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ABSTRACT

Data centers already account for over 250TWh of energy usage

every year and their energy demand will grow above 1PWh until

2030 even in the best-case scenarios of some studies. As this demand

cannot be met with renewable sources as of today, this growth will

lead to a further increase of CO2 emissions. The data center growth

is mainly driven by software resource usage but most of the energy

efficiency improvements are nowadays done on hardware level that

cannot compensate the demand. To reduce the resource demand of

software in data centers one needs to be able to quantify its resource

usage. Therefore, we propose a benchmark to assess the resource

consumption of data center software (i.e., cloud applications) and

make the resource usage of standard application types comparable

between vendors. This benchmark aims to support three main goals

(i) software vendors should be able to get an understanding of the

resource consumption of their software; (ii) software buyers should

be able to compare the software of different vendors; and (iii) spark

competition between the software vendors to make their software

more efficient and thus, in the long term, reduce the data center

growth as the software systems require less resources.
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·Computer systems organization→Cloud computing; · Soft-

ware and its engineering → Software performance.
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1 INTRODUCTION

In 2012 the New York Times and Andrae et al. estimated that data

centers consume about 30 billion watts of power [1, 10], resulting

in about 263 TWh1 of energy usage per year. Andrae et al. also

estimate that the energy consumption will rise to 1137 TWh until

2030 in the best case scenario [1]. The data center growth and the

resulting energy consumption is mainly driven by the computing

resource usage (i.e., processor, memory, network, and storage) of

deployed applications. This growing energy demand also increases

the amount of CO2 emissions as it is not possible to operate all

data centers at all times with renewable energy. Assuming a CO2-

intensity of 200g CO2 per kWh in a rather optimistic scenario2, a

consumption of 264TWh will result in about 53 billion tons of CO2

produced to operate data centers and 1137TWh will get us close to

30 billion tons of CO2.

While computing resource and energy efficiency are not identi-

cal, resource efficiency entails energy efficiency. As the instructions

of an application control the hardware, it indirectly controls energy

consumption. For example, a higher CPU utilization will prohibit

the CPU from going into sleep states. The resource and energy effi-

ciency is also not identical to performance as it first seems. Capra

et al. showed that two different ERP software systems have little

performance differences (+5%) but deviate widely in energy con-

sumption (+50%) [6], resulting in a different efficiency. Hence, it is

important to reduce the resource usage of data centers as techno-

logical advances cannot fully compensate for their growth [18].

To reduce the resource usage of data centers, operators can try

to find optimal deployment configurations for their software and

use software that is, in general, more resource-efficient than others

when fulfilling the same tasks. While deployment and runtime re-

source optimizations have been and are still extensively researched,

software resource efficiency is still a very challenging topic. There-

fore, we need to raise awareness of developers and data center

operators about the resource efficiency of applications to tackle the

towering problem of climate change due to excessive wastage.

To achieve awareness among everybody involved, from design-

ing, writing, and operating software products; we envision a new

benchmark that is capable of assessing the resource consumption of

data center software (i.e., cloud applications) and make the resource

usage of standard application types (e.g., CRM, ERP) comparable.

130 · 109𝑊 · 365 · 24ℎ = 262.8 · 1012𝑊ℎ
2https://www.electricitymap.org, accessed on September 30th, 2020
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Our benchmark aims to support three main goals (i) software ven-

dors should be able to get an understanding of the resource con-

sumption of their software; (ii) software buyers should be able to

compare the software of different vendors in terms of their resource

efficiency; and (iii) spark competition between the software ven-

dors to make their software more efficient and thus, reduce the data

center growth as the software systems require fewer resources.

2 SETTING THE CONTEXT

Energy saving is mostly achieved through more energy-efficient

hardware, including improved manufacturing processes, granular

sleep states, and dynamic voltage and frequency scaling (DVFS).

Runtime optimizations try to minimize resource wastage by consol-

idating services to larger instances, place services optimally inside a

data center [16], and only have as many servers or service instances

running to satisfy current demand (auto-scaling) [12]. These opti-

mizations are concerned with the hardware the software is running

on and where and when the software is running. We argue that for

the software to operate energy-efficient, the infrastructure is not

the only factor; the software must in itself be resource-efficient as

resource-efficiency entails energy-efficiency. However, the software

that provides a service and controls the underlying hardware is, in

our experience, less often the center of attention.

Developers can use compiler optimizations to increase perfor-

mance, a topic related to resource and energy efficiency but not

identical [6]. Several efforts reduce the energy consumption of com-

puting devices by leveraging different performance optimizations

of compilers [8, 19]. Developers could also incorporate resource and

energy efficiency in the software design instead of optimizing the

binary at compile-time. For instance, with different choices of API

calls [21]. The programming language could also play a role [23]

by aiding the developer in writing efficient code or be more easily

optimized for resource and energy use. These options could also

increase the resource efficiency of the software. Yet, they are not

independent. A monolithical software design could favor resource

efficiency and extensive batch processing, but might be less suitable

for auto-scaling and optimal placement decision making.

