HotCloudPerf 2021 Workshop

ICPE 21 Companion, April 19-23, 2021, Virtual Event, France

Cloud Performance Variability Prediction

Yuxuan Zhao Dmitry Duplyakin
Leiden University University of Utah
y.zhao.2@umail.leidenuniv.nl dmdu@cs.utah.edu

ABSTRACT

Cloud computing plays an essential role in our society nowadays.
Many important services are highly dependant on the stable per-
formance of the cloud. However, as prior work has shown, clouds
exhibit large degrees of performance variability. Next to the sto-
chastic variation induced by noisy neighbors, an important facet
of cloud performance variability is given by changepoints—the in-
stances where the non-stationary performance metrics exhibit per-
sisting changes, which often last until subsequent changepoints
occur. Such undesirable artifacts of the unstable application perfor-
mance lead to problems with application performance evaluation
and prediction efforts. Thus, characterization and understanding of
performance changepoints become important elements of studying
application performance in the cloud. In this paper, we showcase
and tune two different changepoint detection methods, as well
as demonstrate how the timing of the changepoints they identify
can be predicted. We present a gradient-boosting-based prediction
method, show that it can achieve good prediction accuracy, and
give advice to practitioners on how to use our results.

ACM Reference Format:

Yuxuan Zhao, Dmitry Duplyakin, Robert Ricci, and Alexandru Uta. 2021.
Cloud Performance Variability Prediction. In Companion of the 2021 ACM/SPEC
International Conference on Performance Engineering (ICPE "21 Companion),
April 19-23, 2021, Virtual Event, France. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3447545.3451182

1 INTRODUCTION

Cloud computing powers many important application domains,
ranging from business, government, to science. The stable per-
formance of the cloud servers is essential to providing good user
experience [4, 16] for applications in these domains. Nonetheless,
the performance of cloud computing infrastructure fluctuates even
when the same code runs on the same hardware at different points in
time. This phenomenon is known as performance variability [2, 25]
of clouds. Even though cloud variation might be seemingly small,
application performance suffers significantly [6, 18, 25], with com-
plex implications in performance evaluation, predictability, as well
*Alexandru Uta holds concurrent appointments at Leiden University and as an Amazon

Visiting Academic. This paper describes work performed at Leiden University and is
not associated with Amazon.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPE 21 Companion, April 19-23, 2021, Virtual Event, France

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8331-8/21/04...$15.00
https://doi.org/10.1145/3447545.3451182

35

Robert Ricci Alexandru Uta*
University of Utah Leiden University &
ricci@cs.utah.edu Amazon

a.uta@liacs. leidenuniv.nl

as operation of time-sensitive applications. In the current work, we
investigate whether certain artifacts of performance variability can
be predicted.

Previous work identified multiple classes of performance vari-
ability: (1) stochastic variability from noisy neighbors [16, 25]; (2)
poor interaction with cloud provider policies [25]; (3) cloud perfor-
mance changepoints [6]. In the context of the latter, performance
distributions do not remain stationary but rather show frequent
changes, sources of which are difficult to identify in many cases.
These performance distributions “shift” when changepoints occur.
Using changepoint detection [6, 12, 14, 15, 22, 23] methods, one can
identify when such changes occur. Understanding of performance
changepoints might be necessary in the work of cloud practitioners
and operators [6]. Performance metrics can be affected by hardware
aging, firmware and software updates, security patchesl, and even
changes in physical environments [9]. Some of these changes are
planned, while many are not.

A changepoint refers to a moment in time when statistical proper-
ties before and after it differ considerably [6, 12]. Changepoints can
have an impact on the user experience [12]. For instance, in clouds,
changepoints in time series data with system metrics, potentially
caused by hardware issues, can have an impact on the availability
and performance of a service. Duplyakin et al. [6] describe change-
point characteristics and detect changepoints in the performance
of CloudLab [5], a large-scale testbed for cloud computing.

Different changepoint detection methods use different analysis
techniques, from Bayesian to time series analysis techniques [7,
12, 14, 15, 22]. In this paper, we consider two efficient and recently
developed methods—robseg [7] and breakout detection [12]—yet the
prediction methodology we describe and evaluate is applicable to
other methods.

The possibility to predict performance changepoints in advance
enables proactive measures in the management of resource provi-
sioning, which can help stabilize key performance metrics. From the
user perspective, changepoint prediction can enable more informed
experiment planning, contributing to repeatable and reproducible
experimental evaluations. In this paper, we describe our analysis
of three gradient boosting prediction methods and discuss their
trade-offs.

