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CCS Concepts
• Computer systems organization → Robotics; • Computing
methodologies→ Computer vision; • General and reference
→ Performance.
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1 Introduction
Unmanned aerial vehicles (UAVs) are gaining popularity in many
governmental and civilian sectors. The combination of aerial mo-
bility and data sensing capabilities facilitates previously impossible
workloads. In aerial surveillance, search and rescue, and crop scout-
ing, UAVs can access vast, high, and unsafe places to sense and
relay photos to operators in real time [1, 10, 12]. These photos can
then be processed for target search, localization, and tracking [8].

UAVs are normally piloted by remote operators who determine
where to fly and when to sense data. Operations over large areas
put a heavy burden on human pilots (e.g., difficult flight route man-
agement, repetition of waypoints) which lead to inefficiencies. Fully
autonomous aerial systems (FAAS) have emerged as an alternative
to human piloting [4]. FAAS software combines UAVs with edge
and cloud hardware to execute autonomous missions, dynamically
setting waypoints based on mission goals [2]. FAAS do not require
human piloting, but do require considerable software support.

FAAS middleware manages object detection, pathfinding, UAV
flight control and data sensing, along with other tasks specific to the
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application domain [12]. The compute and networking infrastruc-
ture required for these tasks has significant power and performance
demands. FAAS deployed in remote environments, such as crop
fields, must manage limited power and networking capabilities.
Furthermore, UAV controlled by FAAS also have significant power
demands. FAAS middleware must complete tasks quickly– any time
spent on object detection or pathfinding while UAV are in flight
wastes UAV battery power. To facilitate widespread adoption of
FAAS, middleware must support heterogeneous compute and net-
working resources at the edge while ensuring that the workloads
quickly produce effective and efficient autonomous flight paths.

SoftwarePilot [3] is an open source FAAS middleware. Soft-
warePilot provides UAV flight control, data management, and ma-
chine learning routines that FAAS users can install on consumer
hardware and use with DJI [5] UAVs. SoftwarePilot provides novel
reinforcement-learning based FAAS pathfinding algorithms to exe-
cute crop scouting and autonomous photography routines. Object
detectors are the backbone of these techniques, providing relevant
information that pathfinding can leverage to complete missions.

In this poster, we analyze the performance of different object
detection techniques recently implemented in SoftwarePilot for
facial recognition. Facial recognition is an important task for FAAS,
especially in autonomous photography. We analyzed the accuracy
and performance of three facial recognition techniques provided in
SoftwarePilot on two architectural configurations for FAAS edge
systems. These findings can be used when selecting an object de-
tector for any FAAS mission type and hardware configuration.

2 Design
SoftwarePilot is divided into routines and drivers [3]. Drivers group
implementations of core FAAS functionality into API calls. Soft-
warePilot includes drivers for UAV flight control, sensing, data man-
agement, and machine learning. Routines are SoftwarePilot applica-
tions. Routines group programming logic in Java with driver calls to
create fully autonomous aerial missions. SoftwarePilot’s Vision dri-
ver includes deep convolutional neural network (DCNN), Histogram
of Oriented Gradients + support vector machine (HOG+SVM), and
single shot detector (SSD) models for recognition.

SoftwarePilot has previously been used to benchmark autonomous
photography for facial recognition [4] using HOG+SVM and DCNN
models common FAAS edge architectures. Dlib’s [7] Facial recog-
nition HOG+SVM model combines two popular object detection
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Fig. 1: Accuracy, inference time, and power consumption for
our 4 candidate models

methods to create a highly accurate CPU-only model for facial
recognition. In contrast, Dlib’s DCNN model achieves even greater
accuracy, but with a CPU inference time far above the latency
requirements for FAAS. For this reason, highly accurate DCNN
models are only recommended to run with a GPU-provisioned
edge system. While these models are effective and highly accurate,
their inference times on edge hardware can be punishing to UAVs
awaiting critical decisions. Prior work has not yet explored the
effectiveness of SSDs in FAAS applications.

SSDs, like YOLOv3 [9], use shallow neural network architec-
tures and logistic regression to predict bounding boxes for objects
within an image in a single pass. This results in a fast inference
process that is highly parallelizable and capable of high accuracy.
YOLOv3 is therefore a candidate for object detection on both highly
and modestly provisioned edge architectures. In contrast, Dlib’s
HOG+SVM and DCNN models are exclusive to different archi-
tectures. HOG+SVM is not CUDA compatible, and DCNN’s non-
accelerated inference time is prohibitively high for FAAS.

Published accuracy statistics for object detectors may not be
good predictors of success for FAAS. UAV must maintain safe dis-
tances from their targets, so the images they capture must be high-
resolution, and targets may be small compared to conventional
datasets. It is important to test and retrain detectors for use with
FAAS. In the next section, we analyze the effectiveness of Dlib
HOG+SVM and DCNN models compared to YOLOv3 on a highly
provisioned edge system on an FAAS facial recognition data set.

3 Early Results
To test the effectiveness of various object detectors on FAAS tasks,
we ran our three candidate models on a highly provisioned edge
system using a dataset of labeled images from real FAAS missions.
Our edge system runs Ubuntu 20.04 Linux with an 8-core i7 10700K
CPU, 32GB of ram, and an NVIDIA GTX 1080 GPU. We tested
the Dlib HOG+SVM and DCNN facial recognition classifiers, and
YOLOv3 trained on the Wider Face [11] dataset. For testing we
used 500 4k images captured with SoftwarePilot. We randomly
selected 250 images containing one or more faces, and 250 images
containing no faces.

Figure 1 shows the performance of these models on our dataset.
Figure 1 (a) shows that HOG+SVM and DCNN both have incredibly
high accuracy, 97% and 99% respectively, on our dataset of FAAS
facial images. HOG+SVM and DCNN had precision and recall rates
of (0.96, 0.98) and (0.98, 1.0) respectively. In contrast, YOLOv3 was
82% accurate, with precision and recall rates of (0.94, 0.66).

YOLOv3 outperforms in terms of inference time. As shown in
figure 1 (b), HOG+SVM and YOLOv3 when executed on the CPU
had similar inference times: 5.05s and 5.56s respectively. When
executed on GPU, YOLOv3 had an inference time of 0.16s (6 frames
per second) when compared to DCNN’s 6.78s inference time. GPUs
tax edge energy. Figure 1 (c) shows that CPU models consume
around 1 Watt above idle power. When a GPU is added, Dlib’s
DCNN consumes 65.9W, and YOLOv3 consumes 47.3W over idle.
The cost of YOLOv3, however, is further degraded fromDlib because
of its far lower inference time.

YOLOv3 as trained is less accurate than either prior approach.
We can see from precision and recall that inference inaccuracy is a
product of false negatives, indicating that YOLOv3 misses distant
and harder to find faces in the high resolution UAV images. While
YOLOv3 is relatively inaccurate, its inference time is incredibly low
and its inaccuracies stem primarily from distant or small targets in
images. Scenarios that do not demand high accuracy but require
high throughput, like tracking a close target or locating distant but
large targets may benefit from YOLOv3.

Model selection for FAAS requires considerable future work.
Adaptive model switching, hardware duty-cycling seen and embed-
ded onboard computation using FPGAs and the NVIDIA Jetson, and
other edge hardware configurations suggested in prior work should
be tested [4, 6]. We plan to address these opportunities in future
work using a wide arrange of FAAS collected data from multiple
domains.
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