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ABSTRACT 
To improve the observability of workload performance, resource 
utilization, and infrastructure underlying serverless Function-as-a-
Service (FaaS) platforms, we have developed the Serverless 
Application Analytics Framework (SAAF). SAAF provides a 
reusable framework supporting multiple programming languages 
that developers can leverage to inspect performance, resource 
utilization, scalability, and infrastructure metrics of function 
deployments to commercial and open-source FaaS platforms. To 
automate reproducible FaaS performance experiments, we provide 
the FaaS Runner as a multithreaded FaaS client. FaaS Runner 
provides a programmable client that can orchestrate over one 
thousand concurrent FaaS function calls. The ReportGenerator is 
then used to aggregate experiment output into CSV files for 
consumption by popular data analytics tools. SAAF and its 
supporting tools combined can assess forty-eight distinct metrics 
to enhance observability of serverless software deployments. In 
this tutorial paper, we describe SAAF and its supporting tools and 
provide examples of observability insights that can be derived.  
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1 Introduction 
Recently serverless Function-as-a-service (FaaS) platforms have 

arisen that great simplify providing many of the desired features 
of distributed systems for software deployed to the cloud. FaaS 
platforms automate support for high availability, fault tolerance, 
and dynamic scaling, while billing developers only for the 
computational runtime of functions. Use of commercial serverless 
FaaS platforms, however, present challenges for profiling. These 
platforms frequently use virtual environments that restrict root 

access to the operating system, limit deployment package size, and 
lack a package manager making installation of existing profiling 
tools quite difficult. Observability of infrastructure is challenged 
given the abstract nature of FaaS platforms where hardware details 
and performance metrics are often hidden from the user. Finally, 
every commercial FaaS platform is different. Each platform 
supports different languages, supported by different backend 
infrastructure such as AWS Lambda’s Firecracker MicroVM or 
Google Cloud Function’s gVisor container application kernel [1,7].  

To better understand performance implications of FaaS 
platforms, in this tutorial paper we introduce the Serverless 
Application Analytics Framework (SAAF) [2,8]. SAAF provides a 
cross-cloud, multi-language analytics framework. SAAF supports 
profiling functions written in Java, Python, Go, Node.js, and Bash 
on AWS Lambda, Google Cloud Functions, IBM Cloud Functions, 
Azure Functions, and OpenFaaS [9][10][11][12][5]. SAAF captures 
metadata regarding the performance, infrastructure, and resource 
utilization (e.g. CPU, memory, disk, and network) of software 
deployments made to Function-as-a-Service (FaaS) platforms. 
SAAF integration involves including the SAAF library in the 
function’s package and invoking methods to specify profiling 
actions by adding a few lines of code. SAAF enables case studies 
and experiments on serverless application performance by 
supporting profiling and analytics of serverless software 
deployments. SAAF helps identify factors responsible for 
performance variation (e.g. alternate CPUs, function multitenancy, 
infrastructure freeze-thaw lifecycles) while enabling reproducible 
measurements of function performance across inherently 
heterogeneous infrastructure. 

SAAF addresses an important problem with public cloud 
computing cyberinfrastructure in that it directly addresses the 
problem of observability on serverless cloud platforms. Cloud 
computing, and serverless platforms in particular, are known to 
abstract complexity and hide server implementation details from 
end users. Hiding information hinders efforts to reproduce 
performance measurements as sources of performance variation 
are obscured. Resource abstractions leveraged by serverless 
computing platforms also complicate the ability for practitioners 
to reconcile the costs of software deployments to the cloud. Cost 
reconciliation problems are increasing across public cloud 
platforms as cloud service delivery models becoming increasingly 
easy to use, but also more abstract.  Factors such as resource 
heterogeneity and resource contention that are difficult to observe 
can be responsible for producing considerable performance 
variation in the public cloud.   
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2 Serverless Application Analytics Framework 
To enable profiling performance, resource utilization, and 

infrastructure of FaaS function executions, SAAF provides a 
library for inclusion inside the deployment package of each 
function [8]. Unlike frameworks that leverage proxy functions, or 
that are deployed directly on the host hardware of a FaaS platform, 
SAAF is integrated into the source code of the function to allow 
data collection from the function’s perspective. This design 
enables SAAF to profile performance of function deployments on 
any commercial FaaS platform, while enabling introspection of the 
infrastructure used by each platform.   