One reason that hardware has gotten more energy-efficient over

time than software is the availability of suitable benchmarks. Many

benchmarks measuring energy-efficiency or power exist. For ex-

ample, the Transaction Processing Performance Council (TPC) re-

leased the TPC-Energy Specification [25] to augment existing TPC

benchmarks with energymeasurements. The Standard Performance

Evaluation Corporation (SPEC) adds power measurements directly

to its benchmarks, such as the SPECpower_ssj 2008 [14] and SPEC

CPU 2017 [7]. Both approaches by SPEC and TPC measure the

hardware power consumption. Therefore, a benchmark to describe

the resource demand of a software system itself is missing to make

it comparable with other software systems to optimize them.

The majority of literature on benchmarking [17] is not focused

software itself but rather on hardware. Some works focus on cloud

computing but address solely the performance [2], or measure

hardware performance properties with synthetic benchmarks, like

STREAM or Linpack, and not the resource efficiency of deployed

cloud software [9]. The German Environment Agency has also

identified the need to measure the software’s resource and energy

efficiency. Therefore, they have published a study on how software

efficiency of typical desktop software can be determined [11]. Our

benchmark, on the other hand, aims at measuring the resource-

efficiency of software running in cloud environments. It aims at

providing a comparable metric of resource-efficiency for different

products (e.g., SAP S/4) of the same software type (e.g., ERP soft-

ware) similar to the current energy-efficiency ratings of fridges or

cars in Europe (e.g., A++, A+, B). A fundamental assumption of

our benchmark is therefore, that more resource-efficient software

will lead to less resource consumption and as such to less energy

consumption in data centers.

3 OPEN CHALLENGES

In order to provide the foundation for more resource efficient soft-

ware multiple open challenges have to be addressed.

Challenge 1: How to describe the resource demand of software?

To the best of our knowledge, there is currently no commonly ac-

cepted standard to express the resource demand of software. While

resource profiles are an approach to describing a software system’s

resource demand, they are dependent on the corresponding work-

load [5]. For client-side software, vendors typically try to define

minimum hardware requirements, whereas, for server-side soft-

ware capacity planning, trial and error is a commonly accepted

norm to deal with software resource requirements [24, 28]. How-

ever,the results of capacity planning only describe the implications

of a specific workload on that software, not the actual software

resource demands. One of the main consequences of this approach

is that even today, there are a lot of underutilized servers because

the resource requirements have been estimated using wrong as-

sumptions [15]. Therefore, it would be good to make the resource

demand more transparent for the users, not only at run time but

also during purchasing decisions. This transparency would allow

the software users to consider the actual resource demands dur-

ing their purchasing decisions and would create pressure on the

vendors to reduce these numbers to convince the buyers to choose

their product [5]. Eventually, this would drive down the resource

and energy demand of all software systems.

Challenge 2: How to specify and standardize workloads? In pre-

vious work [4], the authors presented an approach based on [3] to

describe the resource demand of individual transactions of a soft-

ware system, but the workload needs to be standardized to make it

comparable. The workload of software systems is very dependent

on their type and can only standardized to a certain degree. Accord-

ing to [26], a workload is defined by behavior models combined

into a behavior mix, which then has a certain workload intensity.

Behavior models describe a typical usage flow of a user type (e.g., an

employee vs. customer on an e-commerce page). The behavior mix

specifies which percentage of the overall user population follows

which behavior model. The workload intensity defines how many

users with a given behavior mix are active in the system at a time.

These workload parts will differ per application type (e.g., ERP, HR,

CRM, Industry 4.0 software), and software vendors need to agree

on a standard workload model for each application type in order to

make resource demands comparable.

Challenge 3: What are possible incentives to increase awareness

and acceptance? As the experience with other devices such as cars
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or fridges shows, even if we would have the technical means and

standardized workloads, the awareness of the stakeholders (e.g.,

software buyers, operators, and providers) needs to be increased to

make the overall concept work. Therefore, this is a socio-technical

problem that cannot be solved solely by providing a technical so-

lution. Thus it might be possible to adapt working approaches

from similar incentive-based mechanisms. Examples for this are

the adoption of labels like the Energy Star [22] or motivation for

environmental protection measures as a whole [20].

The research to address this is, therefore, twofold. On the one

hand, software engineering research needs to agree on techniques

and tools to measure and describe the resource demand of software.

On the other hand, information system research needs to take the

socio-technical aspects into account to ensure that the software

engineering research results are used in practice.

4 VISION

We want to address the aforementioned challenges by providing

an easy to use means to describe and assess the resource demand

of software. Based on this description, we can define a resource-

efficiency metric that allows the classification of and comparison

between the resource efficiency of software for users and vendors.

To approach challenge 1, we will define a benchmark framework,

shown in Figure 1, that can be used to collect resource demand data

for different software types and will define:

A format to describe the software resource demand. In or-

der to assess and compare the software resource demand, it should

be possible to store and process it in a common way. Therefore, a

format will be introduced to describe the software resource demand.

