WOSP-C 2021 Workshop

ICPE 21 Companion, April 19-23, 2021, Virtual Event, France

Performance Modelling of Intelligent Transportation Systems:
Experience Report

Lorenzo Pagliari
Gran Sasso Science Institute, Italy
lorenzo.pagliari@gssi.it

Raffaela Mirandola
Politecnico di Milano, Italy
raffaela.mirandola@polimi.it

ABSTRACT

Modern information systems connecting software, physical systems
and people, are usually characterized by high dynamism. These
dynamics introduce uncertainties, which in turn may harm the
quality of systems and lead to incomplete, inaccurate, and unre-
liable results. To deal with this issue, in this paper we report our
incremental experience on the usage of different performance mod-
elling notations while analyzing Intelligent Transportation Systems.
More specifically, Queueing Networks and Petri Nets have been
adopted and interesting insights are derived.

CCS CONCEPTS

« Software and its engineering — Software performance.

KEYWORDS

Intelligent Transportation Systems; Petri Nets;
Model-based Performance Analysis.

ACM Reference Format:

Lorenzo Pagliari, Mirko D’Angelo, Mauro Caporuscio, Raffaela Mirandola,
and Catia Trubiani. 2021. Performance Modelling of Intelligent Transporta-
tion Systems: Experience Report. In Companion of the 2021 ACM/SPEC
International Conference on Performance Engineering (ICPE "21 Companion),
April 19-23, 2021, Virtual Event, France. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3447545.3451205

1 INTRODUCTION

Digitalization of industry, by many considered as the fourth indus-
trial revolution, is changing the competitive landscape in several
business domains. The connectivity between software and physical
systems opens up for new innovative business or mission critical
services responsible for a vast part of the value chain. Indeed, mod-
ern information systems (e.g., intelligent transportation systems,
smart power grids, network infrastructures and robotics) usually
connect software, physical systems, and people [16], who either
interact with or are part of the system itself.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPE 21 Companion, April 19-23, 2021, Virtual Event, France

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8331-8/21/04...$15.00
https://doi.org/10.1145/3447545.3451205

Mirko D’Angelo

Linnaeus University, Sweden
mirko.dangelo@Inu.se

155

Mauro Caporuscio
Linnaeus University, Sweden
mauro.caporuscio@Inu.se

Catia Trubiani
Gran Sasso Science Institute, Italy
catia.trubiani@gssi.it

Such modern systems are usually characterized by high dy-
namism, as participating and interacting entities are heterogeneous
and autonomous, and unexpected and uncontrolled conditions may
arise within the environment. These dynamics introduce uncer-
tainties, which in turn may harm the quality of system and lead to
incomplete, inaccurate, and unreliable results [5]. Managing uncer-
tainty is then crucial to operate modern and complex interacting
systems and satisfy their quality requirements.

To this end, it is key to devise an engineering approach for
modern systems that guides their development taking into account
quality aspects under uncertain conditions. Indeed, in this paper
we focus on a specific aspect: investigating how to validate the
quality of different design decisions before putting the system into
operation, e.g., in terms of specific quality indicators, such as the
system response time, resource utilization, service throughput, etc.
The parametric analysis of the system under investigation through
the use of analytic models and the sensitivity analysis on some
of their key parameters allow us to take into account some of the
system’ uncertainty aspects.

Classical engineering approaches for quality engineering may
be not suitable to deal with complex interacting systems. In this
paper, we investigate the usage of different performance modelling
notations, i.e., Queueing Networks [10] and Petri Nets [20], and
their analysis results. We make use of an Intelligent Transportation
System (ITS) running example, which is used to show the chal-
lenges related to the software performance engineering domain.
ITS envisions autonomous cars adapting their behavior to improve
the performance (i.e., travel time) of special vehicles crossing a
road section. We build on the work presented in [15] and we show
how to define the performance models and what to extract from
their analysis results, with the goal to either filter out or deepen
particular solutions — e.g., the ones achieving poor performances.
We discuss then the model-based performance analysis results ob-
tained with the different formalisms highlighting their strengths
and weaknesses in this application context.

