
Enhancing Observability of Serverless Computing with
the Serverless Application Analytics Framework

Robert Cordingly, Navid Heydari, Hanfei Yu, Varik Hoang, Zohreh Sadeghi, Wes Lloyd†
 School of Engineering and Technology

 University of Washington
 Tacoma WA USA

rcording, navidh2, hanfeiyu, varikmp, zsadeghi, wlloyd@uw.edu

ABSTRACT
To improve the observability of workload performance, resource
utilization, and infrastructure underlying serverless Function-as-a-
Service (FaaS) platforms, we have developed the Serverless
Application Analytics Framework (SAAF). SAAF provides a
reusable framework supporting multiple programming languages
that developers can leverage to inspect performance, resource
utilization, scalability, and infrastructure metrics of function
deployments to commercial and open-source FaaS platforms. To
automate reproducible FaaS performance experiments, we provide
the FaaS Runner as a multithreaded FaaS client. FaaS Runner
provides a programmable client that can orchestrate over one
thousand concurrent FaaS function calls. The ReportGenerator is
then used to aggregate experiment output into CSV files for
consumption by popular data analytics tools. SAAF and its
supporting tools combined can assess forty-eight distinct metrics
to enhance observability of serverless software deployments. In
this tutorial paper, we describe SAAF and its supporting tools and
provide examples of observability insights that can be derived.

ACM Reference Format:
Robert Cordingly, Navid Heydari, Hanfei Yu, Varik Hoang, Zohreh
Sadeghi, Wes Lloyd. 2021. Enhancing Observability of Serverless
Computing with the Serverless Application Analytics Framework. In
ACM/SPEC International Conference on Performance Engineering
Companion (ICPE ‘21 Companion), April 19-23, 2021, Virtual Event, France.
ACM, NY, NY, USA, 4 pages. https://doi.org/10.1145/3447545.3451173

1 Introduction
Recently serverless Function-as-a-service (FaaS) platforms have

arisen that great simplify providing many of the desired features
of distributed systems for software deployed to the cloud. FaaS
platforms automate support for high availability, fault tolerance,
and dynamic scaling, while billing developers only for the
computational runtime of functions. Use of commercial serverless
FaaS platforms, however, present challenges for profiling. These
platforms frequently use virtual environments that restrict root

access to the operating system, limit deployment package size, and
lack a package manager making installation of existing profiling
tools quite difficult. Observability of infrastructure is challenged
given the abstract nature of FaaS platforms where hardware details
and performance metrics are often hidden from the user. Finally,
every commercial FaaS platform is different. Each platform
supports different languages, supported by different backend
infrastructure such as AWS Lambda’s Firecracker MicroVM or
Google Cloud Function’s gVisor container application kernel [1,7].

To better understand performance implications of FaaS
platforms, in this tutorial paper we introduce the Serverless
Application Analytics Framework (SAAF) [2,8]. SAAF provides a
cross-cloud, multi-language analytics framework. SAAF supports
profiling functions written in Java, Python, Go, Node.js, and Bash
on AWS Lambda, Google Cloud Functions, IBM Cloud Functions,
Azure Functions, and OpenFaaS [9][10][11][12][5]. SAAF captures
metadata regarding the performance, infrastructure, and resource
utilization (e.g. CPU, memory, disk, and network) of software
deployments made to Function-as-a-Service (FaaS) platforms.
SAAF integration involves including the SAAF library in the
function’s package and invoking methods to specify profiling
actions by adding a few lines of code. SAAF enables case studies
and experiments on serverless application performance by
supporting profiling and analytics of serverless software
deployments. SAAF helps identify factors responsible for
performance variation (e.g. alternate CPUs, function multitenancy,
infrastructure freeze-thaw lifecycles) while enabling reproducible
measurements of function performance across inherently
heterogeneous infrastructure.