A measurement adapter. Resource demand can be collected

using various tools. In order to produce the same output format, the

benchmark framework needs to provide a measurement adapter

used by the individual tools to store the measurements.

A workload specification format. The workload for compa-

rable resource demand measurements needs to be defined in two

layers: (i) in an abstract way for the workload of a particular ap-

plication type and (ii) in a specific way for the workload for the

particular software of an application type. The vendors should pro-

vide specific workload scripts. However, the abstract description

format should be provided by the benchmark framework.

An execution environment description. It should be possi-

ble to clearly specify where the application is executed as part of

an execution environment description. This description should be

standardized by the benchmark framework. It is important that spe-

cific characteristics (e.g., CPU, network, or disk types) are outlined

in detail in order to make the results comparable.

An execution engine. The benchmark should be able to exe-

cute the resource demand measurement based on the workload

specification, measurement adapters, and execution environments.

Acentral storage repository.The benchmark framework should

be able to store all results in a central repository. This repository

allows a comparison of results over time as an important aspect

to spark competition. Here it is crucial to find a commonly ac-

cepted way that can be agreed on by all stakeholders (e.g., software

providers and consumers) to make the comparison easily accessible

for everyone.

Figure 1: Benchmark Vision with input, output, component,

and specification artifcats

In order to facilitate the standardization and acceptance of its re-

sults, this benchmark framework will be developed collaboratively

with other stakeholders. Therefore, the Standard Performance Eval-

uation Corporation (SPEC) Research Group (RG)3 has been chosen

as a platform for its development. SPEC is a non-profit corpora-

tion formed to establish, maintain and endorse standardized bench-

marks and tools to evaluate performance and energy efficiency for the

newest generation of computing systems. SPEC’s server efficiency

rating tool (SERT) is now the required test method for [the] ENERGY

STAR for Computer Servers specification and their SPECpower_ssj®

2008 benchmark has helped to improve the average operations-per-

wattserver efficiency for servers by 19 times4 by creating trans-

parency through published results and thus creating incentives for

vendors to improve their results. This is the kind of impact we envi-

sion for a benchmark built upon the presented framework that gives

software vendors an incentive to increase their resource efficiency

by using the benchmark results to attract potential customers.

Members of SPEC include several soft- and hardware vendors,

which can help facilitate the process of defining standardized work-

loads from challenge 2, as they can be addressed, e.g., via surveys,

to help determine the workloads for the different application types.

In addition to the technical work within SPEC, we will continu-

ously share our results in the software engineering and information

systems communities to increase the awareness about the issue and

steer the development of more resource-efficient software (e.g., by

automatic comparisons in the delivery pipelines). As more resource-

efficient software can give a competitive edge, this is a suitable way

to address challenge 3. Once endorsed by SPEC as an official re-

search benchmark, the benchmark itself is able to draw attention

and further increase awareness on this topic.

3https://research.spec.org/
4https://www.spec.org/30th/power.html
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With software as the main driving force for the provisioning

of data centers, solving the mentioned challenges and laying the

foundation for more resource efficient software can play its role in

collectively lowering the ecological footprint of the IT sector.

5 LIMITATIONS

While we envision our benchmark to be as generic and easy to

use as possible, limitations exist. In this section, we present an

explanation of the most limiting factors.

Limited abstraction from hardware. Abstracting the relationship

of hard- and software can be difficult or even not entirely possi-

ble. So the influence of hardware on resource efficiency must be

minimized. One solution might be to measure with a reference

machine to achieve comparability with the downside that it might

not be available for everyone or is no longer in production. Switch-

ing the reference machine would also make newer results of our

benchmark incompatible with older ones and conflicting with the

goal of comparability in benchmarks [13, 27]. Hence, possible hard-

ware influences must be acknowledged and ensured to be minimal.

Impact of resource efficiency on operational costs. Even though we

would achieve a workload standardization and inclusion of the

resource demands into buying decisions, it does not mean that

software is operated efficiently. It is, of course, very well possible

to run a resource efficient software quite inefficiently. However,

as only resource efficiently designed and implemented software

can be operated efficiently, we will focus on the implementation

and design time aspects of the resource demands. The reoccurring

cloud hosting cost will likely influence the hosting process into a

money-optimized format anyway.

Custom build software artifacts and customer specific features.

While we aim for a generic workload specification, it is unfeasible

to consider every additional feature or software built to order for

a specific customer. These features and software artifacts are only

convenient to said customer and are not widely used. Therefore,

our envisioned benchmark limits itself to the common denominator

of features available of the application type.

6 CONCLUSION

As software is the main reason for the provisioning of data centers,

their increasing energy demand and ecological footprint, software

professionals need an understanding of the resource efficiency of

software, and the impact resource-efficient software can have on

reducing energy usage and waste. We, therefore, envision a new

benchmark, outlining three essential challenges: i) describing and

measuring software resource demand in a comparable manner, ii)

standardizing workloads for data center software with similar func-

tionality, and iii) incentivizing possible users. With our vision in

Section 4, we sketch out possible solutions to the introduced chal-

lenges with a benchmark framework and potential collaborations.
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