The rest of this paper is organized as follows. In Section 2 we
discuss related work. In Section 3 we introduce the ITS running
example. Section 4 illustrates the performance modelling, and Sec-
tion 5 explains the role of model-based performance analysis results,
and briefly discusses threats to validity. Section 6 concludes the
paper with hints for future research.

https://doi.org/10.1145/3447545.3451205
https://doi.org/10.1145/3447545.3451205

WOSP-C 2021 Workshop

2 RELATED WORK

During the system engineering life-cycle it is fundamental to ana-
lyze the behavior of the system under investigation. In particular, it
is of key relevance to understand how the designed software alterna-
tives impact the Quality-of-Service (QoS) requirements. Two types
of analysis can be performed: one which is driven by analytical
models, and one emulating the actual system behavior through sim-
ulation. The former is typically performed at design time and aims
at quantifying as early as possible the QoS characteristics of the
systems with analytical and/or QoS-based analysis techniques [1].
The latter is usually used when the resulting system behavior is
too complex to be captured by theoretical techniques and more
detailed models of the system are introduced to get meaningful
QoS-based results. In the following we present the state-of-the-art
in the direction of QoS-based design analysis.

For the majority of modern systems a satisfactory and omni-
comprehensive analysis is highly impractical or even impossible to
perform at design time. In fact, in this stage, the software engineer
has to verify a complex system with respect to a set of requirements,
and there is often no need to consider the precise structure of
the system and the details of its elements [11]. When the QoS
requirements are not tied to the concrete behavior/execution of
the system, high-level QoS models can be selected to preliminarily
assess the designed system. Analytical models can be adopted in
this phase depending on the specific domain of the system under
investigation and the type of QoS requirements to validate. A large
body of analysis techniques have been used in the literature to
deal with QoS-based validation - e.g., well-known analytical QoS
models adopted at design-time are Queuing Networks [9], Petri
Nets [14] and Stochastic Automata Networks [22].

In the following, we focus on static-based approaches related to
the domain we are considering, i.e., intelligent transport systems.
Stankova et. al. [21] deal with the problem of freeway traffic density
estimation for a jump Markov linear model by using a method
based on particle filtering. For the sake of simplicity, similarly to
our running example of Section 3, their study has been performed
for a freeway segment without on-ramps and off-ramps sections.
Khazaei et. al. [8] propose an analytical technique based on an
approximate Markov chain model for performance evaluation of
a cloud computing center. Di Febbraro et al. [4] uses hybrid Petri
nets to model and solve the problem of coordinating several traffic
lights with the aim of improving the performance of some classes of
special vehicles crossing a road section. Finally, Mokdad et al. [13]
conduct the performance evaluation of a mobile IP reservation
protocol by using stochastic automata networks.

3 CASE STUDY

In this section we present a running example on a concrete case
study that is purposely simple but not simplistic. The presented
scenario, despite its simplicity, encompasses the characteristics of
complexity and dynamicity typical of smart CPS. The case study be-
longs to the transport domain, specifically to the so called Intelligent
Transportation System (ITS). This type of environment is defined
intelligent because it is supported by some form of intelligence,
i.e.,, control logic added to the system itself or to its components,

156

ICPE 21 Companion, April 19-23, 2021, Virtual Event, France

G,
‘\'\C“‘\» {af/dr
PR N
o RS
\0\3(\/" aoe o vep, ENG o
07 N ouNicy, ® RS
Rae O===3, <
REvele & N s %e[_
e / \ 0
B / | b
T 3
R = == PN
< o i <y <riary
| <l Car m Ambulance Q Cloud computing ~ -----= > Communication

Figure 1: Intelligent Transportation System scenario

in order to optimize its overall quality, achieve particular goals in
certain circumstances or fulfil specific requirements.

Figure 1 illustrates an I'TS scenario for a particular road section.
For the sake of simplicity, similarly to [21], our case study considers
a freeway segment without on-ramps and off-ramps sections. The
system comprises normal vehicles (i.e., cars), special vehicles (i.e., am-
bulances), a wireless communication network, and a remote cloud
computing infrastructure. The entities are able to communicate
with each other by exchanging data (see the arrows) using different
communication media (e.g., 5g network) and different strategies
(e.g., vehicle to vehicle communication, vehicle to cloud communi-
cation). All the vehicles inside the systems are autonomous, thus
can sense the environment (i.e., messages sent by other vehicles)
and be programmed to move without human intervention.