SAAF provides support tools to automate profiling experiments 
and data analysis. The FaaS Runner provides a multi-threaded 
client application that automates profiling experiments. FaaS 
Runner leverages a companion tool known as the ReportGenerator 
to then compile experiment results into reports that aggregate data 
for quick analysis. The ReportGenerator combines performance, 
resource utilization, and configuration metrics from many 
concurrent sessions enabling observations not possible when 
profiling individual FaaS functions calls.  

Platform Python Node.js Java Go Bash 

AWS Lambda ✔️ ✔️ ✔️ ✔️ ✔️ 

Google Cloud Functions ✔️ ✔️ ❌ ❌ ❌ 

IBM Cloud Functions ✔️ ✔️ ✔️ ❌ ❌ 

Azure Functions  ✔️ ✔️ ❌ ❌ ❌ 

OpenFaaS  ✔️ ❌ ❌ ❌ ❌ 

Table 1: Currently Supported Platforms and Languages 

2.1 Supported Platforms Languages 
SAAF provides support to profile functions created with 

Python, Node.js, Java, Go, and AWS Lambda custom runtimes 
using Bash. Each implementation is written natively in the 
respective language to offer the best performance, minimize 
dependencies, and to make using SAAF as easy as possible. 
Programmers include the SAAF library and a few lines of code to 
enable profiling. Documentation and example functions for each 
language are available from the SAAF GitHub repository [8]. Table 
1 describes languages supported on each platform by SAAF. 

SAAF includes publish scripts to help streamline the process of 
deploying functions to each platform. Projects can be built and 
deployed automatically to all supported platforms without 
requiring any code changes. This structure provides the ability to 
create multi-platform functions within a single code base. 

2.2 Collecting Analytics with SAAF 
SAAF collects metrics from the Linux procfs and appends them 

to the JSON payload returned by the function instance. Attributes 
collected include Linux CPU time accounting metrics such as CPU 
idle, user, kernel, and I/O wait time, wall-clock runtime, and 
memory usage [3]. As SAAF is dependent on Linux, SAAF does 
not support profiling resource utilization of functions deployed to 
Azure Functions using Windows. To identify infrastructure state, 
SAAF stamps function instances with a unique ID and uses the 

existence of the ID to identify if the environment is new (cold) or 
recycled (warm) [4].  

After including the SAAF package and initializing the Inspector 
object, the attributes collected are defined by which functions the 
programmer calls. CPU, memory, function instance, Linux, and 
platform profiling functions offer granular and customizable 
profiling. Profiling functions and key metrics produced by SAAF, 
the FaaS Runner, and ReportGenerator are described online [8].  In 
total 48 distinct metrics can be obtained.  

Profiling is enabled within FaaS functions through 
modifications in five sections: 
1. Initialization: Initialize the SAAF Inspector object at the 

start of the FaaS function. 
2. Inspection: Call initial SAAF inspect functions such as 

inspectAll(), inspectCPU(), etc. to collect base values for 
metrics. 

3. Workload: Implement function, this is where the 
implementation of the function should be. 

4. Inspect Deltas: After function code is complete, call SAAF 
inspect delta functions, e.g. inspectAllDeltas(), 
inspectCPUDeltas(), to calculate resource utilization. 

5. Finalize: Generate SAAF output by calling the finish() 
function. Return this object or append to an existing return 
object. If the function is asynchronous, save this object to 
external data storage for future retrieval. 