This paper describes how we run two changepoint detection
methods on the dataset with 6.9M datapoints performance mea-
surements collected on the CloudLab testbed [6]. For robseg, we
tune its single and intuitive hyperparameter in the analysis process,
but for breakout detection, which has four hyperparameters, we put
effort into tuning it to best match the robseg’s results and show the
agreement between the two methods.

In this paper, we make the following contributions:

!https://databricks.com/blog/2018/01/13/meltdown-and- spectre-performance-
impact-on-big-data-workloads-in-the-cloud.html

https://doi.org/10.1145/3447545.3451182
https://doi.org/10.1145/3447545.3451182
https://databricks.com/blog/2018/01/13/meltdown-and-spectre-performance-impact-on-big-data-workloads-in-the-cloud.html
https://databricks.com/blog/2018/01/13/meltdown-and-spectre-performance-impact-on-big-data-workloads-in-the-cloud.html

HotCloudPerf 2021 Workshop

(1) We give a refresher on gradient boosting and changepoint de-
tection (Section 2).

(2) We tune breakout detection to achieve comparable results to
changepoint detection with robseg (Section 3).

(3) We present a method for predicting performance variability
given by changepoints. We use the gradient boosting model to
predict the time when a changepoint would occur. We show
that the selected methods perform well and our confidence level
in predicting changepoints is high. We make all developed code
artifacts publicly available? (Section 4).

2 BACKGROUND

In this section, we introduce the concepts needed to achieve efficient
prediction mechanisms for cloud systems performance change-
points.

Gradient boosting. Gradient boosting algorithms were devel-
oped by Friedman [8] in 1999. In machine learning, regression
and classification problems are solved using grading boosting—
techniques which build predictive models. Gradient boosting pro-
duces a strong prediction model by assembling weak prediction
models. Gradient descent methods are used in gradient boosting to
minimize the loss in the procedure of adding trees. In this paper,
we apply three popular gradient boosting frameworks, which are
XGBoost [3], LightGBM [13] and CatBoost [27]. XGBoost benefits
from parallelized tree boosting, which provides efficient implemen-
tation. LightGBM can produce more accurate results with lower
memory usage. CatBoost reduces time spent on parameter tuning
due to its great results with default parameter settings and allows
users to utilize non-numeric factors, which is important in some
prediction scenarios.

Changepoint Detection. The changepoint is the moment of
time when a given dataset is split in two subsets that exhibit dif-
ferent statistical properties. The method of finding changepoints is
called changepoint detection [23].

Fearnhead and Rigaill proposed in 2016 a changepoint detec-
tion technique that is robust to the existence of outliers[7]. This
technique replaces the Ly (square error) loss function with an alter-
native loss function in order to make it less sensitive to outliers. To
determine the changepoints and their locations, their implementa-
tion, robseg, focuses on the minimum penalized cost method. After
defining the loss function, robseg presents a dynamic programming
algorithm to minimize the cost efficiently. The algorithm, named
R-FPOP, is an extension of the pruned DP [20] and the FPOP [17]
algorithms.

Breakout detection is proposed by James et al. [12], as a statistical
technique for detecting breakouts in cloud data. In statistics, break-
outs refers to changepoints. A study on breakout detection does
not make explicit claims about robustness to outliers but describes
high efficacy of the method in practical scenarios. The method in-
volves the concept of E-Divisive with Medians (EDM) [24], which
is proposed as a novel statistical technique for automatic detec-
tion of changepoints. EDM is a non-parametric method that uses
E-statistics to detect the divergence. E-statistics relies on the es-
timates of energy distance between two given variables for mea-
suring the divergence in the means. Thus, the method determines

Zhttps://github.com/ZhaoNeil/cloud-performance-variability-prediction

36

ICPE 21 Companion, April 19-23, 2021, Virtual Event, France

Table 1: Changepoints collected by robseg.

Parameter K CPU:CP# Mem:CP# Disk:CP#

0.3 49 492 42
0.4 147 925 76
0.5 193 1,113 108
0.6 235 1,263 134
0.7 283 1,406 160
0.8 325 1,529 191
0.9 363 1,630 215
1.0 410 1,784 245
Total 2,005 10,142 1,171

whether changepoints are statistically significant or not and returns
estimates of changepoint locations.

