
On Preventively Minimizing the Performance Impact of Black
Swans

Vision Paper

Andre B. Bondi∗
Software Performance and Scalability Consulting LLC

Red Bank, NJ
http://andrebbondi.com
andrebbondi@gmail.com

ABSTRACT
Recent episodes of web overloads suggest the need to test system
performance under loads that reflect extreme variations in usage
patterns well outside normal anticipated ranges. These loads are
sometimes expected or even scheduled. Examples of expected loads
include surges in transactions or request submission when popular
rock concert tickets go on sale, when the deadline for the submission
of census forms approaches, and when a desperate population is at-
tempting to sign up for a vaccination during a pandemic. Examples
of unexpected loads are the surge in unemployment benefit applica-
tions in many US states with the onset of COVID19 lockdowns and
repeated queries about the geographic distribution of signatories
on the U.K. Parliament’s petition website prior to a Brexit vote in
2019. We will consider software performance ramifications of these
examples and the architectural questions they raise. We discuss
how modeling and performance testing and known processes for
evaluating architectures and designs can be used to identify poten-
tial performance issues that would be caused by sudden increases
in load or changes in load patterns.

CCS CONCEPTS
• Software and its engineering → Software performance.

KEYWORDS
Performance testing; performance measurment; software architec-
ture; load modeling; black swans

ACM Reference Format:
Andre B. Bondi. 2021. On Preventively Minimizing the Performance Im-
pact of Black Swans : Vision Paper. In Companion of the 2021 ACM/SPEC
International Conference on Performance Engineering (ICPE ’21 Companion),
April 19–23, 2021, Virtual Event, France. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3447545.3451204

∗Also with Stevens Institute of Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’21 Companion, April 19–23, 2021, Virtual Event, France
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8331-8/21/04. . . $15.00
https://doi.org/10.1145/3447545.3451204

1 INTRODUCTION
Disasters, changes in social or political conditions, deadlines, and
the transient availability on line of scarce and highly valued com-
modities such as cheap plane tickets, concert tickets, or an appoint-
ment to get a COVID 19 vaccination all trigger changes or surges in
on line activity with accompanying degradations in performance,
reliability, and other qualities of service. The surges in traffic associ-
ated with deadlines and attempts to obtain scarce commodities are
foreseeable. Some changes in use case invocation frequencies due to
political and social conditions are not. The ones that are not foreseen
are sometimes called black swans, after a term coined by Taleb [10].
Whether or not traffic changes are foreseen, the resultant system
stress may expose system flaws that should have been prevented
by architectural evaluations and sound design and coding practices.
The symptoms of these overloads have occurred in multiple private
sector and public sector systems. They are sometimes foreseeable
and often preventable, but not always prevented. Moreover, since
performance and system tests frequently only cover traffic patterns
specified in performance requirements (if such requirements have
even been documented), they will not be uncovered before a sys-
tem is deployed and accessible to the public. Among the challenges
performance engineers face in detecting and preventing these prob-
lems are the design and execution of load and stress tests that will
reveal problems arising from traffic patterns that might be regarded
as extreme, persuading management that these tests are necessary,
and architecting systems for load scalability and reviewing the de-
signs and architectures to prevent the problems from occurring in
the first place[2].

After describing well known examples of performance issues
and other symptoms arising from changes in usage patterns, both
foreseen and unforeseen, we shall explore ways of preventing the
symptoms based on model-driven performance testing and on sys-
tematic reviews of the designs and information flows.

The author has no direct knowledge of the design or internals of
any of the systems mentioned in this paper. Questions about them
are based solely on conjecture, the author’s experience, and press
reports.

2 SOMEWELL KNOWN CASES OF
OVERLOAD

Apart from sluggish response times and outright crashes, symp-
toms of overload include losses or corruption of users’ stored data,
presentation of available items only to be told they are not available
once they are selected, and other failures to complete transactions.

WOSP-C 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

151

http://andrebbondi.com
https://doi.org/10.1145/3447545.3451204
https://doi.org/10.1145/3447545.3451204

In March 2019, the U.K. parliamentary grievance petition web-
site crashed repeatedly during a campaign gather signatures on a
petition to stop Brexit [6]. This was an example of overload caused
by an unexpected change in usage patterns. Interestingly, it was not
the arrival rate of petition signatures that was causing performance
issues, but repeated individual requests to produce and display a
map showing the current, up-to-the-minute geographical distribu-
tion of the signatories. Users could make this request on demand,
apparently generating a massive query on a database that was be-
ing updated with each signature. Once the system was configured
to redisplay the map every half hour instead of on demand, the
performance problems abated [1].

