi. The right-side whisker (higher values) corre-
sponds to Zoom’s peak memory usage. The quantiles and mean are
skewed towards the higher values because Zoom spends roughly
150 seconds (half the experiment duration) at 5 GB memory usage.

0 50 100 150 200
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nu
m

be
r o

f C
PU

 C
or

es
Warmup time

0 50 100 150 200
Time (s)

0

200

400

600

800

1000

Ba
nd

wi
dt

h
(K

B/
s)

Conference System
ZOOM

TEAMS
JITSI

Clients 2 4

Figure 5: Behavior over time for different numbers of clients
and VCSs. Plots show CPU (left) and network bandwidth
(right). The curves show the arithmetic mean. The shaded
areas show the standard deviation.

The left-most plot in Figure 5 shows that CPU usage is high,
but stablizes over time for all VCSs. Microsoft Teams uses almost
two full CPU-cores; this represent the lowest CPU usage among
the systems we evaluate. Zoom’s CPU usage is lower initially, but
increases over time and takes almost 5 minutes (the full experiment
duration) to stabilize. This increasing trend explains the large vari-
ability in CPU-usage observed for Zoom in Figure 4. The left-side
whisker (lower values) corresponds to Zoom’s initially low CPU us-
age. The right-side whisker (higher values) corresponds to Zoom’s
high CPU usage at the end of the experiment. Because Zoom’s CPU
usage increases sub-linearly, the quantiles are skewed towards the
higher values, and the mean is lower than the median.

The right-most plot in Figure 5 shows that bandwidth usage
is stable for all three VCSs after the initial setup time. This result
confirms the range of values observed in the right-most plot in
Figure 4. Unlikememory and CPU usage, bandwidth usage stabilizes
for all systems after the initial warm up time. Zoom’s bandwidth
usage shows higher variability than Teams and Jitsi, but the overal
trend shows a constant bandwidth usage.

5.3 Other Findings (MF3, MF4)
Here we present our results for Experiments 3 and 4, which are
discussed in detail in our technical report [15].

Experiment 3 compares VCS behavior when using audio and
video, only audio, and only video. The results show that using audio
and video channels simultaneously requires more resources than
when using only one, and that their effect on resource usage is
complex. For each of the three resources, using audio and video
with four clients uses on average more resources compared to using

HotCloudPerf 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

69

only audio or only video. This matches our intuition that both
require resources to be processed. The results show two additional
surprising behaviors. First, using only audio results in higher CPU
usage than using only video.We conjecture that this is caused by the
bitrates of both streams. The audio bitrate is higher, and therefore
generates more data that needs to be processed. Second, the sum of
the bandwidth usage of only audio and only video is less than the
bandwidth usage when using audio and video. We conjecture that
this is caused either by additional bandwidth required to keep the
two streams synchronized, or that Jitsi identifies clients with their
audio enabled as potential speakers, improving the quality (and
bandwidth requirement) of the video for this reason. Finally, the
differences in memory and CPU usage are relatively small, which
means the decision to enable or disable audio and video streams
should be made primarily based on the quality of the user’s network.

Experiment 4 compares the behavior of Zoom’s Web-based app
with its native desktop client. The results show that Zoom’s desk-
top client performs significantly better than its Web-based client,
using significantly less CPU, memory, and network bandwidth.
First, it does not suffer from the memory leak observed in Experi-
ments 1 and 2, reducing memory usage from 5GB to an average
of roughly 300MB. A decrease of 94%. Second, while Zoom’s Web
client uses an average of 2.5 CPU cores for a 2-client conference,
Zoom’s desktop client does not use more than 0.5 cores. A decrease
of 80%. Finally, in a 4-client setting, Zoom’s Web client uses on av-
erage more than 300 KB/s, while its desktop client uses on average
approximately 50 KB/s (a decrease of 83%).

6 THREATS TO VALIDITY
We consider our work to be an important first step in gaining
a better understanding of the behavior of VCSs and discuss here
limitations of our experimental method and real-world experiments.

We identify a main limitation in our experimental method: Be-
cause commercial VCSs are typically closed-source, our method
takes a black-box approach in evaluating their behavior. This limits
the types of metrics that we can collect (e.g., frame processing time)
and how we can interpret them (i.e., lacking a detailed model).

We identify four limitations of our real-world experiments. First,
we conduct our experiments over the Internet usingWi-Fi networks,
and do not consider other popular network types such as Ethernet
and 4G. Second, we conduct our measurements on a personal com-
puter, which can run additional programs that can interfere with
our measurements. Third, although VCSs are used in large settings
(e.g., online conferences), we do not investigate the behavior of
these systems for more than 6 clients. Lastly, we have conducted
our experiments on a Linux based operating system, and did not
consider other popular operating systems such as Windows and
OSX.