2.3 SAAF Profiling Verbosity  
Key to SAAF’s design is the ability to minimize profiling 

overhead as a component of the overall runtime of FaaS function 
calls. This overhead is reported by SAAF using the 
frameworkRuntime attribute measured in milliseconds. To 
address profiling overhead, we decompose profiling operations 
with nine inspection methods to offer different degrees of profiling 
verbosity. These methods enable the programmer to control how 
much data is collected and returned.  If a programmer is interested 
in obtaining only a specific type of profiling data (e.g. CPU), then 
only a subset can be requested. These methods include: 
inspectContainer(), inspectPlatform(), and 
inspectLinux(). Initializing profiling for a particular class of 
metrics is performed by calling: inspectCPU() or 
inspectMemory(). These methods capture initial values of Linux 
resource utilization counters. Counters are typically reset to zero 
when new virtual infrastructure is created. FaaS platforms reuse 
existing virtual infrastructure to avoid function cold start latency 
for repeated function calls. Each FaaS platform has its own 
proprietary policy for infrastructure creation and retention [6]. 
Delta functions are called at the end of the function to capture the 
change in resource utilization: inspectCPUDelta() and 
inspectMemoryDelta(). Finally, methods are also provided to 
profile all metrics: inspectAll() and inspectAllDeltas().  

2.4 Running Experiments with FaaS Runner 
FaaS Runner provides a multi-threaded client application used 

to define and orchestrate experiments on FaaS Platforms that 
works in conjunction with SAAF. FaaS Runner dedicates a 
separate thread to each client session and can orchestrate more 
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than 1,000 concurrent FaaS function calls. The average runtime of 
the FaaS function, and the desired number of concurrent function 
calls for the experiment should dictate the computer used to host 
the FaaS Runner. A local computer with high network latency can 
be used for experiments with low concurrency requirements or 
when the FaaS function exhibits a high average runtime. 
Alternatively, a cloud-based virtual machine with very low 
network latency and many virtual CPU cores can be used to 
support experiments requiring high client throughput (e.g. AWS 
EC2 c5.24xlarge w/ 96 vCPUs). 

FaaS Runner has the ability to orchestrate multiple types of 
workloads from basic single function executions, to complex 
multi-function pipelines. FaaS Runner can execute functions 
sequentially or in parallel, synchronously or asynchronously, 
across all of SAAF’s supported platforms, and through HTTP 
requests. FaaS Runner provides multiple options to configure 
function execution and report generation for FaaS experiments. 
These options can be defined directly using command line 
arguments, or by using JSON configuration files. FaaS Runner 
supports two types of configuration files: function files and 
experiment files. Function files are used to define how to access 
individual FaaS function endpoints. Experiment files are used to 
define the operations and inputs of an experiment, as well as how 
experimental output should be aggregated to generate CSV report 
output. Raw unprocessed results of individual FaaS function 
invocations are captured using separate JSON files and persisted to 
disk in an output directory specified for the experiment. When all 
of the function calls in an experiment finish, FaaS Runner 
automatically invokes the ReportGenerator to compile and 
aggregate experimental results into a report.  The ReportGenerator 
is described in section 2.5. 

 During an experiment, FaaS Runner can dynamically adjust a 
function’s memory reservation size to automate profiling over a 
range of sizes.  Additionally, FaaS Runner can distribute fixed or 
alternate data payloads to function calls. Payloads can be rotated 
across a set of function calls sequentially (e.g. round-robin) or 
shuffled randomly. Data payloads can be specified directly in the 
experiment JSON files, or by specifying an input directory where 
the user uploads a set of one or more input files.  Payload 
inheritance allows defining a base set of attributes, simplifying 
specification as only the parameters that change need to be 
defined repeatedly in the experiment JSON file.  

FaaS Runner experiment definitions are portable to any client 
computer enabling experiments to be reproduced enhancing 
potential to confirm experimental results. Experiments are 
launched by invoking the FaaS Runner application through the 
command line.  Experiments execute autonomously to completion 
with no required user interaction enabling headless operation.   

In addition to FaaS Runner’s features for single function 
execution, FaaS Runner is capable of running and orchestrating 
complex pipelines of multiple functions. Sets of functions and 
experiment files can be input into FaaS Runner where each 
function will execute in order across each thread as a pipeline. 
Transitions can be defined to provide instructions for how FaaS 
Runner should transpose data from one function’s response into 
the request of another. Combining the transitions attribute with 

programmable transition functions allows complex pipelines to be 
orchestrated where function execution order can be adapted based 
on the data returned in responses. 

