HotCloudPerf 2021 Workshop

ICPE 21 Companion, April 19-23, 2021, Virtual Event, France

Performance and Cost Comparison of Cloud Services for Deep
Learning Workload

Dheeraj Chahal, Mayank Mishra, Surya Palepu, Rekha Singhal
TCS Research, Mumbai, India
{d.chahal, mishra.m, surya.palepu, rekha.singhal}@tcs.com

ABSTRACT

Many organizations are migrating their on-premise artificial intel-
ligence workloads to the cloud due to availability of cost-effective
and highly scalable infrastructure, software and platform services.
To ease the process of migration, many cloud vendors provide ser-
vices, frameworks and tools that can be used for deployment of
applications on cloud infrastructure. Finding the most appropriate
service and infrastructure for a given application that results in a
desired performance at minimal cost, is a challenge.

In this work, we present a methodology to migrate a deep learn-
ing model based recommender system to ML platform and server-
less architecture. Furthermore, we show our experimental evalu-
ation of AWS ML platform called SageMaker and the serverless
platform service known as Lambda. In our study, we also discuss
performance and cost trade-off while using cloud infrastructure.

CCS CONCEPTS

+ General and reference — Performance; « Computer sys-
tems organization — Cloud computing,.

KEYWORDS

Recommendation system, ML Platform, AWS SageMaker, cloud
performance

ACM Reference Format:

Dheeraj Chahal, Mayank Mishra, Surya Palepu, Rekha Singhal. 2021. Perfor-
mance and Cost Comparison of Cloud Services for Deep Learning Workload.
In Companion of the 2021 ACM/SPEC International Conference on Performance
Engineering (ICPE "21 Companion), April 19-23, 2021, Virtual Event, France.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3447545.3451184

1 INTRODUCTION

Many enterprises are migrating their artificial intelligence applica-
tions to cloud due to the several advantages such as availability of
large infrastructure for high scalability, low operational manage-
ment cost, etc. A user has to make many decisions judiciously while
migrating the existing applications to cloud. For example, choosing
appropriate cloud services, type of instances, configuration of cho-
sen instances, etc. Such choices are based on multiple factors such

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPE 21 Companion, April 19-23, 2021, Virtual Event, France

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8331-8/21/04...$15.00
https://doi.org/10.1145/3447545 3451184

49

as the application’s characteristics, its performance requirements,
the available budget, etc.

Many cloud vendors provide workflows to deploy machine learn-
ing (ML) model based applications with minimal efforts. For exam-
ple, Amazon Web Services (AWS) SageMaker !, Microsoft Azure
ML 2, TFX [11], and MLFlow [16] are some of the ML platforms
that allow automatic training, deployment and inference.

Serverless platform is also emerging as a preferred paradigm
for deploying deep learning models. AWS Lambda 3, Microsoft
Azure functions 4, Google cloud functions *, and IBM OpenWhisk ©
are popular platforms for serverless computing. ML platfrom and
serverless architecture may not be suitable for all kinds of workloads
and requirements. For example, SageMaker instances provide low
latency as compared to Lambda, but the pay-per-use model of
serverless platform results in cost savings and it is suitable for
bursty traffic.

Once a decision is made on cloud platform to deploy the appli-
cation, the next step is to find the suitable family of instances for
deployment. Each vendor provides a range of instances such as
AWS provides compute intensive and memory intensive instances
with varying configurations. These instances are chosen based on
the application workload, expected performance, and the cost. For
example, serverless platform is a better choice for serving event
driven and bursty traffic at low cost whereas SageMaker endpoint
can be used for long running workloads.

One important use case to study the appropriate cloud service
and deployment environment for an application is migration of
recommender system on cloud. A recommender system enhances
customer experience by displaying most relevant items when a
request is made. These recommendations are made based on the
historical behavior of the customer. The machine learning mod-
els used by the recommender system can be deployed using ML
platform and serverless architecture. Although, the use of ML plat-
forms such as SageMaker for recommender systems is well known,
but its comparison vis-a-vis serverless platform deployment is not
explored by its practitioners.