7 RELATEDWORK
We survey here work related to our study. Overall, ours is the
first experimental study focusing on VCS performance for clients
running in stable networks, where also memory and CPU resource
usage are important. Ours is also the first study to compare VCSs
popular in 2020, i.e., Zoom, Microsoft Teams, and Jitsi.

Closest to our work, Hortelano et al. [19] introduce a framework
to evaluate the performance of video calls. Focusing on ad-hoc
networks, the authors measure the throughput and inter-packet
delay (jitter) of video calls using this framework. They conclude
that as the number of hops increases, the chance of high delay times
and packet losses increases as well. In contrast, we focus on stable
networks, which are more commonly used in business, conference,
and education settings.

Zhang et al. [30] study the video quality of Skype video calls.
To analyze performance, the authors measured the Packet Loss
Rate (PLR), the impact of the available network bandwidth, and the
impact of propagation delay. They conclude that Skype is robust
against mild packet losses and propagation delay, and Skype effi-
ciently utilizes the available network bandwidth. Jansen et al. [22]
study WebRTC-based conferencing. Complementing this work, we
focus on the current market leaders, such as Zoom and Teams, and
conduct different kinds of experiments.

The ICPE 2020 organizers give a sample performance result—
the bandwidth consumption of Zoom during a single conference-
session [20, Fig.2]. Our work extends and deepens this early mea-
surement, proposing a method and conducting comprehensive ex-
periments, and focusing on multiple VCSs.

Townsend et al. [27] study the attitudes of users towards video
conferencing systems. They state that video conferencing systems
and virtual collaboration have a major impact on social-work expe-
rience. Similar findings appear in other studies, e.g., [29].

Similar research has been conducted in related domains, such
as video streaming. For instance, Hyunwoo et al. [23] introduced a
tool called YouSlow to monitor buffer staling events while clients
watch YouTube videos on Chrome browsers. Furthermore, Nguyen
et al. [24] studied transport protocols to coordinate simultaneous
transmissions of videos from multiple senders. To understand the
behavior, they considered the sending rate, packet loss, and the
probability of packets arriving late. In contrast, our study reveals
the characteristic behavior of VCSs.

8 CONCLUSION AND FUTUREWORK
VCSs experienced a surge in popularity during the 2020 COVID-
19 pandemic. Understanding their performance is desirable, but
currently both methodological and practical results do not exist.
In this work, we addressed the research question: How do popular
video conference systems (VCSs) perform, relative to each other?

We proposed an experimental method to compare VCSs, de-
signed an automated tool that implements the method, and used
it to compare Zoom, Microsoft Teams, and Jitsi with real-world
experiments. Our experimental results produced four main find-
ings. First, there are significant differences in the resource usage
of VCSs, and they respond differently to an increasing number of
users. Second, the resource consumption of VCSs seems in general
regular, but not all systems stabilize. Third, clients use significantly
more resources when enabling both audio and video channels, but
their effect on resource usage is complex. Fourth, the Zoom desktop
app requires significantly less resources than the Zoom Web app.

Further research could cover more VCSs, including more diverse
metrics related to security and QoS (e.g, number of interruptions,
video and image quality), andmore detailedmetrics (e.g., application

HotCloudPerf 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

70

specific metrics through profilers rather than system level metrics).
Furthermore, the impact on the performance of a larger number of
clients should be investigated.

DATA AND SOFTWARE AVAILABILITY
All the results used in this work are available, accompanied by a
detailed technical report, on Zenodo:

https://doi.org/10.5281/zenodo.4463845

REFERENCES
[1] 2020. Browser Market Share Worldwide. https://gs.statcounter.com/browser-

market-share [Online; accessed 22. Jan. 2021].
[2] 2020. Docker. https://www.docker.com/resources/what-container [Online;

accessed 22. Jan. 2021].
[3] 2020. Memory leak in Zoom website meeting hosting? - Client Web SDK - Zoom

Developer Forum. https://devforum.zoom.us/t/memory-leak-in-zoom-website-
meeting-hosting/14503 [Online; accessed 24. Jan. 2021].

[4] 2020. Video conferencing becomes a Zoom boom. https://www.
relocatemagazine.com/news/technology-video-conferencing-becomes-a-
zoom-boom-coronavirus-0520-dsapsted [Online; accessed 22. Jan. 2021].