3 CHANGEPOINT COLLECTION

We use a 6.9M datapoints performance measurements dataset col-
lected on the CloudLab testbed by Duplyakin et al. [6]. They mea-
sure CPU performance of CloudLab hardware such as CPU, mem-
ory, disks, networks. To evaluate the memory performance, 1038
memory configuration measurements are collected. Similarly, 152
disk configurations in the performance measurements dataset are
included. There are eight test measurements per device: read and
write load, random and sequential tests, low and high ’iodepth’
settings [6].

robseg Method. An implementation of changepoint detection
which is implemented in the robseg R package [21] is used to col-
lect changepoint in the performance measurements dataset. This
implementation involves a threshold K, related to magnitudes of
potential changepoints and the ratio of the signal to its standard
deviation. Duplyakin et al. experiment with [0.3,1.0] range for K
values [6]. Finally, 13,318 changepoints are collected, consisting of
2,005 CPU changepoints, 10,142 memory changepoints, and 1,171
disk changepoints. The distribution of changepoints is depicted in
Table 1.

Breakout Detection Method. In this section, we discuss the
changepoint collection procedure with breakout detection method.
In breakout detection, there are several parameters related to our
experiment. Figure 1 is an example displaying the comparison be-
tween robseg Changepoint Detection and breakout detection. Fig-
ure 1 shows that these two methods can get similar changepoints.
The locations of changepoints found by two methods are approxi-
mate when the change is remarkable, which are represented by the
green vertical lines and blue vertical lines. But when the trend of
points is stable, it shows there is a noticeable difference between
the results of the two methods. Changepoints collected by breakout
detection are more fine-grained than changepoints collected by rob-
seg. We consider the following parameters to be tuned for breakout
detection 3:

e min_size is the minimum number of observations between change-
points.

e degree can take the values 0, 1 or 2, which represents the degree
of the penalization polynomial.

3https://github.com/indeedeng/anomaly- detection/blob/master/breakout.py

https://github.com/ZhaoNeil/cloud-performance-variability-prediction
https://github.com/indeedeng/anomaly-detection/blob/master/breakout.py

HotCloudPerf 2021 Workshop

Breakout detection on CPU Tests(x|170

Changepoint detection on CPU Tests(xl|

| ST W
o AP
S

9 9 O S)] Q Q
] A D,y'\r ’Q,y'\r ’Q(,J.'\r o a% ‘qu\r ,‘\:\"X ,0\"1 ,93:](
QoY oY oY oY oY 3% oY oY oY
timeline

Figure 1: The comparison between Changepoint Detection
and Breakout Detection on CPU Tests(x1170). Threshold
in Changepoint Detection is set to 2.5. Min_size in Break-
out Detection is set to 10, beta is set to 0.0001 and de-
gree is set to 1. Green line indicates the changepoints from
Changepoint Detection, while blue lines indicate change-
points from Breakout Detection.

Table 2: The distribution of changepoints collected by Break-
out Detection.

min_size CPU:CP# Mem:CP# Disk:CP#
10 3,433 9,870 2,496
13 2,557 7,145 1,710
16 1,746 5,477 1,349
19 1,386 4,210 1,122
22 1,141 3,225 964
25 956 2,938 860
Total 11,219 32,865 8,501

e beta is a a parameter used to further control the amount of
penalization, which is the default form of penalization.

e percent is a parameter used to further control the amount of
penalization, which represents the minimum percentage change
of the goodness-of-fit statistics to consider adding other change-
points.

We collect the changpoints using breakout detection. For robseg,
we tune its single and intuitive hyperparameter in the analysis pro-
cess, but for breakout detection, which has four hyperparameters,
we put effort into tuning it to best match the robseg’s results and
show the agreement between the two methods. Thus, we manu-
ally set beta to 0.008 and min_size from 10 to 25. In the end, we
collected 52,585 changepoints, consisting of 11,219 CPU change-
points, 32,865 memory changepoints, and 8,501 disk changepoints.
The distribution of changepoints is depicted in Table 2. Analyzing
these results, one can immediately conclude that breakout detection
results in much more fine-grained changepoints, which are likely
more difficult to predict.