SAAF addresses an important problem with public cloud
computing cyberinfrastructure in that it directly addresses the
problem of observability on serverless cloud platforms. Cloud
computing, and serverless platforms in particular, are known to
abstract complexity and hide server implementation details from
end users. Hiding information hinders efforts to reproduce
performance measurements as sources of performance variation
are obscured. Resource abstractions leveraged by serverless
computing platforms also complicate the ability for practitioners
to reconcile the costs of software deployments to the cloud. Cost
reconciliation problems are increasing across public cloud
platforms as cloud service delivery models becoming increasingly
easy to use, but also more abstract. Factors such as resource
heterogeneity and resource contention that are difficult to observe
can be responsible for producing considerable performance
variation in the public cloud.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
ICPE’21 Companion, April 19-23, 2021, Virtual Event, France.
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8331-8/21/04…$15.00
https://doi.org/10.1145/3447545.3451173

Tutorial ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

161

2 Serverless Application Analytics Framework
To enable profiling performance, resource utilization, and

infrastructure of FaaS function executions, SAAF provides a
library for inclusion inside the deployment package of each
function [8]. Unlike frameworks that leverage proxy functions, or
that are deployed directly on the host hardware of a FaaS platform,
SAAF is integrated into the source code of the function to allow
data collection from the function’s perspective. This design
enables SAAF to profile performance of function deployments on
any commercial FaaS platform, while enabling introspection of the
infrastructure used by each platform.

SAAF provides support tools to automate profiling experiments
and data analysis. The FaaS Runner provides a multi-threaded
client application that automates profiling experiments. FaaS
Runner leverages a companion tool known as the ReportGenerator
to then compile experiment results into reports that aggregate data
for quick analysis. The ReportGenerator combines performance,
resource utilization, and configuration metrics from many
concurrent sessions enabling observations not possible when
profiling individual FaaS functions calls.

Platform Python Node.js Java Go Bash

AWS Lambda ✔️ ✔️ ✔️ ✔️ ✔️

Google Cloud Functions ✔️ ✔️ ❌ ❌ ❌

IBM Cloud Functions ✔️ ✔️ ✔️ ❌ ❌

Azure Functions ✔️ ✔️ ❌ ❌ ❌

OpenFaaS ✔️ ❌ ❌ ❌ ❌

Table 1: Currently Supported Platforms and Languages

2.1 Supported Platforms Languages
SAAF provides support to profile functions created with

Python, Node.js, Java, Go, and AWS Lambda custom runtimes
using Bash. Each implementation is written natively in the
respective language to offer the best performance, minimize
dependencies, and to make using SAAF as easy as possible.
Programmers include the SAAF library and a few lines of code to
enable profiling. Documentation and example functions for each
language are available from the SAAF GitHub repository [8]. Table
1 describes languages supported on each platform by SAAF.

SAAF includes publish scripts to help streamline the process of
deploying functions to each platform. Projects can be built and
deployed automatically to all supported platforms without
requiring any code changes. This structure provides the ability to
create multi-platform functions within a single code base.

2.2 Collecting Analytics with SAAF
SAAF collects metrics from the Linux procfs and appends them

to the JSON payload returned by the function instance. Attributes
collected include Linux CPU time accounting metrics such as CPU
idle, user, kernel, and I/O wait time, wall-clock runtime, and
memory usage [3]. As SAAF is dependent on Linux, SAAF does
not support profiling resource utilization of functions deployed to
Azure Functions using Windows. To identify infrastructure state,
SAAF stamps function instances with a unique ID and uses the

existence of the ID to identify if the environment is new (cold) or
recycled (warm) [4].

After including the SAAF package and initializing the Inspector
object, the attributes collected are defined by which functions the
programmer calls. CPU, memory, function instance, Linux, and
platform profiling functions offer granular and customizable
profiling. Profiling functions and key metrics produced by SAAF,
the FaaS Runner, and ReportGenerator are described online [8]. In
total 48 distinct metrics can be obtained.

Profiling is enabled within FaaS functions through
modifications in five sections:
1. Initialization: Initialize the SAAF Inspector object at the

start of the FaaS function.
2. Inspection: Call initial SAAF inspect functions such as

inspectAll(), inspectCPU(), etc. to collect base values for
metrics.