The requirement of the system is to minimize the travel time
of special vehicles crossing the road section. More specifically, the
ITS should satisfy the following global requirement:

10: The system shall maximize the traffic flow that allows special
vehicles to travel the road (by encountering as less traffic as possible)
and reach their destination soon.

This requirement has to be fulfilled in any road configuration and
traffic flow conditions until congestion. In fact, after road saturation,
a travel time analysis is pointless as it is impossible for special
vehicles to find space and overcome other vehicles.

Starting from r0, to assess the performance of the system, an-
other requirement is derived, specifically r1: Special vehicles shall
not be hindered by regular vehicles

We are interested in analyzing the traffic flow dynamics and
congestion points in different road configurations. The analysis
is focused on how the behavior of regular vehicles affects special
vehicles in different traffic conditions.

To this end, a new requirement (sub-requirement of r1) is defined
for the travel time of special vehicles, i.e., r1.1: The average Travel
Time for Special vehicles (TTS) has to be: lower_bound < TTS <
optimum + (optimum % 50%). This expresses that the travel time
for special vehicles shall not be less than its lower bound, defined
in terms of real world constraints, i.e., regulated by the physic law:

vehicles with a specific speed can not have a travel time less than

roadlength
speed
Moreover, in order to be acceptable, the travel time for special

vehicles can suffer of a delay that is at maximum equal to the 50%

of the optimal time. This requirement is derived by observing at

lower_bound = , i.e., the optimal value.

WOSP-C 2021 Workshop

the relation between the travel time and traffic delay, as a function
of the flow rate, for generating unsaturated traffic conditions [19].

4 PERFORMANCE MODELLING

As outlined in [15], QN models offer a good first set of measure-
ments for performance analysis, but the modeling of more complex
state dependent behaviors is not straightforward. Therefore, we
consider a different formalism, namely PetriNets (PN) [12][17] as a
target analysis model.

The Petri Net formalism is characterised by three major elements:
tokens, places and transitions. A token is an abstract element that
can represent everything, from an abstract object (e.g., signals,
jobs, requests etc.) to a real one (e.g., physical actors, real entities,
etc.). Besides the standard Petri Net formalism, there is a variant
called coloured PN [6, 7] in which tokens belong to classes and
multiple classes can coexist in the same model. The peculiarity is
that tokens can be handled differently, depending on their class.
Also, token with classes can be seen as carrying information and it
is possible to assign different characteristics to each class. Moreover,
a coloured Petri Net will evolve accordingly to the tokens classes
allowing to define more complex behaviours, specially class and
state dependant.

A place is a container of tokens. It is an abstract entity that
can represent different things similarly to tokens, from an abstract
operational state to a physical working station of an implant or
a web server. A place can have a capacity limit that bounds the
number of tokens it can contain, from one to infinity. In the case
of a coloured PN, it is possible to specify a capacity limit for each
class. Places are always connected to transitions in input, output
or both and a place is never connected directly to another place.

A transition is the most important and tricky element of a Petri
Net model. A transition is always connected to places and never
directly to another transition. This component represents events,
actions, everything that lets the system evolve over time. Its major
function is to evolve the system by executing, or not, the function
it is supposed to represent. In order to do so, it has two sets of
rules or pre-conditions that: (i) enable or (ii) inhibit the transition
execution. These two sets or rules are defined on the amount of
tokens that are present in the places connected to the transition
on both input and output, and these two sets should be mutual
exclusive. However, inhibiting conditions are checked first and
then the enabling ones. If no inhibiting conditions are satisfied,
then the transition can execute the enabling rule that is satisfied,
if any. If multiple enabling rules are enabled at the same time, one
among them is randomly chosen. When finally a transition fires,
it consumes and creates an amount of tokens respectively from
the input and output places based on what the chosen enabling
condition has defined. Inhibit conditions do not consume or create
tokens, they just prevent the transition from executing. Moreover,
a transition can execute instantaneously or it can take a certain
amount of time. The time a transition takes to execute can be defined
by the transition itself regardless the tokens’ class or can be defined
for each tokens’ class. All these PN aspects allow to model more
complex and state-dependent behaviours that queueing networks
are not capable of.

