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ABSTRACT
Distributed Database Management Systems (DBMS) are a crucial
component of modern IT applications. Understanding their perfor-
mance and non-functional properties is of paramount importance.

Yet, benchmarking distributed DBMS has proven to be difficult in
practice. Either, a realistic workload is often mapped to a synthetic
workload without knowing if this mapping is correct or available
workload traces are replayed. While the latter approach provides
more realistic results, real-world traces are hard to obtain and their
scope is limited in time scale and variance.

We propose collecting real-world traces and then applying data
generation techniques to synthesize similar realistic traces based on
it. Based in this approach, we can obtain workloads for benchmark-
ing, exhibit variability with respect to different aspects of interest
while still being similar to the original traces. Varying generation
parameters, we are able to support benchmarking what-if scenarios
with hypothetical workloads and introduced anomalies.
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1 INTRODUCTION
Modern Database Management Systems (DBMS) are the backbone
of many applications in various domains (IoT, smart cities, Big Data,
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etc.) [1, 9]. Hence, their continuous, seamless operation within
predefined non-functional boundaries is of utmost importance.

Due to the large configuration space for distributed DBMS, there
is no one-size-fits-all configuration suiting all possible situations [26].
Instead, literature shows that the experienced quality of service
with respect to all non-functional aspects heavily depends on the
type of workload applied to a DBMS [2, 8, 11]. Hence, choosing and
configuring a DBMS for a dedicated application scenario requires
insight into the expected workload as well as running carefully
crafted evaluation tests using a representative workload. Yet, the
majority of existing benchmarks uses static or only slightly con-
figurable workloads against a DBMS and it is up to a performance
engineer to ensure that the evaluation workload matches the ex-
pected workload [23]. This task only increases in complexity with a
more diverse real-world workload. On the other hand, trace-based
benchmarking captures real-world system behavior in the form
of execution traces and replays the traces against the system un-
der test (SUT) [6, 22]. Here, we face the challenges that real-world
traces are finite in length (usually rather short than long), hard to
obtain (and even harder to share) [5], and usually do not contain
sufficient anomalous behavior to assess system performance under
abnormal circumstances [28]. This makes it hard to evaluate non-
functional properties based on multiple representative workloads
and perform realistic what-if analysis.

This paper envisions Buzzy to address these shortcomings: Buzzy
centers around the concept of classifying and synthesizing arbitrary
amounts of workload data from real-world DBMS traces. We base
our work on established concepts for synthetic data generation
using artificial neural networks applied to time-series oriented
traces from DBMS workloads. This allows us to generate artificial
but representative synthetic workload traces increasing the size of
available data sets and replacing sensitive data with artificial data.

Clustering traces and knowing cluster properties combined with
the ability to generate data also enables us to additionally augment
imbalanced classes in our original data set. Finally, synthesizing
representative workloads enables us to enhance the result with
different types of anomalies.

2 RELATEDWORK
2.1 DBMS Benchmarking
A DBMS benchmark generates a workload which is applied to the
DBMS under test. Further, it provides features such as metric report-
ing, metric processing, and the coordinated execution of multiple
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workloads [5]. DBMS workloads consist of a sequence of opera-
tions issued on a DBMS. The workload defines the executed types
of operations as well as access patterns. The operations may be
processed by time or by sequence. In the former case, each oper-
ation is assigned a timestamp with respect to the first operation.
In the latter case, an operation is performed once its predecessor
has been completed. Scheduling the parallel execution of workload
sequences is the responsibility of the encapsulating benchmark.
Workloads are either based on traces or on synthetic data modeled
after real-world load patterns and generated under a set of con-
figurable constraints [6]. A single DBMS benchmark can support
multiple workload types [11].

With the continuously evolving DBMS landscape [9] a multitude
of NoSQL DBMS benchmarks have been established over the last
decade [13, 23]. The workloads issued by these benchmarks range
from basic CRUD operations (e.g., YCSB [8]) to more advanced data
model-specific workloads(e.g. NoWog [2]). These benchmarks aim
at emulating the workloads of realistic applications by specifying
synthetic workloads based on a set of configurable constraints such
as request distribution or data set size. Yet, they do not support trace-
based workload generation by replaying real-world queries nor do
they consider varying workloads as caused by seasonality. Trace-
based benchmarks, in contrast, clearly increase the significance
of benchmark results [6, 15]. Therefore, trace-based benchmarks
are preferable for DBMS benchmarking. Due to their additional
technical complexity [6], trace-based DBMS benchmarks are rare
and so far only support relational DBMS [5, 11].

2.2 Trace-based Benchmarking
Trace-based benchmarking requires modelling the concrete user
behavior and the workload intensity. It is common in many areas,
such as mobile applications [16, 22], large-scale analytics [18, 29],
and web applications [16, 24]. In order to model the concrete user
behaviour multiple authors propose graph-based workload models
that capture the behavior and tasks triggered by different types of
users [4, 27]. Others partition workloads according to the user types,
and then sample workload traces for each user type to capture the
user behavior [30]. Regarding workload intensity, most approaches
try to capture it using statistical distributions [12, 21], while others
focus on extracting the statistical properties of a workload trace
into a descriptive model in order to reproduce similar traces with
the same statistical characteristics [28].