3. Workload: Implement function, this is where the
implementation of the function should be.

4. Inspect Deltas: After function code is complete, call SAAF
inspect delta functions, e.g. inspectAllDeltas(),
inspectCPUDeltas(), to calculate resource utilization.

5. Finalize: Generate SAAF output by calling the finish()
function. Return this object or append to an existing return
object. If the function is asynchronous, save this object to
external data storage for future retrieval.

2.3 SAAF Profiling Verbosity
Key to SAAF’s design is the ability to minimize profiling

overhead as a component of the overall runtime of FaaS function
calls. This overhead is reported by SAAF using the
frameworkRuntime attribute measured in milliseconds. To
address profiling overhead, we decompose profiling operations
with nine inspection methods to offer different degrees of profiling
verbosity. These methods enable the programmer to control how
much data is collected and returned. If a programmer is interested
in obtaining only a specific type of profiling data (e.g. CPU), then
only a subset can be requested. These methods include:
inspectContainer(), inspectPlatform(), and
inspectLinux(). Initializing profiling for a particular class of
metrics is performed by calling: inspectCPU() or
inspectMemory(). These methods capture initial values of Linux
resource utilization counters. Counters are typically reset to zero
when new virtual infrastructure is created. FaaS platforms reuse
existing virtual infrastructure to avoid function cold start latency
for repeated function calls. Each FaaS platform has its own
proprietary policy for infrastructure creation and retention [6].
Delta functions are called at the end of the function to capture the
change in resource utilization: inspectCPUDelta() and
inspectMemoryDelta(). Finally, methods are also provided to
profile all metrics: inspectAll() and inspectAllDeltas().

2.4 Running Experiments with FaaS Runner
FaaS Runner provides a multi-threaded client application used

to define and orchestrate experiments on FaaS Platforms that
works in conjunction with SAAF. FaaS Runner dedicates a
separate thread to each client session and can orchestrate more

Tutorial ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

162

than 1,000 concurrent FaaS function calls. The average runtime of
the FaaS function, and the desired number of concurrent function
calls for the experiment should dictate the computer used to host
the FaaS Runner. A local computer with high network latency can
be used for experiments with low concurrency requirements or
when the FaaS function exhibits a high average runtime.
Alternatively, a cloud-based virtual machine with very low
network latency and many virtual CPU cores can be used to
support experiments requiring high client throughput (e.g. AWS
EC2 c5.24xlarge w/ 96 vCPUs).

FaaS Runner has the ability to orchestrate multiple types of
workloads from basic single function executions, to complex
multi-function pipelines. FaaS Runner can execute functions
sequentially or in parallel, synchronously or asynchronously,
across all of SAAF’s supported platforms, and through HTTP
requests. FaaS Runner provides multiple options to configure
function execution and report generation for FaaS experiments.
These options can be defined directly using command line
arguments, or by using JSON configuration files. FaaS Runner
supports two types of configuration files: function files and
experiment files. Function files are used to define how to access
individual FaaS function endpoints. Experiment files are used to
define the operations and inputs of an experiment, as well as how
experimental output should be aggregated to generate CSV report
output. Raw unprocessed results of individual FaaS function
invocations are captured using separate JSON files and persisted to
disk in an output directory specified for the experiment. When all
of the function calls in an experiment finish, FaaS Runner
automatically invokes the ReportGenerator to compile and
aggregate experimental results into a report. The ReportGenerator
is described in section 2.5.

 During an experiment, FaaS Runner can dynamically adjust a
function’s memory reservation size to automate profiling over a
range of sizes. Additionally, FaaS Runner can distribute fixed or
alternate data payloads to function calls. Payloads can be rotated
across a set of function calls sequentially (e.g. round-robin) or
shuffled randomly. Data payloads can be specified directly in the
experiment JSON files, or by specifying an input directory where
the user uploads a set of one or more input files. Payload
inheritance allows defining a base set of attributes, simplifying
specification as only the parameters that change need to be
defined repeatedly in the experiment JSON file.