157

ICPE 21 Companion, April 19-23, 2021, Virtual Event, France

To model the ITS, we consider the road as a grid where each cell
represents a portion of the road which, in the base case, is entirely
occupied by a vehicle. Each vehicle moves with a speed abstracted
in number of cells per time unit; it can change lane if there is more
than one cell, and only if there is enough safe space to do so.

The model in Figure 2 represents a road section of a two lane
road of a certain length. With the same assumptions made in [15],
the road has a total length of road_length and is divided in a grid
where each cell has a length of AX = 7.5 meters. Therefore, to
model an entire lane k = [%] cells are necessary. The
number of lanes, two in this case, is identified by the variable i.
Therefore, a couple place-transition represents a road segment AX
and a chain of k couples place-transition represents a lane. Putting
i lanes side by side defines the road we want to model.

Each lane segment AX has a place P; and a transition T;,
where i identifies the lane and k the so called position in the lane.
Both indices start from zero and increase respectively from left to
right and from top to bottom. Any place P; ;. in the road can host
only one token, regardless of the class. A lane has transition T; x
that allows or denies vehicle movements forward on the same lane.
We insert a further transition Tory k41, called overtake transition,
between the lanes to model changing lane manoeuvres and over-
takes. An overtake transition is connected to both places k and
k + 1 of both lanes. Any transition enables a movement only if at
least one destination place is empty, so there is no possibility to
have two or more vehicles overlapping in the same road section.
This avoids possible collisions. Moreover, the overtake transition
enables changing lane manoeuvres to a vehicle only if the following
condition is satisfied when it has finished crossing its road section:
the next place, on the same lane, in which it has to go is still occu-
pied by the preceding vehicle. In other words, a vehicle can change
lane only when it is necessary, as dictated by logic.

In our case study, there are two types of vehicles and therefore we
adopt a coloured PN with two classes of tokens. The vehicles flow is
arriving into the system with some rate A that is randomly routed to
one of the lanes and distinguished by token class. Each new vehicle
is routed in the first available free space among the P; . Besides
that, thanks to coloured PN formalism, we define an execution time
for each transition in the model that is class dependant. Therefore
every transition, when it fires, it will take a certain amount of time
dependant to which vehicle is in the relative place. In order to cover
some variance in the driving style, each transition execution time
is randomly chosen from an exponential distribution with mean
value the ideal velocity of the relative vehicle class.

In our PN model we implement a concept of safety, thanks to the
tokens limit of one we defined on places where a lane transition
T; . is enable/disable just form the status of the current place P; j
and the next one P; ;.. However, to cover more complex safety
aspects, we insert some sort of safety criteria when changing lane
manoeuvres occur. As in the real life, drivers do not change lane
any time they want but only when it assumes that the manoeuvre
is secure to be done and this is done usually by looking if there
is any upcoming vehicle on the destination lane. To this aim we
use the enabling/inhibiting conditions of overtake transitions to do
exactly so. An overtake transition To7 k41 is connected to both the
destination and source places on both lanes, therefore it is aware of