In 2020, the web sites used to claim unemployment benefits
in many American states could not cope with the sudden over-
loads triggered by massive layoffs due to the COVID19 pandemic.
These web sites are administered by the states, not by the Federal
government. According to press reports [4] [5], the New Jersey
unemployment benefits website could not easily be scaled up to
cope with the sudden increase in demand. Its business logic is im-
plemented in COBOL, a legacy programming language which few
new programmers know. Many of those who wrote the COBOL
code have retired. Symptoms of overload included long response
times on the web site, back office turnaround of initial claims tak-
ing months, and malfunctions including the loss, corruption, or
overlooking of fields in claimants’ records, such as their banking
information for the direct deposit of benefits. Correcting the prob-
lems caused by loss or corruption of user data required further
interactions with the system by both beneficiaries and New Jersey
Labor Department staff. The overload situation was only partially
mitigated by restricting on-line access by beneficiaries to a few
half-hour time slots per week, determined by the last four digits of
one’s Social Security number.

There are several other examples of websites crashing on over-
load either because of social interest or because of foreseen dead-
lines. Among those that should have been expected were:

• In New Jersey and many other states, COVID19 vaccination
registration websites have experienced surges that some
have likened to tickets coming on sale for a rock concert,
with overload symptoms similar to those of many US unem-
ployment websites.

• The Australian census website crashed on evening of the
day all residents were supposed to complete their online
entries. Unlike the NJ unemployment office, the Australian
government did not attempt to stagger the arrivals to spread
the load over time.

• The U.K.’s Brexit voter registration website crashed on the
last day to register.

Among those overload situations that could not be reasonably ex-
pected in advance were:

• The Canadian immigration service’s website experienced
a surge of visits from the U.S.A. on the night that Donald
Trump was elected president. It crashed on overload. [11]

• The news website for CNN crashed on overload on the morn-
ing of the 9/11 attacks. In the New York City region, the

overload may have been compounded by the reduction in ra-
dio and TV broadcasting until transmission could be moved
from the World Trader Center to the Empire State Building.

3 GUARDING AGAINST BLACK SWANS IN
THE SOFTWARE DEVELOPMENT LIFE
CYCLE

3.1 Overview
In this section, we illustrate how one might guard against an abrupt
change in load patterns that might constitute a black swan. After
discussing methods in general terms, we focus on two examples,
the U.K. Parliament’s grievance petition website and the New Jersey
Department of Labor’s unemployment benefits website.

Measures to guard against the performance consequences of
black swans should be taken at all phases in the software devel-
opment life cycle, regardless of whether the development process
is based on the waterfall model or an agile method. When the
workload consists of a family of use cases or demands, one should
conduct an application flow analysis to identify points of contention
between use cases, such as hardware resources like CPU, I/O devices,
memory, and network bandwidth, and passive software resources
such as tables, locks, threads, and JDBC connectors. The applica-
tion flow analysis should reveal whether user needs can be served
by structuring use cases that are resource-intensive so that they
are invoked at controlled frequency. It should include a review of
configuration settings to ensure that bottlenecks are not needlessly
induced by setting the values of tunable parameters, e.g. the sizes
of logical object pools, to values that are so low as to impeded the
use of hardware resources.

Once potential bottlenecks and their holding times per transac-
tion of each type are identified, the combinations of arrival rates of
use case invocations should be varied over a hyperplane and fed
into a simple model to determine which points of contention will
become bottlenecks and which mixes of arrival rates are likely to
cause saturation. These mixes and neighbouring combinations of
arrival rates are candidates for load levels to be used in performance
testing to see whether saturation will indeed occur. At that point,
an architectural tradeoff analysis method (ATAM) could be used to
determine proposed feasible architectural and design changes that
might mitigate the problem[7].

We now turn to two specific examples. The U.K. parliamentary
petition website involves the concurrent and frequent invocations
of use cases in a way that causes considerable performance degrada-
tion. The New Jersey unemployment benefits web site is an example
of an architecture that is hard to scale, in part because of the use of
an enduring legacy system that appeared to be difficult to speed up
or scale up.