[5] 2021. Apparent memory leak using Zoom web app on Chromium (Ubuntu
20.04). https://superuser.com/questions/1589202/apparent-memory-leak-using-
zoom-web-app-on-chromium-ubuntu-20-04 [Online; accessed 24. Jan. 2021].

[6] 2021. Best video conferencing software in 2021. https://www.techradar.com/
best/best-video-conferencing-software [Online; accessed 24. Jan. 2021].

[7] 2021. dpkt. https://dpkt.readthedocs.io/en/latest/ [Online; accessed 22. Jan.
2021].

[8] 2021. NodeJS. https://nodejs.org/en/ [Online; accessed 22. Jan. 2021].
[9] 2021. Puppeteer. https://pptr.dev/ [Online; accessed 22. Jan. 2021].
[10] 2021. scapy. https://scapy.net/ [Online; accessed 22. Jan. 2021].
[11] 2021. TCPDump. https://www.tcpdump.org/ [Online; accessed 22. Jan. 2021].
[12] Gene M. Amdahl. 1967. Validity of the single processor approach to achieving

large scale computing capabilities. In American Federation of Information Pro-
cessing Societies: Proceedings of the AFIPS ’67 Spring Joint Computer Conference,
April 18-20, 1967, Atlantic City, New Jersey, USA (AFIPS Conference Proceedings,
Vol. 30). AFIPS / ACM / Thomson Book Company, Washington D.C., 483–485.
https://doi.org/10.1145/1465482.1465560

[13] Aleksander Aristovnik, Damijana Keržič, Dejan Ravšelj, Nina Tomaževič, and
Lan Umek. 2020. Impacts of the COVID-19 pandemic on life of higher education
students: A global perspective. Sustainability 12, 20 (2020), 8438.

[14] Bal et al. 2016. A Medium-Scale Distributed System for Computer Science
Research: Infrastructure for the Long Term. Computer 49, 5 (2016), 54–63.

[15] Richard Bieringa, Abijith Radhakrishnan, Tavneet Singh, Sophie Vos, Jesse
Donkervliet, and Alexandru Iosup. 2021. An Empirical Evaluation of the Perfor-
mance of Video Conferencing Systems. https://doi.org/10.5281/zenodo.4463845

[16] Erik Brynjolfsson, John J Horton, Adam Ozimek, Daniel Rock, Garima Sharma,
and Hong-Yi TuYe. 2020. COVID-19 and remote work: an early look at US data.
Technical Report. National Bureau of Economic Research. https://www.nber.
org/papers/w27344

[17] Duplyakin et al. 2019. The Design and Operation of CloudLab. In ATC, Dahlia
Malkhi and Dan Tsafrir (Eds.). 1–14.

[18] John L. Gustafson. 1988. Reevaluating Amdahl’s Law. Commun. ACM 31, 5 (1988),
532–533. https://doi.org/10.1145/42411.42415

[19] Jorge Hortelano, Juan-Carlos Cano, Carlos T Calafate, and Pietro Manzoni. 2008.
Evaluating the performance of real time videoconferencing in ad hoc networks
through emulation. In 2008 22nd Workshop on Principles of Advanced and Dis-
tributed Simulation. IEEE, 119–126.

[20] Alexandru Iosup, Catia Trubiani, Anne Koziolek, José Nelson Amaral, Andre B.
Bondi, and Andreas Brunnert. 2020. Flexibility Is Key in Organizing a Global
Professional Conference Online: The ICPE 2020 Experience in the COVID-19 Era.
CoRR abs/2005.09085 (2020). arXiv:2005.09085 https://arxiv.org/abs/2005.09085

[21] Alexandru Iosup, Laurens Versluis, Animesh Trivedi, Erwin Van Eyk, Lucian
Toader, Vincent van Beek, Giulia Frascaria, Ahmed Musaafir, and Sacheendra
Talluri. 2019. The AtLarge Vision on the Design of Distributed Systems and
Ecosystems. In ICDCS. 1765–1776.

[22] Bart Jansen, Timothy Goodwin, Varun Gupta, Fernando A. Kuipers, and Gil
Zussman. 2017. Performance Evaluation of WebRTC-based Video Conferencing.
SIGMETRICS Perform. Evaluation Rev. 45, 3 (2017), 56–68.

[23] Hyunwoo Nam, Kyung-Hwa Kim, Doru Calin, and Henning Schulzrinne. 2014.
YouSlow: A Performance Analysis Tool for Adaptive Bitrate Video Streaming.
SIGCOMM Comput. Commun. Rev. 44, 4 (Aug. 2014), 111–112.