WOSP-C 2021 Workshop

ICPE 21 Companion, April 19-23, 2021, Virtual Event, France

Road lenght

Pik1 Tt Pix

Tix

P1,2

T1,2

Figure 2: PetriNet architectural model of a road

the current state of four places. In order for a vehicle in place P; . to
change lane the conditions to enable the manoeuvre are two: (i) the
next place on the same lane still has to be occupied and (ii) the places
on the destination lane, i.e., Pj11 x4+ and in P x, must be empty. In
other words, a change lane is enabled only if there is a slow vehicle
in front and there are no upcoming vehicles on the other lane. This
safety criteria takes into consideration two places on the destination
lane, i.e., Pi.q k41 and in P;,4 g, and therefore we called it two look-
ahead (2LA) safety rule. We define also a more secure criterion that
requires to take into consideration in the overtake enabling choice
also the k — 1 place status. Hence, also the k — 1 place has to be
empty meaning that in order to change lane there has to be even
more free space on the destination lane. From a PN modelling point
of view this translates into an additional edge connecting P; ;_; on
both lanes in input to Tor k+1 (see the dashed edges in Figure 2),
besides the ones that connect the Tory 11 to the P; iy and P; g4q
already present. Since this second safety criteria considered three
places, it is has been called three look-ahead (3LA) safety criterion.
In Figure 2 we represent only the 2LA for sake of clarity; but an
example of 3LA is reported with the dashed input edges to the
overtake transitions. It is straightforward to understand that this
safety rule can be easily extended and generalised to a n look-ahead
where n places are taken into account in the enabling/inhibiting
conditions.

5 PERFORMANCE ANALYSIS

In this section we briefly report our previous experience with the
analysis of the QN model that was proposed in [15] (see Section 5.1),
then we show the benefit of adopting the PN model (see Section 5.2).
Finally, we discuss the differences found between these two per-
formance modelling abstractions, along with the open challenges
raised when comparing these set of analysis results.

5.1 Previous analysis with the QN model

The QN model has been proposed in [15]. It includes a routing rule
able to model overtake situations. The adopted rule is the ,Join the

158

Shortest Queue (JSQ), i.e., a vehicle that finds a slower car in front
of it can chose to move in one empty adjacent queue, if any. The
same rule is adopted for the routing of new vehicles.

The model is solved by means of the JMT tool [2], and results
are reported in Figure 3. The average travel time of the ambulances
asymptotically reaches the average travel time of the cars with
an increase of traffic flow, because the ambulance is not able to
perform overtakes with a fully congested road. With respect to the
requirements defined in Section 3, we can state that r0 is partially
satisfied, indeed it does not allow a clear identification of a con-
gestion point; r1.1 is satisfied until 5k vehicles per hour, then the
presence of congestion makes the results not precise enough.

However, even if the requirements seem satisfied, the observed
behavior highligth a problem. We expected to find two break points
between low and high traffic jams: (i) when the traffic density starts
affecting the ambulance travel time, and (ii) when the ambulance
travel time becomes asymptotic to the cars travel time, due to the
high traffic jam. Unfortunately, the graph depicted in Figure 3 does
not show break points or an asymptotic trend in the ambulances
travel time’s curve. The policy of JSQ is a rough emulation of an
overtake policy that takes into consideration the state of the queue
when looking for a free spot. However, this policy does not guaran-
tee safety in case a vehicle decides to overtake another one. This
leads to a situation where any vehicle is able to overtake in any
traffic condition, also in a fully congested road. We deduce that this
is the reason why the curves of Figure 3 show no evident break
point or asymptotic behavior. To further investigate the perfor-
mance characteristics of ITS, we proceed with the analysis of the
PN model presented in Section 4.

5.2 Incremental knowledge with the PN model
The model is simulated with two different safety rules in overtaking,
called 2LA and 3LA, which check two or three positions ahead,
respectively, before engaging an overtaking step. In both cases, due
to the complexity of the model, the road has two lanes only.

WOSP-C 2021 Workshop

o " Cars -
| Ambulances -@-
130 ap =+
120
110
100
90
80»xxx-xxxxxxxxxxxx

x—% R i

.’.—o’ .
00000°®
L R KT

Average Travel Time

=~ A O
4O FAFFRFETR Y

0 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of vehicles per hour

Figure 3: QN simulation [15]

The results of the simulation are reported in Figure 4. Require-
ments r0 and r1.1 are satisfied also in this case and we observe a
more realistic behavior. We can notice that for high traffic densities
(i.e., from 4k/5k vehicles per hour and more) the average travel
time of the ambulances is asymptotic and very close to the one
experienced by cars. Moreover, we can identify break points in the
ambulance trace, specially with the 3 Look-Ahead configuration,
and this is also highlighted by the gap that has an increasing trend
towards zero. We are aware that the safety criteria push the jam-
ming effect denying the change lane manoeuvre more often as in
real life.