In this work, we compare the performance and cost per infer-
ence incurred when a recommender system is deployed using ML
platform and serverless architecture. Succintly, our contributions
are as follows:

(1) We present a scheme for migrating a deep learning based
recommender system to cloud

!https://aws.amazon.com/sagemaker/
Zhttps://azure.microsoft.com/en-in/services/machine-learning/
3https://aws.amazon.com/lambda/
*https://azure.microsoft.com/en-in/services/functions/
Shttps://cloud.google.com/functions
®https://www.ibm.com/in-en/cloud/functions

https://doi.org/10.1145/3447545.3451184
https://doi.org/10.1145/3447545.3451184

HotCloudPerf 2021 Workshop

(2) We study the inference performance and cost using different
types of instances available on cloud

(3) We compare the performance and cost when a recommender
system is deployed using ML platform versus serverless plat-
form.

We use well known ML platform called SageMaker [9] and server-
less platform called Lambda provided by Amazon Web Services.
SageMaker is an end-to-end machine learning platform used for
data labeling, model training, deployment, and inference. Sage-
Maker provides features such as GPU acceleration, auto-scaling,
AB testing, batch inference but at a steep cost. AWS Lambda pro-
vides high scalability at a low cost, especially for functions with
small execution time and low resource requirements.

Rest of the paper is structured as follows. Related work is dis-
cussed in section 2 followed by discussion on our recommender
system, on-premise deployment and migration to cloud in section 3.
Experimental setup and evaluation is discussed in section 4 and 5.
Conclusion and future scope is discussed in section 6.

2 RELATED WORK

In order to enhance the customer experience, many organizations
are using recommender systems based on studies of customer be-
havior. Lots of research has been done to develop machine learning
workflows to deploy these systems, such as Michelangelo [1] from
Uber and FBLearn [7] from Facebook with a capability of making
1 million and 6 million predictions per second respectively. De-
ployment of a recommender system called iPrescribe, using AWS
SageMaker, has been studied earlier [4].

Serverless platform is becoming increasingly popular for de-
ployment of deep learning models due to its high scalability and
pay-per-use cost model. SPEC RG Cloud working group published
86 serverless use cases in its technical report [15]. The serverless
architecture has been studied extensively to deploy deep learning
model based applications [5] [8]. Their suitability for recommender
systems has been also been explored in [3, 13].

Zheng et al. conducted a study on cloud services for cost-effective
and SLO aware machine learning inference [17]. We extend this
work further and compare the performance of our recommender
system on different types of SageMaker endpoint servers. We also
compare the performance of SageMaker with the serverless plat-
form called Lambda.

To the best of our knowledge, this work is a first effort to compare
ML platform and serverless architecture for deploying deep learning
model based recommender system.

3 OUR RECOMMENDER SYSTEM

In this paper, we use our recently developed session based recom-
mendation model known as NISER [6]. NISER is a graph neural
network (GNN) [14] based model which utilizes a user’s past actions
like product or item clicks (known as a session) to recommend the
next product or item.

3.1 On-premise recommender system

NISER model consists of several layers of neurons (including the
GNN layer) as shown in Figure 1.

50

ICPE 21 Companion, April 19-23, 2021, Virtual Event, France

SessionGraph(
2 (embedding) :
3 (pos_embedding) : Embedding (12,
(gnn): GNN{
(linear edge_in): Linear (in features=100, out_ features=100, bias=True)
(linear_edge_out): Linear(in_features=100, out_features=100, bias=True)
(linear edge f): Linear(in_ features=100, out_featurss=100, bias=True)
)
(linear_one): Linear(in_features=100, out_features=100, bias=True)
(linear two): Linear (in features=100, out_features=100, bias=True)
(linear_three): Linear(in_features=100, out_features=l, bias=False)
12 (linear transform): Linear (in features=200, out_features=100, bias=True)
3 (loss_function): CrossEntropyLoss()
(drop_layer): Dropout (p=0.1, inplace=False)
(scale factor): Scalelayer ()

Embedding (43098, 100)
100)

Figure 1: NISER model layers and arrangement.