3.2 The U.K. Parliamentary Petition Website
The use cases we consider here are the electronic entry of signa-
tures on a petition, which we call SignPet, and the generation of
a map showing the number of signatories by geographical region,
which we call MapG. SignPet and MapG could originally be invoked
by anyone who accesses the website. For the sake of discussion, let

WOSP-C 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

152

us suppose that SignPet involves entry of the signer’s name, ad-
dress, e-mail address, and parliamentary constituency, while MapG
involves generating counts based on a scan of the entire database
table of signatures at the time the request is generated. A database
may facilitate the generation of other analytics. Notice that every
signature causes the addition of a row to the signature table. The
table is an object of contention between the two use cases. More-
over, it would grow over time as signatures were added. This means
that the cost of MapG grows over time with this implementation.
SignPet’s processing cost may grow, too, but perhaps by not as
much, because insertion should never involve a table scan. The
total number of signatures was about 5.7 million. It is not hard to
see that MapG as described is resource intensive when the number
of petitioners is large, but that it might not be if the number of pe-
titioners were several orders of magnitude smaller. A designer and
a performance engineer could guard against the performance con-
sequences of the Brexit overload scenario by asking if it is possible
to maintain separate counters of the number of signatories in each
region, and whether it is sufficient for the system to update the map
every half hour by invoking MapG, while preventing the general
public from invoking it on demand. These small design changes can
guard against the worst effects of this particular black swan. We
do not know whether the designers addressed this issue before the
black swan occurred. A performance engineer could make the case
for guarding against a black swan like this one by building a simple
model to show which resources would be saturated by its occur-
rence and the mixes of loads for which saturations are predicted.
These should include hardware or virtual hardware resources such
as CPU, disc, and memory, and software resources such as database
locks. We suggest that every implementation should be preceded
by an examination of such a model with hypothetical parameters
based on past experience.

3.3 An Unemployment Benefits System that is
Difficult to Scale

Based on press reports, we conjecture that the back end of the
New Jersey unemployment benefits website was implemented as
a monolith in COBOL before the use of replicated instances of
business logic became commonplace. The number of newly unem-
ployed in the USA grew to record levels rapidly with the onset of
the COVID19 pandemic. The performance of the system in New
Jersey had been adequate until then, with short response times at
the claims interface and benefits being paid on time. Scaling out
might be achieved by replicating the business logic in containers.
Transactions would be routed to them with round robin or some
other load balancing mechanism. This proposed remedy is based
on the assumption that the back end database is more modern and
can be more easily scaled if its existing capacity is not sufficient. A
modeling exercise could be conducted to help make this determi-
nation while assessing tyhe number of needed containers and the
size of the platform needed to host them. We do not know whether
this was done.

As a workaround, an attempt was made to constrain the peak
load at any instant by breaking the user identification (Social Se-
curity) number space into approximately 50 groups. Each group
has its own set of 30-minute time slots on a few days each week

during which its members are permitted to log in. That reduces the
extent to which the system has to be scaled to cope with the vastly
increased number of weekly claims for benefits. This is a mitigating
strategy that, combined with others, seems to be effective, though
it does impose some inconvenience on the claimants.

It turns out that the risk that the New Jersey unemployment
system would not be able to cope with a large spike in claims was
known as early as 2003, and nothing was done about it. Other public
sector systems in New Jersey are also known to be at risk for similar
reasons[8]. It is clear that the problem might have been headed off
by an upgrade to the system that would have made it more robust.
This understanding provides a strong case for periodically assessing
the risk to the system and the ability of new technologies to mitigate
it in a cost-effectivemanner. Unfortunately, creaky IT infrastructure,
whether public or private, is not as visible to the general public as a
road, building, or bridge that has fallen into disrepair. The means to
determine the extent to which ongoing improvements are needed is
well known in the software performance engineering community.
Unlike bridge or road repair, the improvements need not cause
disruption. The political and public policy aspects of this problem
are outside the scope of this paper and will not be addressed further
here.

4 CONCLUSION
Current technology enables the replication of systems to make
them more robust and scalable in the face of sudden or sustained
surges of load to an extent that may not have been feasible with
technologies that were prevalent 25 or 30 years or even 40 years
ago. We have seen that some of these surges are foreseeable or
even scheduled, as is the case with systems that one must use
to comply with government obligations by a set date or within a
narrow time window. Others are due to unanticipated changes in
social conditions or changes in the way the system is used. The
methods and practices we have suggested to guard against the
undesirable performance impacts of sudden workload changes and
surges are well known in the performance community [3][9].

Success at preventing the potential inconvenience associated
with disasters and other black swans is not often visible to man-
agement or the public at large unless performance degradation or
failure and recovery from them are highly visible or unless they
have occurred in recent memory. The poor visibility of success
should underscore its value rather than diminishing it.

REFERENCES
[1] 2019. Petition to revoke article 50 hits 3.5m signatures. The Gaurdian

(2019). https://www.theguardian.com/politics/2019/mar/22/petition-to-revoke-
article-50-hits-3-million-signatures

[2] Len Bass, Paul Clements, and Rick Kazman. 1998. Software Architecture in Practice.
Addison-Wesley.