It is worth noticing that we are simulating a model that always
evolves at its maximum without human reaction. In fact when a
transition fires, it moves a token at its maximum speed, even in
a congested traffic scenario. This is due to the absence of global
variables that are system-dependant, it is an intrinsic problem of our
model. What causes the delays is either the increasing road density
but also the exponentially distributed firing time of transitions.

The local crossing speed of each road section is independently ex-
ponentially distributed but has no dependency or relation with the
global traffic density. This implies that any vehicle, independently
from the traffic flow or density, when moving to any subsequent
free road section it goes at full speed. The PN model lacks a rela-
tion between the vehicles’ local road section mean velocity and
the global road density, that is what happens in a real traffic situa-
tion. As the traffic increases, the vehicles slow down their velocity
instead of keep driving to their maximum speed and afterwards
break to avoid collisions. A traffic density dependency on the vehi-
cles speed gives back an early congestion point and an early delay
on the average travel time of ambulances, from low traffic flows.
However, this PN analysis fits into a test case trying to verify the
requirement 1.1. In fact, for the issues just discussed we need to
push the traffic flow way more than feasible for the road in order
to see congestion effects, congestion points and saturation. For
both the graphs in Figure 4, the average travel time of ambulances
increases with the traffic flow until it reaches the saturation point,
around 6k vehicle/hour, when it becomes asymptotic to the cars’
travel time. Higher the safety rule is, less reckless the ambulance is,
resulting in a smaller gap between the two travel time curves.

159

ICPE 21 Companion, April 19-23, 2021, Virtual Event, France

150
140
130
120
110 | .
100 _— L g

- 2 %X . u
gg:xxxx-xxxxxx*x"x <

- ‘ Cars -x- ,
| Ambulances -@-
Gap -+

60
50
40
30
20 -
10 |- *
0 1 1 1 1 1 1 1 1 1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of vehicles per hour
(a) 2 Look-Ahead Overtake

Average Travel Time
\

Y

150
140
130
120 -
110 x~ . 4
100 | ' .
90 | N
80 ¢ XXX XXX X
70 |
60 |
50
40
30
20 -
10

L ‘ Cars -x-
| Ambulances -@-
Gap -+

Average Travel Time
3

+

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of vehicles per hour
(b) 3 Look-Ahead Overtake

Figure 4: Different overtake strategies: PetriNet results

Discussion. From Figures 3 and 4 it is worth noting that QN and PN
abstractions provide different trends for model-based performance
analysis results. In fact, our case study shows that PN are able
to point out a congestion that is instead missed using QN. This is
relevant in our opinion since we are interested to understand which
model abstraction is more suitable for the scope of identifying a
congestion status. Summarizing, the results highlight that with PN
performance formalism we are able to obtain a quality improvement
with respect to the results obtained with the QN model.

With respect to queueing networks, PN provides more accurate
results. However, PN maintains the problem of the velocity. Tokens
move at their maximum velocity at any time, regardless to the
traffic density, and that is not accurate. What is lacking is a way
to insert a dependency in the vehicle velocity distribution on the
global status of the traffic flow, density and congestion. In this way,
when the traffic pumps up, the vehicles automatically slow down
as it happens in real traffic jam scenarios.

The analyses performed with QN and PN have also pointed out
that it is difficult to model and assess traffic environments where
the agents can move freely. Besides, neither PN or QN are able to
model message passing or any kind of runtime behavior change.
Hence, for this complex system, there is the need to look for other
modelling paradigms including (co-)simulations environments [18].

WOSP-C 2021 Workshop

Threats to validity. There are some potential threats to the validity

of the qualitative and quantitative assessment. The development
of a performance model for the Intelligent Transportation System
case study can be considered as a first step and it provides only a
limited set of simplified features. In fact, when dealing with complex
systems, such as the ones we are investigating, models tend to
become very complex and intractable. For instance, the Petri Net
model described in this paper consists of 435 KLOC and is solved in
the order of hours. This task is difficult to be performed and needs
experienced engineers able to link the granularity of the models to
the expected results that such models are able to produce.