Session (sequence of items)
Item clicks 1
- Recommender
Session
Customer M Process
(NISER Model)
Recommend-
Web/App ations Top Kitem
Interface recommendations

Figure 2: Overall scenario and placement of different compo-
nents in session based recommendations involving NISER.

Session based recommendation models like NISER require only
the recent actions of users for recommendations, and hence are
useful in scenarios where the users, for whom the recommendations
are being made, are not known. For example, first time visitors on
an e-retail website who are browsing products (or a non logged-in
user).

NISER represents an item as embedding (a way of representation
in form of a vector of length 100). The model training involves
learning these item embeddings in such a manner that items which
are often clicked one after another (or in close vicinity), have em-
beddings which are similar to each other. The data set employed for
training consists of past sessions of item clicks by users seen by the
system. During prediction, the sequence of items present in current
session are used to predict the top k items to be recommended next
(Figure 2).

PyTorch and SAGEMAKER FUNCTIONS USER IMPLEMENTED SAGEMAKER

' FUNCTIONS
PyTorch() ! -
Estimator- entry script, training instances, ' train()
hyperparameter, role. credentials 1 Model training code ‘
1 ; i
fit() 1 save()
Training data locations 1 Saving model on 83
I 3
I
i
T
i

deploy()
Start endpoint server, initiates workers

]

prediction(data)
Send request (from web, baich file)

I

delete end_point(data)
Delete instances and model

i

i

L predict_fn()

! formatting data, prediction moedule, output

model fn()
Load and deploy models, config files

Figure 3: Recommender system deployment using AWS
SageMaker APIs

Figure 2 shows the scenario where a user clicks the items (ses-
sion) over a web or app based interface. There is a session manager

HotCloudPerf 2021 Workshop

to identify individual users’ sessions as well as to keep track of item
clicks per session. The NISER model is embedded in the recom-
mender process which recommends the top k items for a particular
session.

3.2 Cloud based implementaion of
recommender system

In this section, we discuss migration of our recommender system
to cloud. First we discuss the deployment scheme which we used
to migrate it to AWS SageMaker followed by a discussion on AWS
Lambda migration.

3.2.1 Using AWS SageMaker. We use AWS SageMaker APIs to
deploy our recommender system on cloud as shown in Figure 3. A
call to fit API invokes the train method in the entry script defined
in the PyTorch [12] estimator. We pre-load the training data on S3
which is invoked inside the train function for training the model.
At the completion of the the training, model is returned by train.
Trained model is saved in S3 along with the parameter values.

Once the traing process is over, save API is invoked and model is
saved on S3. A call to deploy function invokes model_fn method of
SageMaker and model is accessed from S3. A SageMaker PyTorch
model server is created to host the model. The model server runs
inside the SageMaker endpoint. The end-point created to serve the
model is accessed using the predictor object returned by the deploy
API. The predictor object has predict method to do inference on
the endpoint hosting our model. Predict returns the result of the
inference which is NumPy array by default.

3.2.2 Using AWS Lambda. In another deployment strategy, we
use AWS serverless platform Lambda to deploy the recommender
system (Figure 3). Serverless platform for recommender system
seems a good choice due to a small execution time per inference.

One of the challenges in serverless platform is the statelessness
of Lambda functions. Lambda provides a total of 500 MB storage
and only 250 MB is available for deployment packages. The Py-
Torch packages and NumPy required for recommender system is
approximately 900 MB in size. We use CPU version of PyTorch
requiring only 200 MB and hence satisfies the storage constraint
of the Lambda. Another challenge in serverless platform is a cold
start which results in very high latency for the first request. There
are techniques proposed by researchers to mitigate the problem
in serverless platform [2] [10]. As discussed in section 3.2.1, we
used SageMaker APIs for training, deploying and to infer the model.
However, in this study we used Lambda for deployment and in-
ference only. As and when the first request arrives, an event is
triggered and NISER model is loaded in the memory of Lambda
function from S3 along with other packages and code from the local
storage. This results in a cold start and with a significant latency
overhead. The event handler code in the Lambda function contains
the predict function which gets executed for each request.