37

ICPE 21 Companion, April 19-23, 2021, Virtual Event, France

4 PERFORMANCE VARIABILITY
PREDICTION

In this section, we use gradient boosting methods to predict when
changepoints occur based on their systematic information. System-
atic information is a mixture of continuous and categorical features
as input variables, such as hardware type, number of threads used,
compiler version, etc. What we predict is the timestamp of a change-
point, a real number representing the UNIX epoch value of the time
the test occurred. We apply root mean square error (RMSE) in our
experiments as an estimator score method to qualify the quality of
predictions. Several sets of features are tried in this experiment in
order to get a minimum RMSE and figure out the feature impor-
tance of these datasets, namely, which feature is informative in the
process of prediction. Moreover, in order to attain a more accurate
prediction outcome, we involve a hyperparameter optimization
method, random search, in our experiment. To avoid overfitting,
we use 5-fold cross validation.

Method. We regard this prediction problem as a regression prob-
lem. Furthermore, this problem can be regarded as a regression tree
more specifically. In this paper, we use three kinds of gradient
boosting models, which are XGBoost, LightGBM, and CatBoost.
The main idea behind the gradient boosting method is to ensemble
weak learners as strong learners. Here, regression trees are used to
output real values. Trees are added subsequently and correct the
predictions in a greedy manner to minimize the loss function. In
this paper, we apply RMSE as our loss function. The time when
changepoints appear is what we aim to predict, which can be consid-
ered as a real number when it is in the form of a timestamp. Three
gradient boosting methods mentioned above are implemented on
the changepoint dataset collected before. This dataset contains the
main performance indicators for changepoints on CPU, memory,
and disk. We use the Scikit-learn [19] package in Python as our
experiment tool.

Training and Prediction. The dataset is divided into two parts:
the former for training and the latter for testing. We use Scikit-
learn [19] to split the dataset randomly. The ratio is set to 0.8,
which means 80% of the whole dataset is set as the training set and
20% of the whole dataset is set as the test set. The feature vector is
our training data and the corresponding timestamp is our target
values. We fit them into the model and get the model trained. When
we input a feature vector of a changepoint in the test set into the
trained model, a timestamp will be predicted, which is the predicted
time of when that changepoint could appear. It will be compared
with the true value of the timestamp.

Chosen Predictors and Initial Performance. We have exper-
imented with several features of the changepoints to understand
what variables influence the occurrence of a changepoint. Due to
space constraints, we only present our best-achieved results and the
prediction variables that produced them. Naturally, changepoints
for CPU and memory occur for different reasons than e.g., disk
changepoints. Our method reveals this information. Empirically,
we find evidence that changes in the kernel version give rise to
performance variability. Similar to the changes of the kernel ver-
sion, OS version changes give rise to performance changepoints
as well. We also find that predictors like hardware type and test

HotCloudPerf 2021 Workshop

gec_ver
kernel_release
version_hash
hw_type
os_release
class

dvfs

nodeid
total_threads
exec_time
percent_change
testname
socket_num
Ithreshold
version

0.00

feature

0.05 0.10 0.15 0.20 0.25

feature importance

0.30 0.35

Figure 2: The feature importance of CPU changepoints.

os_release
gcc_ver
kernel_release
version_hash
hw_type
mem_clock_speed
percent_change
nodeid
socket_num

min

feature

dvfs
mean
testname
max
stdev
Ithreshold
units

0.0

0.1 0.2 0.3 0.4

feature importance

0.5 0.6

Figure 3: The feature importance of memory changepoints.

disk_size
iodepth
disk_model
hw_type
disk_serial

mean

nodeid
percent_change
max

stdev

min
testname
device
lthreshold
units

0.00

feature

0.05 0.10 0.15 0.20 0.25

feature importance

Figure 4: The feature importance of disk changepoints.

name, have a very low correlation to the occurrence time of per-
formance changepoints. By contrast, entries in kernel version, OS
version, and compiler version, etc. have a high correlation to the
time of changepoint appears. These features relate to the change-
point occurrence time very closely, they will have a significant
impact on changepoints instead of main performance indicators of
CPU, memory, and disk.

Feature importance represents a score to indicate how the in-
fluence of every feature when constructing the boosted decision
trees: the more a feature is used, the higher its relative importance.
This score is computed by the number of performance indicators
improved by each attribute split point and weighted by the number
of observations the node is responsible for [10].

Figure 2 shows the impact of the features we consider for the
prediction of changepoints on the CPU changepoint dataset. Fig-
ures 3 and 4 show the feature importance for the memory and
disk changepoints, respectively. Using as predictor features these

38

ICPE 21 Companion, April 19-23, 2021, Virtual Event, France

Table 3: The performance of our prediction method for
changepoints CPU, memory, and disk performance.