Different models and (ad-hoc) tools help tackling the complexity
of systems. However, this brings the inherent difficulty of linking
together different formalisms and aspects. To smooth this threat,
we plan to use pivot languages like CSM [24] and KLAPER [3] that
reduce the number of transformations and maintain some common
abstract model supporting the reasoning and the traceability of
both models and analysis results [23].

6 CONCLUSION

In this paper we have presented the results of an experience re-
port whose aim was to investigate the applicability of performance
models like QN and PN for the performance analysis of systems
characterized by high dynamism and complex interactions. To this
end, we have considered an intelligent transport system as case
study and we have compared the results obtained applying a gen-
eral QN model and a more detailed PN model. Our experience
highlights that performance modelling and analysis of complex
systems is challenging, as many cross-cutting concerns must be
jointly accounted during the development process. On the other
hand, our experimental results highlight some key aspects: (i) QN
and PN analyses, despite their limitations, can be useful for a first
understanding of the system behavior, and can represent a baseline
for further analyses and comparisons; (ii) some congestion behav-
iors that are not easily captured by QN models can be expressed
using more complex formalism, like coloured PN; (iii) QN and PN
models are able to give significant insights only for a limited set of
aspects; (iv) the need of more powerful models able to capture the
whole system behavior and provide performance results in short
time.

As future work, considering the PN formalism, we aim at ap-
plying the proposed performance models in real-world industrial
settings. To this end, we plan to adopt Petri Nets in different do-
mains, by conducting a controlled experiment with engineers and
practitioners from industrial partners. Such application will be used
to evaluate the effectiveness of Petri Nets and derive meaningful
descriptive statistics. From a more general view point, we intend to
investigate multi-modeling approaches able to deal with different
aspects of the system in a combined way.

REFERENCES

[1] Radu Calinescu, Lars Grunske, Marta Z. Kwiatkowska, Raffaela Mirandola, and
Giordano Tamburrelli. 2011. Dynamic QoS Management and Optimization in

160

(10]

[11

[12

(13]

[14

[15

=
&

(17

[18

[19

[20]

)
-

[22]

[23

[24

ICPE 21 Companion, April 19-23, 2021, Virtual Event, France

Service-Based Systems. IEEE Trans. Software Eng. 37, 3 (2011), 387-409.
Giuliano Casale and Giuseppe Serazzi. 2011. Quantitative system evaluation with
Java modeling tools. In Proceedings of the International Conference on Performance

Engineering. 449-454.
Andrea Ciancone, Mauro Luigi Drago, Antonio Filieri, Vincenzo Grassi, Heiko

Koziolek, and Raffaela Mirandola. 2014. The KlaperSuite framework for model-
driven reliability analysis of component-based systems. Software and System
Modeling 13, 4 (2014), 1269-1290.

A. Di Febbraro, D. Giglio, and N. Sacco. 2004. Urban traffic control structure based
on hybrid Petri nets. IEEE Transactions on Intelligent Transportation Systems 5, 4
(2004), 224-237. https://doi.org/10.1109/TITS.2004.838180

David Garlan. 2010. Software engineering in an uncertain world. In Proceedings
of the International Workshop on Future of software engineering research. 125-128.
Kurt Jensen. 2013. Coloured Petri nets: basic concepts, analysis methods and
practical use. Vol. 1. Springer Science & Business Media.

Kurt Jensen and Grzegorz Rozenberg. 2012. High-level Petri nets: theory and
application. Springer Science & Business Media.

H. Khazaei, J. Misic, and V. B. Misic. 2012. Performance Analysis of Cloud
Computing Centers Using M/G/m/m+r Queuing Systems. IEEE Transactions on
Parallel and Distributed Systems 23, 5 (2012), 936-943. https://doi.org/10.1109/
TPDS.2011.199

P. Kuehn. 1979. Approximate Analysis of General Queuing Networks by
Decomposition. IEEE Transactions on Communications 27, 1 (1979), 113-126.
https://doi.org/10.1109/TCOM.1979.1094270

E. D. Lazowska, J. Zahorjan, G. Scott Graham, and K. C. Sevcik. 1984. Computer
System Analysis Using Queueing Network Models. Prentice-Hall.