4 EXPERIMENTAL SETUP

We conducted on-premise experiments on an Intel server consisting
of 28 physical cores and 256 GB memory. We used Python 3.6 with
PyTorch version 17.1 over CentOS 7. For deploying and inference
using SageMaker, we used ml.c5.large and ml.c5.xlarge compute

51

ICPE 21 Companion, April 19-23, 2021, Virtual Event, France

Amazon S3
(Saved Model)

!

AWS Lambda
(NISER predict function)

SageMaker Notebook
(Load generator)

API Gateway

Figure 4: Recommender system deployment on AWS
Lambda

family CPU instances with gdn.ml.xlarge and gdn.ml.2xlarge family
of GPU instances. Also, for serverless deployment, each instance
used was configured with 3GB memory, hence resulting in allo-
cation of 2 cores for each Lambda function. Load was generated
using Jupyter notebook instance for SageMaker as as well Lambda.
For the performance measurements, response time was measured
with an increasing concurrency (number of concurrent users). The
response time shown in the experiments is round trip time for the
requests. For all the serverless experiments, we used provisioned
concurrency, and response time is collected while Lambda is warm.
All data points are collected in the steady state of the system.

5 EXPERIMENTAL EVALUATION

In this section, we first discuss the experiments that we performed
on-premise and then compare the performance with AWS Sage-
Maker and AWS Lambda.

5.1 On-premise

400 On-Premise CPU

351.81

150 onprem.4Core

311.62

onprem.4Core (2 instances)

w
=]
=]

® onprem.8Core

]
[l
=]

m onprem.8Core (2 instances)

B onprem.16Core

Response Time (ms)
5 B
= (=]

-
o
=]

@
gk
[|

~
n
a9
2
6

a
Number of concurrent requests

w
[=] =
19.58
19.79
= W 1685
= 1684
M 158
4141
~ I 3134
B 3294
85.65
45.89
I 7894
3751
80,09
190.15
87.61
. 67.83
I 134.96
135.96
o S 212.58
e 105.67
188.13
145.28
I 278.92
. 1379
240.23

Figure 5: Response time of recommender system with on-
premise server

We performed experiments by allocating different number of
cores (4, 8, 16) to the NISER recommendation process instance.
We also experimented with 2 instances of NISER recommendation

HotCloudPerf 2021 Workshop

process. We used Python 3.6 with PyTorch version 17.1 over CentOS
7. The performance graph displaying the mean response times
in figure 5 shows that as we increase the number of concurrent
requests, we observe an increase in the response time of the requests
in each of the instance types irrespective of the number of cores
allotted to the recommendation process. For example, consider the
“light blue” bar representing 8 core allocation, the response time
increases from 16ms for a single request at a time to 278ms when
11 concurrent requests are made. This increase is primarily due to
the queuing delay.

An interesting observation is that, at higher concurrency situa-
tions (6,8,11), the response time of a one 8 core instance is approxi-
mately twice that of two 4 cores instances. The same observation
is true for response times observed for a single 16 core instance
versus two 8 core instances.