2.3 Artificial Time-Series Generation
Current data synthesis breakthroughs and the research field in gen-
eral are driven by generative adversarial networks (GAN), which
were introduced by Goodfellow et al. [14]. GANs are a type of
artificial neural network architecture where two networks, a gen-
erator, and a discriminator compete in a mini-max game. Hereby,
the generator’s task is to learn the fidelity and distribution of the
underlying ground truth data and effectively "fool" the discrimi-
nator into accepting fake data as real. The discriminator, in turn,
learns to distinguish real samples from fake samples based on the
original ground truth data. Prominent GAN examples include Style-
GANs 1 and 2 [17] able to synthesize realistic images of human
faces based on high-level attributes (head pose, identity). GANs

have also shown success in domains outside the image synthesis
domain. For example, Delaney et al. [10] use GANs to synthesize
multidimensional ECG data, albeit image-oriented convolutional
neural networks (CNN).

3 THE BUZZY APPROACH
This section describes the overall vision followed by Buzzy. We
introduce conceptual, technical, and research challenges, and sketch
our work plan to tackle these challenges.

3.1 Vision
We envision implementing Buzzy as a multi-step process sketched
in Figure 1. The goal is to collect workload traces from a produc-
tion system and then generate representative, synthetic workload
traces. In that respect, a workload trace is a time-stamped sequence
of operations issued against a DBMS; a representative, synthetic
workload as created by Buzzy is a synthetic workload in the sense
that it is artificially generated. In contrast to classical synthetic
workloads like those from TPC that aim at representing a larger
class of applications, our generated workload is specifically tailored
to match the patterns observed in the original real-life workload it
is based on. Buzzy’s steps are detailed in the following sections.

Data collection. This step takes care of obtaining traces out of a
production DBMS using established probes or newly developed
tools. It collects the necessary metadata needed by later steps. Such
metadata may include information about the content of the DBMS.

Preprocessing and clustering. This step processes the collected data.
This includes data curation (i.e., dropping data with insufficient
quality) but also extrapolating missing values. Furthermore, this
step performs clustering to identify, for example different user
groups with different usage patterns. The resulting observed work-
load clusters are then stored immutably.

Data generation. This step generates representative, synthetic work-
load traces for each of the observed workload clusters. It is based on
a specification defining for which of the clusters to synthesize (e.g.,
for a specific user group), and the amount of data to generate. This
step contains large intrinsic complexity as it requires a full train-
test-validate cycle for the applied machine learning mechanisms.
The resulting synthetic workload clusters are again stored.

Anomaly enhancement. This optional step enhances the data gen-
eration process. It enriches the synthesized data with anomalies
either found in the observed workload traces (e.g., querying invalid
data items or sending corrupt queries) or purely artificial (creat-
ing volume/date spikes [7]). This step also contains a specification
defining which anomalies to create, how many of them, etc.

Composition. This step selects some of the generated traces and
combines them to a synthetic workload trace ready for benchmark-
ing. The composition may be a simple replay of a representative,
synthetic workload trace, aiming at benchmarking the DBMS with
variations of the current workload. A composition may also cre-
ate a hypothetical workload for running what-if analyses. These
may combine multiple synthetic traces from various workload clus-
ters, e.g., in order to evaluate the system behavior when allowing
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Figure 1: Overview of Buzzy

more users on the system; it may also contain so-far unexperienced
anomalies to evaluate the system resilience.

Benchmark execution. This step takes care of executing the work-
load on the SUT. During a benchmark run, a scheduler retrieves en-
tries from the trace and submits them in a semantically correct and
timely manner [5] (e.g., inserts have been completed before reads).
Integrating the benchmark in higher-level evaluation frameworks
like Mowgli [25] even supports higher-level evaluation objectives
including scalability, elasticity or availability.

3.2 Challenges and Approach
Realizing the outlined vision requires overcoming severe challenges
in almost all steps except for the benchmark execution step which is
well understood [5, 11, 15]. This section summarises the challenges
and sketches our initial plans to address them.

Data collection and traces. Buzzy relies on the collection of realistic
and detailed traces from real-world DBMS installations. Ideally,
collecting this information is non-intrusive to the client applica-
tions (with minimal impact on the quality of service experienced by
users) and further does not impact the performance of the DBMS.
It is currently unclear what level of detail is needed for the traces in
order to generate realistic, synthetic workloads. Also, the relevant
data to construct meaningful traces is currently unknown just as
the amount and required length of the observed workload traces.

Many DBMS provide high-level metrics out-of-the-box, e.g., read-
write ratio. However, such traces do not provide many details. In
contrast, some relational DBMS provide tools to record fine-grained
traces at the level of SQL statements. The situation is less clear for
distributed DBMS, particularly NoSQL DBMS.
Approach: In order to keep the complexity of the synthesis pro-
cess under control, we will initially work with NoSQL DBMS and
exclusively focus on CRUD operations. Here, we plan to move from
single-instance to distributed deployments. This is due to the fact
that data-intensive application components are commonly oper-
ated in (geo)-distributed environments and DBMS workloads are
composed of heterogeneous DBMS request patterns created by dis-
tributed client applications [1]. Later, we also plan to move towards
more complex NoSQL queries [23]. SQL-based and NewSQL DBMS
are currently not on our roadmap, but may be added later on. This
does not weaken our approach, as NoSQL DBMS have become a
preferred storage backend for data-intensive applications [9].