Massimo Marchiori. 1998. Light Analysis of Complex Systems. In Proceedings of
the ACM Symposium on Applied Computing (Atlanta, Georgia, USA). ACM, New
York, NY, USA, 18-22. https://doi.org/10.1145/330560.330564

Marco Ajmone Marsan, Gianfranco Balbo, Gianni Conte, Susanna Donatelli, and
Giuliana Franceschinis. 1994. Modelling with generalized stochastic Petri nets.
John Wiley & Sons, Inc.

L. Mokdad and J. B. Othman. 2003. Performance evaluation of MIR (mobile IP
reservation protocol) based on stochastic automata networks. In Proceedings of the
International Conference on Semiannual Vehicular Technology, Vol. 3. 1778-1782.
https://doi.org/10.1109/VETECS.2003.1207129

T. Murata. 1989. Petri nets: Properties, analysis and applications. Proc. IEEE 77, 4
(1989), 541-580. https://doi.org/10.1109/5.24143

Lorenzo Pagliari, Mirko D’Angelo, Mauro Caporuscio, Raffaela Mirandola, and Ca-
tia Trubiani. 2019. To what extent formal methods are applicable for performance
analysis of smart cyber-physical systems?. In Proceedings of the European Con-
ference on Software Architecture, ECSA Companion Volume 2, Laurence Duchien,
Anne Koziolek, Raffaela Mirandola, Elena Maria Navarro Martinez, Clément
Quinton, Riccardo Scandariato, Patrizia Scandurra, Catia Trubiani, and Danny
Weyns (Eds.). 139-144.

Ragunathan Rajkumar, Insup Lee, Lui Sha, and John Stankovic. 2010. Cyber-
physical systems: the next computing revolution. In Proceedings of the Interna-
tional Conference on Design Automation. 731-736.

Wolfgang Reisig. 2012. Petri nets: an introduction. Vol. 4. Springer Science &
Business Media.

James A Rowson. 1994. Hardware/Software Co-Simulation. In Proceedings of
International Conference on Design Automation, Vol. 94. 6-10.

Hemant Kumar Sharma, Mansha Swami, and BajrangLal Swami. 2012. Speed-flow
analysis for interrupted oversaturated traffic flow with heterogeneous structure
for urban roads. International Journal for Traffic and Transport Engineering 2, 2
(2012), 142-152.

C.U. Smith and L.G. Williams. 2002. Performance Solutions: A Practical Guide to
Creating Responsive, Scalable Software. Addison-Wesley.

Katefina Stanikova and Bart De Schutter. 2010. On freeway traffic density esti-
mation for a jump Markov linear model based on Daganzo’s cell transmission
model. In Proceedings of the International Conference on Intelligent Transportation
Systems. 13-18.

M. A. L. Thathachar and P. S. Sastry. 2002. Varieties of learning automata: an
overview. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
32, 6 (2002), 711-722. https://doi.org/10.1109/TSMCB.2002.1049606

Catia Trubiani, Achraf Ghabi, and Alexander Egyed. 2017. Exploiting traceability
uncertainty between software architectural models and extra-functional results.
Journal of Systems and Software 125 (2017), 15-34.

C. Murray Woodside, Dorina C. Petriu, José Merseguer, Dorin Bogdan Petriu,
and Mohammad Alhaj. 2014. Transformation challenges: from software models
to performance models. Software and System Modeling 13, 4 (2014), 1529-1552.

https://doi.org/10.1109/TITS.2004.838180
https://doi.org/10.1109/TPDS.2011.199
https://doi.org/10.1109/TPDS.2011.199
https://doi.org/10.1109/TCOM.1979.1094270
https://doi.org/10.1145/330560.330564
https://doi.org/10.1109/VETECS.2003.1207129
https://doi.org/10.1109/5.24143
https://doi.org/10.1109/TSMCB.2002.1049606

	Abstract
	1 Introduction
	2 Related work
	3 Case Study
	4 Performance Modelling
	5 Performance Analysis
	5.1 Previous analysis with the QN model
	5.2 Incremental knowledge with the PN model

	6 Conclusion
	References