5.2 Cloud deployment using AWS SageMaker

[
@
(=]

m ml.c5.xlarge SageMaker - CPU

m ml.c5.2xlarge

I
=]
(=]

= ml.c5.xlarge 2 instances

ey
1
(=]

Response Time (ms)
=
(=]
[=]

a
Number of concurrent requests

Figure 6: Response time of recommender system on two dif-

ferent types of CPU based SageMaker instances
-
!
20

Figure 7: Response time of recommender system on two dif-
ferent types of GPU based SageMaker instances

=
=]
=]

SageMaker - GPU
= ml.gddn.xlarge

u ml.gddn.2xlarge
= ml.gddn.xlarge (2instances)

| ~ I
i > B B
a

6 10
Number of Concurrent requests

=
=]

Response Time (ms)
F=3
-

]
=

1

In this experiment, we evaluate the effect of scaling on the re-
sponse time and cost per inference. We run our experiments on
ml.c5.xlarge (4 cores) and ml.c5.2xlarge (8 cores) and 2 instances
of ml.c5.xlarge (2*4 cores) family instances. As shown in figure 6,
as we increase the number of concurrent requests, we observe an
increase in the response time of the requests in each of the instance
types. As expected, we observe that response time of ml.c5.2xlarge

52

ICPE ‘21 Companion, April 19-23, 2021, Virtual Event, France

instance is slightly lower than ml.c5.xlarge instance at higher con-
currencies due to availability of more cores. Similar behavior is
observed in the experiments using SageMaker GPUs as shown in
figure 7.

Concurrency
el
2
o4
e 6

Response time (ms)

8
ell

Request count

Figure 8: Response time with increasing workload when us-
ing multiple CPU instances with AWS SageMaker

Concurrency

el
o4
N)

10

Response time (ms)

» 20

® 30

Request count

Figure 9: Response time with increasing workload when us-
ing multiple GPU instances with AWS SageMaker

Another interesting observation is that, average response time
observed using 2 instances of ml.c5.xlarge with total 8 cores is
significantly less than on one instance of ml.c5.2xlarge having same
number of cores. However, we see a large variation in the response
time of the requests particularly at higher concurrency when using
multiple instances instead of one of equivalent configuration as
shown in figures 8 and 9. This is due to the load imbalance on
the SageMaker model servers while distributing the requests to
multiple instances.

Figure 10 shows the cost per inference comparison between
ml.c5.xlarge (4 core) and ml.c5.2xlarge (8cores). While the perfor-
mance gain as observed in figure 6 is small, we notice that cost per
inference is approximately double in ml.c5.2xlarge as compared to
the ml.c5.xlarge. Similar behavior is observed in GPUs (Figure 11).

HotCloudPerf 2021 Workshop

0.0000350

0.0000300 ml.c5.xlarge

u ml.c5.2xlarge

IIIII
i 2 4 6 8

No. of concurrent recuests

0.0000250
0.0000200
0.0000150
0.0000100

Cost/finference (USD)

0.0000050
0.0000000

11

Figure 10: Cost per inference comparison of ml.c5.xlarge
and ml.c5.2xlarge type CPU based SageMaker instances

0.0000250
— 0.0000200
o
3 l.gddn.xl
= ml.gddn.xlarge
¢ 0.0000150
§ E ml.gddn.2xlarge
7]
‘€ 0.0000100
3
o
“ 0.0000050 I
0.0000000 I
1 4 6 10 20

No. of concurrent requests

Figure 11: Cost per inference comparison of ml.g4dn.xlarge
and ml.g4dn.2xlarge type GPU based SageMaker instances

However, the cost per inference difference between ml.g4dn.xlarge
and ml.g4dn.2xlage is not as wide as observed in CPU instances.
These experiments suggest that there is a scope for trade-off in
performance and cost of the deployment. An increase in the re-
sources at higher cost does not translate to proportional gain in the
performance of the application. The user has to choose deployment
infrastructure judiciously that satisfies SLA and budget constraints.