RMSE (days) XgBoost LightGBM CatBoost
Memory 5.20 5.79 6.75
CPU 5.52 5.88 6.03
Disk 42.47 47.65 47.06

Table 4: The runtime of our prediction method for change-
points CPU, memory, and disk performance without ran-
dom search and cross validation.

Runtime (s) XgBoost LightGBM CatBoost

Memory 5.98 0.76 3.16
CPU 1.50 0.41 1.42
Disk 1.33 0.38 1.43

Table 5: The performance of our prediction method for
changepoints CPU, memory, and disk performance using a
5-fold cross validation strategy and random search.

RMSE (days) XgBoost LightGBM CatBoost
Memory 4.72 4.51 5.30
CPU 5.75 5.54 5.79
Disk 52.52 55.73 52.85

data, our prediction method gets remarkable results in predicting
changepoints for CPUs and memory. Table 3 shows our results.
The only type of changepoints we are unable to predict accurately
is disk changepoints. We do not understand at the moment what
generates these and by considering Figure 4 we understand that
many features contribute to the changepoints, such as disk_size,
iodepth, disk_model, etc. We leave for future work uncovering the
phenomenon behind disk changepoints.

Table 4 displays the runtime of our prediction methods for
changepoints on CPU, memory, and disk performance without ran-
dom search and cross validation. The prediction runtime is based
on the experiment on a 2.9 GHz Dual-Core Intel Core i5 CPU with
8 GB memory. Our results indicate that it is possible to perform
this analysis efficiently, as most of these runs take less than 1.5 sec-
onds. Only CatBoost and XgBoost for the memory dataset take 3.16
seconds, and 5.98, respectively. Therefore, these kinds of analyses
could be performed in a real-time pipeline.

Cross Validation. Learning the parameters of a prediction model
and testing on the same data usually gets a satisfactory result but
fails to get good results on different test sets—due to overfitting. To
avoid overfitting, we apply cross validation, which is a resampling
procedure to learn parameters on a limited data sample. K-fold
cross validation divides the whole dataset into K folds and makes
sure that every fold will be used as a test set at one certain iteration.
The model is trained on the remaining K-1 folds per iteration and
there are K iterations in total. The final metric result provided by
K-fold cross validation is the average of the metrics results of every
iteration. In this experiment, we use 5-fold cross validation to avoid
overfitting.

HotCloudPerf 2021 Workshop

Table 6: The performance of our prediction method for
breakout detection changepoints on CPU, memory, and disk
performance using a 5-fold cross validation strategy and
random search.

RMSE (days) XgBoost LightGBM CatBoost
Memory 11.67 13.51 15.15
CPU 13.67 14.97 15.64
Disk 83.63 95.22 98.33

Random Search. To achieve better predictions, namely a lower
RMSE in our experiment, we decide to objectively search different
values for model hyperparameters. The aim of this optimization
process is to find a configuration resulting in the best performance,
minimum RMSE in our experiment specifically. Random search is
one of the simplest and most common methods. In random search,
we define a bounded domain of hyperparameter values as a search
space and then search sample points in that domain randomly. At
the expense of certain accuracy, random search can reduce the
search time while ensuring model accuracy. Table 5 shows our re-
sults using both the 5-fold cross validation and the random search.
Using these techniques improves the performance of predicting
changepoints, as can be observed by noticing the differences be-
tween Tables 3 and 5.

Predicting Breakout Detection. Table 6 shows the RMSE of
three changepoint collected by breakout detection method using all
features as predictors with random search and 5-fold cross valida-
tion. Both memory and CPU datasets get RMSE around 10 days.
The RMSE of the disk dataset is inferior to the results of memory
and CPU datasets. Furthermore, the performance of prediction on
changepoints collected by breakout detection is not as good as the
performance of prediction on changepoints collected by robseg. The
main reason is that the changepoint collected by breakout detection
method is more fine-grained than the changepoint collected by
robseg.