[3] A. B. Bondi. 2014. Foundations of Software and System Performance Engineering:
Process, Performance Modeling, Requirements, Testing, Scalability, and Practice.
Addison-Wesley.

[4] Elena Botella. 2020. Why New Jersey’s Unemployment Insurance System Uses a
60-Year-Old Programming Language. Slate (2020). https://slate.com/technology/
2020/04/new-jersey-unemployment-cobol-coronavirus.html

[5] Jeff Goldman. 2020. Record number of unemployment applications crashed N.J.’s
website, Murphy says. NJ.com (2020). https://www.nj.com/coronavirus/2020/03/
record-number-of-unemployment-applications-crashed-njs-website-murphy-
says.html#:~:text=New%20Jersey’s%20online%20unemployment%20appl

[6] Jennifer Hassan. 2019. ‘Cancel Brexit’ petition surpasses 5.7 mil-
lion signatures, as Parliament agrees to debate it. Washington Post

WOSP-C 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

153

https://www.theguardian.com/politics/2019/mar/22/petition-to-revoke-article-50-hits-3-million-signatures
https://www.theguardian.com/politics/2019/mar/22/petition-to-revoke-article-50-hits-3-million-signatures
https://slate.com/technology/2020/04/new-jersey-unemployment-cobol-coronavirus.html
https://slate.com/technology/2020/04/new-jersey-unemployment-cobol-coronavirus.html
https://www.nj.com/coronavirus/2020/03/record-number-of-unemployment-applications-crashed-njs-website-murphy-says.html#:~:text=New%20Jersey's%20online%20unemployment%20appl
https://www.nj.com/coronavirus/2020/03/record-number-of-unemployment-applications-crashed-njs-website-murphy-says.html#:~:text=New%20Jersey's%20online%20unemployment%20appl
https://www.nj.com/coronavirus/2020/03/record-number-of-unemployment-applications-crashed-njs-website-murphy-says.html#:~:text=New%20Jersey's%20online%20unemployment%20appl

(2019). https://www.washingtonpost.com/world/2019/03/21/can-brexit-be-
stopped-people-are-trying-so-hard-that-parliaments-website-is-broken/

[7] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carrier. 1998.
The architecture tradeoff analysis method. Proceedings. Fourth IEEE International
Conference on Engineering of Complex Computer Systems (Cat. No.98EX193 (1998).

[8] Sophie Nieto-Munoz. 2020. N.J. failed to fix unemployment system for
19 years, records show. Now Murphy pleads patience. NJ.com (2020).
https://www.nj.com/coronavirus/2020/05/nj-failed-to-fix-unemployment-

system-for-19-years-records-show-now-murphy-pleads-patience.html
[9] Connie U. Smith and Lloyd G. Williams. 2002. Performance Solutions. Addison-

Wesley.
[10] Nassim Nicholas Taleb. 2007. The Black Swan: The Impact of the Highly Improbable.

Random House.
[11] Elizabeth Weise. 2016. Americans really did crash the Canadian immigration site

on Election Day. USA Today (2016). https://www.usatoday.com/story/tech/news/
2016/11/10/100000-americans-crashed-canadian-immigration-site/93587034/

WOSP-C 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

154

https://www.washingtonpost.com/world/2019/03/21/can-brexit-be-stopped-people-are-trying-so-hard-that-parliaments-website-is-broken/
https://www.washingtonpost.com/world/2019/03/21/can-brexit-be-stopped-people-are-trying-so-hard-that-parliaments-website-is-broken/
https://www.nj.com/coronavirus/2020/05/nj-failed-to-fix-unemployment-system-for-19-years-records-show-now-murphy-pleads-patience.html
https://www.nj.com/coronavirus/2020/05/nj-failed-to-fix-unemployment-system-for-19-years-records-show-now-murphy-pleads-patience.html
https://www.usatoday.com/story/tech/news/2016/11/10/100000-americans-crashed-canadian-immigration-site/93587034/
https://www.usatoday.com/story/tech/news/2016/11/10/100000-americans-crashed-canadian-immigration-site/93587034/

	Abstract
	1 Introduction
	2 Some Well Known Cases of Overload
	3 Guarding against Black Swans in the Software Development Life Cycle
	3.1 Overview
	3.2 The U.K. Parliamentary Petition Website
	3.3 An Unemployment Benefits System that is Difficult to Scale

	4 Conclusion
	References