2.5 ReportGenerator  
FaaS Runner’s ReportGenerator aggregates FaaS function 

output files to produce user friendly reports in CSV format for 
consumption by popular data analytics tools including R, SciKit 
learn, and classical spreadsheets. The ReportGenerator calculates 
summary metrics such as the sum or average over column(s) to 
aggregate data from sets of FaaS function calls with many output 
files. In addition, the ReportGenerator calculates client-side 
metrics such as latency by observing the round-trip time of 
function calls from the client’s perspective and subtracting 
runtime reported by SAAF. The average latency is then calculated 
by aggregating results over an entire batch of function calls. 
Function tenancy, which is the number of functions hosted by the 
same cloud-based virtual infrastructure, can be determined by 
comparing the number of function calls sharing the same vmID 
attribute where chronological time of execution overlaps.  

The ReportGenerator supports regenerating reports over 
archived data. Report settings can be reconfigured in the JSON 
experiment file to explore alternate configuration settings. 
Additionally, reports can be generated over data from 
asynchronous function workloads retrieved from cloud object 
storage systems after FaaS workloads complete. Reports can also 
be generated by processing JSON obtained from alternate clients.  

 

Figure 1: AWS Lambda Performance Speedup for Sysbench 
Prime Number Generation vs. Function Memory 

3 Improving FaaS Observability With SAAF 
Recently in November 2020, AWS Lambda expanded available 

memory for FaaS function execution to 10GB. To investigate 
implications for function performance we deployed Linux 
sysbench to calculate the first 2.5 million prime numbers. At 10GB, 
we anticipated that AWS Lambda would provide access to 6 
vCPUs. To ensure we would saturate available CPU capacity, we 
configured sysbench to run using 12 threads. AWS Lambda states 
that for every doubling of memory, performance doubles. We 
completed 80 sets of 100 runs for memory settings from 128MB to 
10240MB incrementing by 128MB. Performance ranged from 
275.6s @ 128MB to just 4.0s @ 10240MB, a speed-up of ~69.2x 
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versus an expected theoretical speed-up of 80x. Figure 1 shows the 
observed vs. actual speedup and the available number of vCPUs 
identified by SAAF. Figure 2 depicts change is CPU utilization 
metrics for CPU user mode time, CPU kernel mode time, CPU idle 
time, CPU steal, and runtime as the function’s memory is 
increased. This figure demonstrates how AWS Lambda adjusts the 
CPU timeshare relative to the function’s memory size. CPU user 
mode time is seen as staying essentially constant as CPU idle time 
drops precipitously in a see-saw pattern as the function’s available 
memory and CPU timeshare are increased. 

 

Figure 2: Linux CPU Utilization (log scale) vs. Function 
Memory for Sysbench Prime Number Generation 

 

 

Figure 3: AWS Lambda Function Instance Replacement  
vs. Function Call Interval over 24-hours 

As another example of observability, we depict the percentage 
of reused function instances for a Java-based prime number 
generator on AWS Lambda.  We performed sets of 50 concurrent 
function calls to generate the first 100,000 prime numbers for 24 
hours interspersing calls with a 5- or 10-minute delay.  This 
workload creates 50 function instances, the runtime environments 
used to host individual function calls. Using SAAF’s 
newcontainer attribute we visualize the percentage of new 
infrastructure created in Figure 3.  A 10-minute call interval led to 
on average 73% replacement of infrastructure, versus just 4% 
replacement with a 5-minute interval where ~25% of calls replaced 
no infrastructure at all. Higher rates of infrastructure replacement 
will produce more function cold starts resulting in increased 
performance latency and longer response times. 

4 Conclusions 
SAAF provides a serverless computing profiling framework 

that enables insights into the performance and infrastructure of 
software deployments made to a variety of FaaS platforms in 
multiple languages. SAAF is easily integrated into new and 
existing functions deployed to commercial FaaS platforms. When 
combined with the FaaS Runner and ReportGenerator, SAAF 
provides an invaluable toolset for scientists and practitioners to 
automate and reproduce experiments to better evaluate 
performance tradeoffs of alternate serverless software designs.  
These insights enable developers to make educated design 
decisions to optimize function compositions, memory settings, or 
select the most performant programming language. Without these 
insights, developers often rely on ad hoc decisions without regard 
to the performance and cost implications.  
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