Regarding trace granularity, we plan to start working with fine-
grained traces providing as much detail as possible. Besides a times-
tamp, such fine-grained traces should contain the actual operation

and ideally data on the client issuing the operation. From that point,
we plan to gradually reduce the details used for clustering and syn-
thesis. This allows us to identify (potentially multiple) intersections
between an optimal outcome and the details of the traces.

To the best of our knowledge, there is no DBMS-independent
trace recording tool available. Therefore, we initially plan to rely
on an HTTP tracing tool such as Jaeger1, for a NoSQL DBMS with
an HTTP(S) interface.

System state. The performance of a stateful system not only depends
on the current workload but also on the short-term and long-term
past. More specifically, a read operation may fail if the item has
not been stored before, or it may complete faster if all data is in
memory. This depends on the history of operations as well as local
and global read patterns.
Approach: Using long-enough traces and a warm-up phase per
benchmark rules out the impact of caching provided that the bench-
marking environment allows for similar specifications. Collecting
metadata on the DBMS (data distribution, data per collection, etc.)
enables the workload generation process to synthesize a meaningful
prefilling of the system under test.

Synthesis. The generation process is an essential part of Buzzy.
While related work shows that GANs are well suited for generating
images and numeric time-series data, their wide applicability to non-
numeric time-series data still remains to be shown. Furthermore,
the number of data points that a GAN is able to generate depends
on the available (GPGPU) memory.

Further, the question of data validity needs to be addressed: In
particular, for scenarios that go beyond CRUD operations (e.g., scan
and search), the synthesizer not only needs to learn the distribution
of operations, but also the types and structures of data items. But
even when only CRUD operations are used, the size and internal
structure of the different data items may impact results.
Approach: For Buzzy, we plan to utilize GANs for workload syn-
thesis. While there are other viable alternatives, such as variational
autoencoders [3], our earlier work [19, 20] shows that GANs are
able to synthesize class specific time-series data. This gives us con-
fidence in the potential of GANs and we expect them to be able
to learn the correct fidelity of the underlying original data and
reflect characteristic (statistical) properties. Early work on anomaly
synthetization using conditional GANs shows promising results.

Regarding the structure of data items, we initially avoid this
problem, as we purely focus on CRUD operations and use data
items with a fixed size and structure. Later, we plan to use statistical
1https://www.jaegertracing.io/
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methods to generate suited data items. In a final step, we plan to
apply GAN-based synthesis to data items as well.

Query semantics. Not all sequences of DBMS commands issued
against a DBMS are valid (in the sense that user-level protocols
are violated) or meaningful (in the sense that for example only
benchmarking requests for non-existent items do not provide any
insights). Hence, Buzzy needs to consider both operational seman-
tics and also benchmarking semantics.
Approach: We expect that the GAN used learns the correct query
semantics and that they do not have to be hard coded. This allows
us to apply our approach to different DBMS using different APIs.

Evaluation and validation. With respect to evaluation and validation,
Buzzy needs to address multiple issues: (i) define a metric describ-
ing the representativeness of the generated synthetic traces; (ii)
measure the similarity between observed and generated traces pro-
viding means to quantify the variability between multiple synthetic
workloads; (iii) measure and evaluate the variance between the var-
ious results when benchmarking a set of synthetic workloads; (iv)
measure and quantify the similarity of benchmark results for ob-
served and generated traces.

Yet, none of the above questions can be answered before having
initial solutions for the previous challenges.

Specifications and configurations. It is unclear how to describe and
define the anomalies that should be added to a generated synthetic
workload. It is further unclear how to specify a meaningful and
trustable what-if analysis and how to visualize the results. As valida-
tion, this challenge requires initial results for the other challenges.

4 CONCLUSION
This paper presented Buzzy, our vision towards classifying and
synthesizing arbitrary amounts of workload data from real-world
DBMS traces. Doing so, Buzzy is capable of generating representa-
tive, synthetic workloads tailored for a particular DBMS installation.
These realistic and representative but not identical workloads allow
benchmarking DBMS installations in a realistic manner. Dynami-
cally recomposing and scaling a generated workload enables us to
further evaluate meaningful what-if scenarios. Due to that Buzzy
is able to enhance synthetic workloads with anomalies.

Work on this vision has just started by looking for partners
willing to provide/collect workload traces. Once traces are available,
we aim at first realizing the full process of collection, synthesis, and
workload composition for a single DBMS. Afterwards, we plan to
investigate the generalizability and portability of Buzzy aiming at
transferring all mechanisms to a different DBMS or even different
types of DBMS. Finally, we extend the presented methodology to
not only cover workload traces but also include other notable events
such as node failures, networks problems, or disk degradation.
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