Discussion and advice for practitioners. In evaluating our
method for changepoint prediction, we made the following obser-
vations. In summary, we find that:

(1) Changepoints on different cloud resources depend on dif-
ferent factors. We have found that CPU and memory change-
points depend heavily on OS, kernel, and compiler versions,
while disk-based changepoints depend on factors related to
hardware. Practitioners should pay much attention to such fac-
tors when performing, designing, and planning experiments.
Changepoints for CPU and memory can be successfully
detected. Because CPU and memory changepoints have fewer
factors they depend on it is likely that they are easier to pre-
dict. With disks, where a multitude of factors concur, such as
disk_size, iodepth, and disk_model, it is more difficult to pre-
dict changepoints. It is therefore important to dig deeper into
understanding I/O variability and leave this for future work.
However, we encourage practitioners to collect as many metrics
as possible [26] to collect sufficient data for future tools to comb
through for performance phenomena.

Prediction accuracy is good for CPU and memory and is
comparable for all the methods we tested. We achieved

—
[SY)
=

39

ICPE 21 Companion, April 19-23, 2021, Virtual Event, France

very good accuracy for CPU and memory changepoints, and
the performance was comparable for all three frameworks we
used—XgBoost, LightGBM, CatBoost. Therefore, experimenters
and performance analysts can use any of these to predict per-
formance.

Changepoints can be predicted less accurately for break-
out detection. Because breakout detection is finer-grained in de-
tecting performance changepoints, prediction methods achieve
alower accuracy in detecting these. However, CPU and memory
accuracy is reasonably good for breakout detection. Therefore,
practitioners who need a more sensitive changepoint detection
method can still make use of our prediction method without
much loss in prediction performance.

©

5 RELATED WORK

We discuss related work and contrast them with the approach we
take in this paper. Hirade and Yoshizumi devise an algorithm [11]
for changepoint prediction based on the method of ensemble learn-
ing. They assume the occurs of changepoints can be characterized
by the time intervals between the changepoints, and their symp-
toms though the causes for changepoints are different. Then they
generate weak classifiers to extract the property of the reasons
for changepoints and ensemble these weak classifiers into a novel
classifier [11]. Unlike metric in our experiment, they evaluate the
performance of their algorithm with F-measure on a driving sim-
ulator dataset. Agudelo-Espana et al. propose a method from a
Bayesian perspective and which is an extension of the Bayesian
Online Change Point Detection (BOCPD) algorithm [1] to predict
when the next changepoint will occur. The main idea of BOCPD
is a probability distribution over the run length. Run length is
a non-negative discrete metric that denotes the number of time
steps passed at time t since the last changepoint. They evaluate
their algorithm on a mice sleep staging dataset. Xu et al. focus on
the prediction of high performance computing system’s IO vari-
ability [28]. They investigate response surface models, Gaussian
process based methods, inverse distance weighting methods, and
nonparametric regression models and evaluate the performance of
these approaches by the prediction accuracy. In this paper, we use
gradient boosting models, which are ensemble learning models as
well, to predict performance changepoints for cloud computing re-
sources. We used large sets of features, characterize which features
are important for individual resources, and make a comparison
between multiple prediction models.

6 CONCLUSION

Cloud performance variability is a significant problem that affects
modern clouds. As opposed to variability given by noisy neighbors
or interaction with cloud providers which have quality of service
policies, variability given by changepoints can be predicted. The
ability to predict such performance changepoints can be leveraged
by practitioners for tuning and updating their benchmark pipelines.
In this article, we describe how we apply two methods for change-
point detection—robseg and breakout detection—in the analysis of
a large-scale dataset of measurements collected on the CloudLab
testbed. As we study many performance time series, we tune break-
out detection in order to achieve comparable results to the robseg’s

HotCloudPerf 2021 Workshop

results. We then present a method for predicting performance vari-
ability given by changepoints. We use gradient boosting models to
predict the time when a changepoint occurs, and our methods offer
good prediction quality. We show what features are most important
in predicting CPU, memory, and disk performance changepoints.
Finally, we offer advice for practitioners on how to leverage our
results.

ACKNOWLEDGMENTS

The work in this article was funded via NWO Veni VI1.202.195. This
research is also supported by the National Science Foundation,
Grant Number 1743363.

REFERENCES

(1]

[10]

Diego Agudelo-Espana, Sebastian Gomez-Gonzalez, Stefan Bauer, Bernhard
Schoélkopf, and Jan Peters. 2020. Bayesian Online Prediction of Change Points.
In Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence
(UAI) (Proceedings of Machine Learning Research, Vol. 124), Jonas Peters and
David Sontag (Eds.). PMLR, 320-329. http://proceedings.mlr.press/v124/agudelo-
espana20a.html

Zhen Cao, Vasily Tarasov, Hari Prasath Raman, Dean Hildebrand, and Erez Zadok.
2017. On the Performance Variation in Modern Storage Stacks. In Proceedings
of the 15th Usenix Conference on File and Storage Technologies (Santa clara, CA,
USA) (FAST’17). USENIX Association, USA, 329-343.

Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD
’16). Association for Computing Machinery, New York, NY, USA, 785-794. https:
//doi.org/10.1145/2939672.2939785

Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun. ACM
56 (2013), 74-80. http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-
scale/fulltext

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The
Design and Operation of CloudLab. In 2019 USENIX Annual Technical Con-
ference (USENIX ATC 19). USENIX Association, Renton, WA, 1-14. https:
/[www.usenix.org/conference/atc19/presentation/duplyakin

D. Duplyakin, A. Uta, A. Maricq, and R. Ricci. 2020. In Datacenter Performance,
The Only Constant Is Change. In 2020 20th IEEE/ACM International Symposium
on Cluster, Cloud and Internet Computing (CCGRID). 370-379. https://doi.org/10.
1109/CCGrid49817.2020.00-56

Paul Fearnhead and Guillem Rigaill. 2016. Changepoint Detection in the Presence
of Outliers. J. Amer. Statist. Assoc. (09 2016). https://doi.org/10.1080/01621459.
2017.1385466

Jerome H. Friedman. 2000. Greedy Function Approximation: A Gradient Boosting
Machine. Annals of Statistics 29 (2000), 1189-1232.

Haryadi Gunawi, Caitie McCaffrey, Deepthi Srinivasan, Biswaranjan Panda,
Andrew Baptist, Gary Grider, Parks Fields, Kevin Harms, Robert Ross, Andree
Jacobson, Robert Ricci, Riza Suminto, Kirk Webb, Peter Alvaro, Hakizumwami
Runesha, Mingzhe Hao, Huaicheng Li, Russell Sears, Casey Golliher, and Nema-
tollah Bidokhti. 2018. Fail-Slow at Scale: Evidence of Hardware Performance
Faults in Large Production Systems. ACM Transactions on Storage 14 (10 2018),
1-26. https://doi.org/10.1145/3242086

T. Hastie, R. Tibshirani, and J.H. Friedman. 2009. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer. https://books.google.

40

[11

[12

[13

(14

=
&

[16

(17

[18

[20

[21

[22

(23]

[24

[25

[26

[27]

ICPE 21 Companion, April 19-23, 2021, Virtual Event, France

nl/books?id=eBSgoAEACAA]

R. Hirade and T. Yoshizumi. 2012. Ensemble learning for change-point predic-
tion. In Proceedings of the 21st International Conference on Pattern Recognition
(ICPR2012). 1860-1863.

N. A. James, A. Kejariwal, and D. S. Matteson. 2016. Leveraging cloud data to mit-
igate user experience from ‘breaking bad’. In 2016 IEEE International Conference
on Big Data (Big Data). 3499-3508. https://doi.org/10.1109/BigData.2016.7841013
Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boosting
Decision Tree. In Advances in Neural Information Processing Systems 30, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(Eds.). Curran Associates, Inc., 3146-3154. http://papers.nips.cc/paper/6907-
lightgbm-a- highly-efficient-gradient-boosting-decision- tree.pdf

Rebecca Killick and Idris Eckley. 2014. Changepoint: An R Package for Change-

point Analysis. Journal of statistical software 58 (06 2014). https://doi.org/10.
18637/jss.v058.i03

R.Killick, P. Fearnhead, and I. A. Eckley. 2012. Optimal Detection of Changepoints
With a Linear Computational Cost. J. Amer. Statist. Assoc. 107, 500 (2012), 1590
1598. http://www.jstor.org/stable/23427357

Philipp Leitner and Jiirgen Cito. 2016. Patterns in the Chaos—A Study of Perfor-
mance Variation and Predictability in Public IaaS Clouds. ACM Trans. Internet
Technol. 16, 3, Article 15 (April 2016), 23 pages. https://doi.org/10.1145/2885497
Robert Maidstone, Toby Hocking, Guillem Rigaill, and Paul Fearnhead. 2017.
On Optimal Multiple Changepoint Algorithms for Large Data. Statistics and
Computing 27, 2 (March 2017), 519-533. https://doi.org/10.1007/s11222-016-
9636-3

Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez, Carlos Maltzahn, Ryan
Stutsman, and Robert Ricci. 2018. Taming Performance Variability. In Proceedings
of the 13th USENIX Conference on Operating Systems Design and Implementation
(Carlsbad, CA, USA) (OSDI’'18). USENIX Association, USA, 409-425.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.
Guillem Rigaill. 2015. A pruned dynamic programming algorithm to recover the
best segmentations with 1 to K;;,qx change-points. arXiv:1004.0887 [stat.CO]
Guillem Rigaill. 2019. Fpop implementation for robust losses. https://github.com/
guillemr/robust-fpop.

A. Scott and M. Knott. 1974. A Cluster Analysis Method for Grouping Means in
the Analysis of Variance. Biometrics 30 (1974), 507.

A. F. M. Smith. 1975. A Bayesian Approach to Inference about a Change-Point
in a Sequence of Random Variables. Biometrika 62, 2 (1975), 407-416. http:
/[www.jstor.org/stable/2335381

Gabor Szekely and Maria Rizzo. 2005. Hierarchical Clustering via Joint Between-
Within Distances: Extending Ward’s Minimum Variance Method. Journal of
Classification 22 (02 2005), 151-183. https://doi.org/10.1007/s00357-005-0012-9
Alexandru Uta, Alexandru Custura, Dmitry Duplyakin, Ivo Jimenez, Jan Reller-
meyer, Carlos Maltzahn, Robert Ricci, and Alexandru Iosup. 2020. Is Big Data
Performance Reproducible in Modern Cloud Networks?. In 17th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 20). USENIX
Association, Santa Clara, CA, 513-527. https://www.usenix.org/conference/
nsdi20/presentation/uta

Alexandru Uta, Kristian Laursen, Alexandru Iosup, Paul Melis, Damian Podareanu,
and Valeriu Codreanu. 2020. Beneath the SURFace: An MRI-like View into the
Life of a 21st-Century Datacenter. login Usenix Mag. 45, 3 (2020).

Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. 2018. CatBoost:
gradient boosting with categorical features support. arXiv e-prints, Article
arXiv:1810.11363 (Oct. 2018), arXiv:1810.11363 pages. arXiv:1810.11363 [cs.LG]
Li Xu, Thomas Lux, Tyler Chang, Bo Li, Yili Hong, Layne Watson, Ali Butt,
Danfeng Yao, and Kirk Cameron. 2020. Prediction of High-Performance Com-
puting Input/Output Variability and Its Application to Optimization for System
Configurations. arXiv:2012.07915 [cs.DC]

http://proceedings.mlr.press/v124/agudelo-espana20a.html
http://proceedings.mlr.press/v124/agudelo-espana20a.html
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
https://www.usenix.org/conference/atc19/presentation/duplyakin
https://www.usenix.org/conference/atc19/presentation/duplyakin
https://doi.org/10.1109/CCGrid49817.2020.00-56
https://doi.org/10.1109/CCGrid49817.2020.00-56
https://doi.org/10.1080/01621459.2017.1385466
https://doi.org/10.1080/01621459.2017.1385466
https://doi.org/10.1145/3242086
https://books.google.nl/books?id=eBSgoAEACAAJ
https://books.google.nl/books?id=eBSgoAEACAAJ
https://doi.org/10.1109/BigData.2016.7841013
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
https://doi.org/10.18637/jss.v058.i03
https://doi.org/10.18637/jss.v058.i03
http://www.jstor.org/stable/23427357
https://doi.org/10.1145/2885497
https://doi.org/10.1007/s11222-016-9636-3
https://doi.org/10.1007/s11222-016-9636-3
https://arxiv.org/abs/1004.0887
https://github.com/guillemr/robust-fpop
https://github.com/guillemr/robust-fpop
http://www.jstor.org/stable/2335381
http://www.jstor.org/stable/2335381
https://doi.org/10.1007/s00357-005-0012-9
https://www.usenix.org/conference/nsdi20/presentation/uta
https://www.usenix.org/conference/nsdi20/presentation/uta
https://arxiv.org/abs/1810.11363
https://arxiv.org/abs/2012.07915

	Abstract
	1 Introduction
	2 Background
	3 Changepoint Collection
	4 Performance Variability Prediction
	5 Related Work
	6 Conclusion
	Acknowledgments
	References