5.3 Comparison of on-premise, AWS
SageMaker and Lambda

Figure 12, shows the comparison of response time observed op-
premise CPU, SageMaker CPU, GPU endpoint server, and deploy-
ment of the model on AWS Lambda. At very low concurrency, we
observe that response time from Lambda is higher than SageMaker
CPU and GPU. This is due to the fact that the compute resources of

53

ICPE ‘21 Companion, April 19-23, 2021, Virtual Event, France

Response time comparison
=—e—=SageMaker CPU - mx.c5.xlarge (4core)

——SageMaker CPU - mx.c5.2xlarge (8core)

=—+=SageMaker GPU - ml.g4dn.xlarge
=—s=SageMaker GPU - ml.g4dn.2xlarg
——0n-Prem CPU - 4core
=+—0n-Prem CPU - 8core

——Serverless

Response time (ms)
]
o

100

50

4 6 8 10 11 15 20
Number of concurrent requests

Figure 12: Response time comparison of on-premise, AWS
SageMaker CPU, GPU endpoint and AWS Lambda with in-
creasing workload

CPU and GPU instances in SageMaker are underutilized. As the con-
currency or load increases, resources are saturated in SageMaker
instances. However, Lambda provides high scalability and spawns
instances proportional to the number of requests. This results in
a constant response time in Lambda but it increases linearly with
increasing concurrency in SageMaker CPU and GPU endpoints. As
shown, the response time observed with CPU endpoint is highest
as compared to the GPU endpoint and Lambda at higher concur-
rency values. Although activating scaling feature in SageMaker can
mitigate the increasing response time problem, but that results in
higher implementation cost as compared to the pay-per-use model
in Lambda. We observe that response time for on-premise deploy-
ment is higher as compared to SageMaker CPU deployment with
comparable configuration. This is due to optimized libraries and
environment used in SageMaker.

Figure 13 shows cost comparison of AWS SageMaker and Lambda.
SageMaker and Lambda have unique cost models and hence are
challenging to compare. The cost of SageMaker instances is propor-
tional to the up-time of the instances and is independent of CPU
usage. Whereas, Lambda follows pay-per-use model that derives
cost based on the execution time, memory used, and the number of
requests served.

Figure 13 shows the maximum achievable request rate for each
instance and its fixed cost for one hour. However, Lambda cost
as shown in the figure, is dependent on requests served and the
time for serving those requests. The intersection point of Lambda
trend-line with each of the instances represents the break-even
point. If the request rate extracted from the instance is below the
intersection point, serverless is a cheaper option. This is due to the
fact that SageMaker instances are underutilized in the stipulated one
hour, but billed for the whole duration. However, If a request rate
extracted from an instance is between the intersection point and

HotCloudPerf 2021 Workshop

765

720

675

630

585

540

495

450

405

360

315 4
270

225)
180

135 A

90

a5

= ml.c5.xlarge
mil.c5.2xlarge
ml.gddn.xlarge
ml.gddn.2xlarge

Request Rate (in 1000s per hour)

Lambda

1.5 2
Cost/Hour (USD)

2.5 3

Figure 13: Cost comparison of AWS SageMaker instances (
CPU and GPU) and AWS Lambda

maximum achievable, then SageMaker is cheaper because instances
are optimally utilized.

Based on our experimental data, we can conclude that there
are some scenarios where serverless architecture delivers better
performance due to fast and high scalability for bursty workloads
as compared to the ML platform. On the other hand, ML Platform
is a better option for long running workloads when resources are
optimally used.

However, there are some inherent constraints and challenges in
ML Platform and serverless platform. For example, the cold start
in serverless results in very high latency for the first request. We
observed a cold start time of 30 seconds. Use of ML platform in
conjunction with serverless architecture can mitigate the problem
of cold start. Workload can be balanced between ML platform and
serverless architecture such that the bursty traffic can be redirected
to the serverless without provisioning for short lived workload in
the ML platform. Although auto-scaling is possible in most of the
ML platforms including SageMaker, but scaling up and down takes
a few minutes as compared to few seconds in scaling up and down
serverless instances. Hence, serverless can be a good choice for
bursty workloads.

6 CONCLUSION AND FUTURE WORK

We presented a methodology to migrate a recommender system
to AWS cloud framework called SageMaker and serverless plat-
form Lambda. In this work, we presented the performance and
cost comparison with different types of instances used as Sage-
Maker endpoints. Additionally, we presented a comparison of AWS

54

ICPE 21 Companion, April 19-23, 2021, Virtual Event, France

SageMaker and serverless platform Lambda performance. Our ex-
perimental evaluation shows that cost incurred due to scaling of
platform instances does not increase proportionally. Also, auto-
scaling in serverless architectures results in better performance as
compared to the dedicated endpoints.