FaaS Runner experiment definitions are portable to any client
computer enabling experiments to be reproduced enhancing
potential to confirm experimental results. Experiments are
launched by invoking the FaaS Runner application through the
command line. Experiments execute autonomously to completion
with no required user interaction enabling headless operation.

In addition to FaaS Runner’s features for single function
execution, FaaS Runner is capable of running and orchestrating
complex pipelines of multiple functions. Sets of functions and
experiment files can be input into FaaS Runner where each
function will execute in order across each thread as a pipeline.
Transitions can be defined to provide instructions for how FaaS
Runner should transpose data from one function’s response into
the request of another. Combining the transitions attribute with

programmable transition functions allows complex pipelines to be
orchestrated where function execution order can be adapted based
on the data returned in responses.

2.5 ReportGenerator
FaaS Runner’s ReportGenerator aggregates FaaS function

output files to produce user friendly reports in CSV format for
consumption by popular data analytics tools including R, SciKit
learn, and classical spreadsheets. The ReportGenerator calculates
summary metrics such as the sum or average over column(s) to
aggregate data from sets of FaaS function calls with many output
files. In addition, the ReportGenerator calculates client-side
metrics such as latency by observing the round-trip time of
function calls from the client’s perspective and subtracting
runtime reported by SAAF. The average latency is then calculated
by aggregating results over an entire batch of function calls.
Function tenancy, which is the number of functions hosted by the
same cloud-based virtual infrastructure, can be determined by
comparing the number of function calls sharing the same vmID
attribute where chronological time of execution overlaps.

The ReportGenerator supports regenerating reports over
archived data. Report settings can be reconfigured in the JSON
experiment file to explore alternate configuration settings.
Additionally, reports can be generated over data from
asynchronous function workloads retrieved from cloud object
storage systems after FaaS workloads complete. Reports can also
be generated by processing JSON obtained from alternate clients.

Figure 1: AWS Lambda Performance Speedup for Sysbench
Prime Number Generation vs. Function Memory

3 Improving FaaS Observability With SAAF
Recently in November 2020, AWS Lambda expanded available

memory for FaaS function execution to 10GB. To investigate
implications for function performance we deployed Linux
sysbench to calculate the first 2.5 million prime numbers. At 10GB,
we anticipated that AWS Lambda would provide access to 6
vCPUs. To ensure we would saturate available CPU capacity, we
configured sysbench to run using 12 threads. AWS Lambda states
that for every doubling of memory, performance doubles. We
completed 80 sets of 100 runs for memory settings from 128MB to
10240MB incrementing by 128MB. Performance ranged from
275.6s @ 128MB to just 4.0s @ 10240MB, a speed-up of ~69.2x

Tutorial ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

163

versus an expected theoretical speed-up of 80x. Figure 1 shows the
observed vs. actual speedup and the available number of vCPUs
identified by SAAF. Figure 2 depicts change is CPU utilization
metrics for CPU user mode time, CPU kernel mode time, CPU idle
time, CPU steal, and runtime as the function’s memory is
increased. This figure demonstrates how AWS Lambda adjusts the
CPU timeshare relative to the function’s memory size. CPU user
mode time is seen as staying essentially constant as CPU idle time
drops precipitously in a see-saw pattern as the function’s available
memory and CPU timeshare are increased.

Figure 2: Linux CPU Utilization (log scale) vs. Function
Memory for Sysbench Prime Number Generation

Figure 3: AWS Lambda Function Instance Replacement
vs. Function Call Interval over 24-hours

As another example of observability, we depict the percentage
of reused function instances for a Java-based prime number
generator on AWS Lambda. We performed sets of 50 concurrent
function calls to generate the first 100,000 prime numbers for 24
hours interspersing calls with a 5- or 10-minute delay. This
workload creates 50 function instances, the runtime environments
used to host individual function calls. Using SAAF’s
newcontainer attribute we visualize the percentage of new
infrastructure created in Figure 3. A 10-minute call interval led to
on average 73% replacement of infrastructure, versus just 4%
replacement with a 5-minute interval where ~25% of calls replaced
no infrastructure at all. Higher rates of infrastructure replacement
will produce more function cold starts resulting in increased
performance latency and longer response times.