[24] Thinh P Nguyen and Avideh Zakhor. 2001. Distributed video streaming over
Internet. In Multimedia Computing and Networking 2002, Vol. 4673. International
Society for Optics and Photonics, 186–195.

[25] Papadopoulos et al. 2019. Methodological Principles for Reproducible Perfor-
mance Evaluation in Cloud Computing. IEEE Trans. on Sw.Eng. (2019), 1–1.

[26] TechRepublic. 2020. Watch out Zoom! https://www.techrepublic.com/article/
watch-out-zoom-microsoft-teams-now-has-more-than-115-million-daily-
users/ Article reports 300 million users for Zoom and over 100 million for
Microsoft Teams in Oct 2020.

[27] Anthony M Townsend, Samuel M Demarie, and Anthony R Hendrickson. 2001.
Desktop video conferencing in virtual workgroups: anticipation, system evalua-
tion and performance. Information Systems Journal 11, 3 (2001), 213–227.

[28] Alexandru Uta, Alexandru Custura, Dmitry Duplyakin, Ivo Jimenez, Jan S. Reller-
meyer, Carlos Maltzahn, Robert Ricci, and Alexandru Iosup. 2020. Is Big Data
Performance Reproducible in Modern Cloud Networks?. In NSDI, Ranjita Bhag-
wan and George Porter (Eds.). USENIX Association, 513–527.

[29] Caiping Xiong, Jun Ge, Qiyun Wang, and Xuejun Wang. 2017. Design and
evaluation of a real-time video conferencing environment for support teaching:
an attempt to promote equality of K-12 education in China. Interact. Learn.
Environ. 25, 5 (2017), 596–609.

[30] Xinggong Zhang, Yang Xu, Hao Hu, Yong Liu, Zongming Guo, and Yao Wang.
2012. Profiling skype video calls: Rate control and video quality. In 2012 Proceed-
ings IEEE INFOCOM. IEEE, 621–629.

HotCloudPerf 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

71

https://doi.org/10.5281/zenodo.4463845
https://gs.statcounter.com/browser-market-share
https://gs.statcounter.com/browser-market-share
https://www.docker.com/resources/what-container
https://devforum.zoom.us/t/memory-leak-in-zoom-website-meeting-hosting/14503
https://devforum.zoom.us/t/memory-leak-in-zoom-website-meeting-hosting/14503
https://www.relocatemagazine.com/news/technology-video-conferencing-becomes-a-zoom-boom-coronavirus-0520-dsapsted
https://www.relocatemagazine.com/news/technology-video-conferencing-becomes-a-zoom-boom-coronavirus-0520-dsapsted
https://www.relocatemagazine.com/news/technology-video-conferencing-becomes-a-zoom-boom-coronavirus-0520-dsapsted
https://superuser.com/questions/1589202/apparent-memory-leak-using-zoom-web-app-on-chromium-ubuntu-20-04
https://superuser.com/questions/1589202/apparent-memory-leak-using-zoom-web-app-on-chromium-ubuntu-20-04
https://www.techradar.com/best/best-video-conferencing-software
https://www.techradar.com/best/best-video-conferencing-software
https://dpkt.readthedocs.io/en/latest/
https://nodejs.org/en/
https://pptr.dev/
https://scapy.net/
https://www.tcpdump.org/
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.5281/zenodo.4463845
https://www.nber.org/papers/w27344
https://www.nber.org/papers/w27344
https://doi.org/10.1145/42411.42415
https://arxiv.org/abs/2005.09085
https://arxiv.org/abs/2005.09085
https://www.techrepublic.com/article/watch-out-zoom-microsoft-teams-now-has-more-than-115-million-daily-users/
https://www.techrepublic.com/article/watch-out-zoom-microsoft-teams-now-has-more-than-115-million-daily-users/
https://www.techrepublic.com/article/watch-out-zoom-microsoft-teams-now-has-more-than-115-million-daily-users/

	Abstract
	1 Introduction
	2 VCS Model
	3 Design of a Method to Compare Video Conferencing Systems
	3.1 Definition of the Experiment Requirements
	3.2 Design of an Experimental Method

	4 Tool for Experimentation
	4.1 Overview of the Tool Design
	4.2 Automated Meeting Client
	4.3 Orchestration Server

	5 Real-World Experiments
	5.1 Experiment Setup
	5.2 Experiment Results
	5.3 Other Findings (MF3, MF4)

	6 Threats To Validity
	7 Related Work
	8 Conclusion and Future Work
	References