Our future work is focused on using the application profiling
and characterization data to find the most appropriate cloud service.
The application characteristics such as memory usage, compute
requirement, processing time, portability, workload, environment
requirement, etc. can be deciding factors in mapping the application
to the optimal infrastructure, platform, or service. We are also
building performance models using on-premise characterization
data. These models can be used to configure the cloud platform
resources for cost-effective and high performance deployment.

REFERENCES

[1] 2019. Uber Michelangelo. https://eng.uber.com/michelangelo/. [Online;Accessed
20 January 2019].

[2] David Bermbach, Ahmet-Serdar Karakaya, and Simon Buchholz. 2020. Using
Application Knowledge to Reduce Cold Starts in Faa$S Services. In Proceedings of
the 35th Annual ACM Symposium on Applied Computing (Brno, Czech Republic)
(SAC °20). Association for Computing Machinery, New York, NY, USA, 134-143.
https://doi.org/10.1145/3341105.3373909

[3] A.Bhattacharjee, A. D. Chhokra, Z. Kang, H. Sun, A. Gokhale, and G. Karsai. 2019.
BARISTA: Efficient and Scalable Serverless Serving System for Deep Learning
Prediction Services. In 2019 IEEE International Conference on Cloud Engineering
(IC2E). 23-33. https://doi.org/10.1109/IC2E.2019.00-10

[4] Dheeraj Chahal, Ravi Ojha, Sharod Roy Choudhury, and Manoj Nambiar. 2020.
Migrating a Recommendation System to Cloud Using ML Workflow. In Com-
panion of the ACM/SPEC International Conference on Performance Engineering
(Edmonton AB, Canada) (ICPE °20). Association for Computing Machinery, New
York, NY, USA, 1-4. https://doi.org/10.1145/3375555.3384423

[5] D. Chahal, R. Ojha, M. Ramesh, and R. Singhal. 2020. Migrating Large Deep
Learning Models to Serverless Architecture. In 2020 IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW). 111-116. https://doi.
org/10.1109/ISSREW 51248.2020.00047

[6] Priyanka Gupta, Diksha Garg, Pankaj Malhotra, Lovekesh Vig, and Gautam Shroff.
2019. NISER: Normalized Item and Session Representations to Handle Popularity
Bias. arXiv:1909.04276 [cs.IR]

[7] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro
Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al. 2018.
Applied machine learning at facebook: A datacenter infrastructure perspective.
In 2018 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 620-629.

[8] V. Ishakian, V. Muthusamy, and A. Slominski. 2018. Serving Deep Learning
Models in a Serverless Platform. In 2018 IEEE International Conference on Cloud
Engineering (IC2E). 257-262. https://doi.org/10.1109/IC2E.2018.00052

[9] Edo Liberty, Zohar Karnin, Bing Xiang, Laurence Rouesnel, Baris Coskun, Ramesh

Nallapati, Julio Delgado, Amir Sadoughi, Yury Astashonok, Piali Das, Can Bali-

oglu, Saswata Chakravarty, Madhav Jha, Philip Gautier, David Arpin, Tim

Januschowski, Valentin Flunkert, Yuyang Wang, Jan Gasthaus, Lorenzo Stella,

Syama Rangapuram, David Salinas, Sebastian Schelter, and Alex Smola. 2020.

Elastic Machine Learning Algorithms in Amazon SageMaker. In Proceedings of the

2020 ACM SIGMOD International Conference on Management of Data (Portland,

OR, USA) (SIGMOD °20). Association for Computing Machinery, New York, NY,

USA, 731-737. https://doi.org/10.1145/3318464.3386126

Ping-Min Lin and Alex Glikson. 2019. Mitigating cold starts in serverless plat-

forms: A pool-based approach. arXiv preprint arXiv:1903.12221 (2019).