4 Conclusions
SAAF provides a serverless computing profiling framework

that enables insights into the performance and infrastructure of
software deployments made to a variety of FaaS platforms in
multiple languages. SAAF is easily integrated into new and
existing functions deployed to commercial FaaS platforms. When
combined with the FaaS Runner and ReportGenerator, SAAF
provides an invaluable toolset for scientists and practitioners to
automate and reproduce experiments to better evaluate
performance tradeoffs of alternate serverless software designs.
These insights enable developers to make educated design
decisions to optimize function compositions, memory settings, or
select the most performant programming language. Without these
insights, developers often rely on ad hoc decisions without regard
to the performance and cost implications.

ACKNOWLEDGMENTS
Supported by the NSF Advanced Cyberinfrastructure Research
Program (OAC-1849970), NIH grant R01GM126019, and AWS
Cloud Credits for Research.

REFERENCES
[1] Alexandru Agache, Marc Brooker, Andreea Florescu, Alexandra Iordache,

Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and Diana Maria Popa. 2020.
Firecracker: Lightweight virtualization for serverless applications. In
Proceedings of the 17th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2020.

[2] Robert Cordingly, Hanfei Yu, Varik Hoang, Zohreh Sadeghi, David Foster,
David Perez, Rashad Hatchett, and Wes Lloyd. 2020. The Serverless Application
Analytics Framework: Enabling Design Trade-off Evaluation for Serverless
Software. In WOSC 2020 - Proceedings of the 2020 6th International Workshop on
Serverless Computing, Part of Middleware 2020. DOI:https://doi.org/10.1145/
3429880.3430103

[3] Wes J. Lloyd, Shrideep Pallickara, Olaf David, Mazdak Arabi, Tyler Wible,
Jeffrey Ditty, and Ken Rojas. 2015. Demystifying the Clouds: Harnessing
Resource Utilization Models for Cost Effective Infrastructure Alternatives. IEEE
Trans. Cloud Comput. 5, 4 (2015), 667–680. DOI: https://doi.org/10.1109/
tcc.2015.2430339

[4] Wes Lloyd, Shruti Ramesh, Swetha Chinthalapati, Lan Ly, and Shrideep
Pallickara. 2018. Serverless computing: An investigation of factors influencing
microservice performance. In Proceedings - 2018 IEEE International Conference
on Cloud Engineering, IC2E 2018. DOI:https://doi.org/10.1109/IC2E.2018.00039

[5] Sunil Kumar Mohanty, Gopika Premsankar, and Mario Di Francesco. 2018. An
evaluation of open source serverless computing frameworks. In Proceedings of
the International Conference on Cloud Computing Technology and Science,
CloudCom. DOI:https://doi.org/10.1109/CloudCom2018.2018.00033

[6] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry, Paul
Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich,
and Ricardo Bianchini. 2020. Serverless in the wild: Characterizing and
optimizing the serverless workload at a large cloud provider. In Proceedings of
the 2020 USENIX Annual Technical Conference, ATC 2020.

[7] Ethan G. Young, Pengfei Zhu, Tyler Caraza-Harter, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. 2019. The true cost of containing: A gVisor case
study. In 11th USENIX Workshop on Hot Topics in Cloud Computing, HotCloud
2019, co-located with USENIX ATC 2019.

[8] SAAF: Serverless Application Analytics Framework. Retrieved from
https://github.com/wlloyduw/SAAF

[9] AWS Lambda - Serverless Compute. Retrieved from
https://aws.amazon.com/lambda/

[10] Cloud Functions - Event-driven Serverless Computing. Retrieved from
https://cloud.google.com/functions/

[11] IBM Cloud Functions. Retrieved from https://cloud.ibm.com/functions/
[12] Azure Functions - Develop Faster with Serverless Compute. Retrieved from

https://azure.microsoft.com/en-us/services/functions/

Tutorial ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

164