Akshay Naresh Modi, Chiu Yuen Koo, Chuan Yu Foo, Clemens Mewald, Denis M.

Baylor, Eric Breck, Heng-Tze Cheng, Jarek Wilkiewicz, Levent Koc, Lukasz Lew,

Martin A. Zinkevich, Martin Wicke, Mustafa Ispir, Neoklis Polyzotis, Noah Fiedel,

Salem Elie Haykal, Steven Whang, Sudip Roy, Sukriti Ramesh, Vihan Jain, Xin

Zhang, and Zakaria Haque. 2017. TFX: A TensorFlow-Based Production-Scale

Machine Learning Platform. In KDD 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning

Library. In Advances in Neural Information Processing Systems 32, H. Wallach,

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Cur-

ran Associates, Inc., 8024-8035. http://papers.neurips.cc/paper/9015-pytorch-

[10

[11

https://eng.uber.com/michelangelo/
https://doi.org/10.1145/3341105.3373909
https://doi.org/10.1109/IC2E.2019.00-10
https://doi.org/10.1145/3375555.3384423
https://doi.org/10.1109/ISSREW51248.2020.00047
https://doi.org/10.1109/ISSREW51248.2020.00047
https://arxiv.org/abs/1909.04276
https://doi.org/10.1109/IC2E.2018.00052
https://doi.org/10.1145/3318464.3386126
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

HotCloudPerf 2021 Workshop

[13]

[14]

[15]

an-imperative-style-high-performance-deep-learning-library.pdf

Vikram Sreekanti, Harikaran Subbaraj, Chenggang Wu, Joseph E Gonzalez, and
Joseph M Hellerstein. 2020. Optimizing Prediction Serving on Low-Latency
Serverless Dataflow. arXiv preprint arXiv:2007.05832 (2020).

Matteo Tiezzi, Giuseppe Marra, Stefano Melacci, Marco Maggini, and Marco
Gori. 2020. A Lagrangian Approach to Information Propagation in Graph Neural
Networks. arXiv preprint arXiv:2002.07684 (2020).

Erwin van Eyk, Alexandru Iosup, Cristina L. Abad, Johannes Grohmann, and
Simon Eismann. 2018. A SPEC RG Cloud Group’s Vision on the Performance
Challenges of FaaS Cloud Architectures. In Companion of the 2018 ACM/SPEC

55

[16

[17

ICPE 21 Companion, April 19-23, 2021, Virtual Event, France

International Conference on Performance Engineering (Berlin, Germany) (ICPE
’18). Association for Computing Machinery, New York, NY, USA, 21-24. https:
//doi.org/10.1145/3185768.3186308

Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong, Andy
Konwinski, Siddharth Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe,
et al. 2018. Accelerating the Machine Learning Lifecycle with MLflow. IEEE Data
Eng. Bull. 41, 4 (2018), 39-45.

Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. 2019. MArk: Exploit-
ing Cloud Services for Cost-Effective, SLO-Aware Machine Learning Inference
Serving. In 2019 {USENIX} Annual Technical Conference ({USENIX}{ATC} 19).

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/3185768.3186308
https://doi.org/10.1145/3185768.3186308

	Abstract
	1 Introduction
	2 Related Work
	3 Our recommender system
	3.1 On-premise recommender system
	3.2 Cloud based implementaion of recommender system

	4 Experimental Setup
	5 Experimental Evaluation
	5.1 On-premise
	5.2 Cloud deployment using AWS SageMaker
	5.3 Comparison of on-premise, AWS SageMaker and Lambda

	6 Conclusion and future work
	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 48.70, 719.38 Width 523.73 Height 17.94 points
 Origin: bottom left

 1
 0
 BL

 1
 AllDoc
 1

 CurrentAVDoc

 48.699 719.3787 523.7275 17.9417

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 6
 7
 6
 7

 1

 HistoryList_V1
 qi2base

