
Performance Models of Event-Driven Architectures

Murray Woodside
 Department of Systems and Computer Engineering

 Carleton University
 Ottawa Canada

 cmw@sce.carleton.ca

ABSTRACT
Event-driven architecture (EDAs) improves scalability by
combining stateless servers and asynchronous interactions.
Models to predict the performance of pure EDA systems are
relatively easy to make, systems with a combination of event-
driven components and legacy components with blocking service
requests (synchronous interactions) require special treatment.
Layered queueing was developed for such systems, and this work
describes a method for combining event-driven behaviour and
synchronous behaviour in a layered queueing model. The
performance constraints created by the legacy components can be
explored to guide decisions regarding converting them, or
reconfiguring them, when the system is scaled.

CCS CONCEPTS
•General and reference~Cross-computing tools and
techniques~Performance •Software and its engineering~Software
organization and properties~Extra-functional properties~Software
performance

KEYWORDS
Software architecture, software performance, event-driven
architecture, layered queueing

ACM Reference format:
Murray Woodside. 2021. Performance Models of Event-Driven
Architectures. In the Companion of the 2021 ACM/SPEC International
Conference on Performance Engineering, (ICPE'21 Companion), April 19-23,
2021, Virtual Event, France. ACM, New York, NY, USA. 6 pages.
https://doi.org/10.1145/3447545.3451203

1 Introduction
Event-driven architecture (EDA) improves scalability by
combining stateless servers and asynchronous interactions.

Independent components are loosely coupled through a messaging
infrastructure such as message queueing or an event bus. The
essntial ideas are described by Richaards in [6], and
implementation issues are addressed by Ambre in [1] and by Puri
in [5]. The broad outline of a EDA is illustrated by the example in
Figure 1 for a simplified e-commerce system. Each component
may have multiple load-balanced instances, for scalability.

Figure 1 Event-Based Architecture Example

When a component such as “Buy” sends a request to a second
component such as InventoryMgr, the request message if handled
by the EventBus and the Buy component does not wait for the
reply. When the reply is generated it also is handled by the
EventBus and may go to a different instance of Buy. To bridge the
gap between request and reply the state of the operation at Buy is
saved in a Persistence Store (not shown) and retrieved by the
instance that takes the reply.
Performance modeling of systems under EDA was addressed by
Rathfelder et al in [5] using a simulation-based methodology. They
placed particular emphasis in modeling the asyncrhonous
communications via a publish/subscribe system. The present paper
considers analytic queueing approximations using layered
queueing networks (LQNs), which have been described by Franks
et al [2] and Woodside [8]. Some previous work by Liu in this
direction models publish-subscribe systems in the thesis [3].
The decision to employ EDA, or to convert a legacy system to
EDA, is often driven by scalability concerns. The possibilities may
include a hybrid solution that integrates a legacy system using
RPCs with new event-based components, and our concern here is
how to model the performance of such hybrids. This paper

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ICPE '21 Companion, April 19–23, 2021, Virtual Event, France
© 2021 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8331-8/21/04…$15.00
https://doi.org/10.1145/3447545.3451203

Presentation Server

Event Bus EB

Browse Authenticate Buy InventoryMgr

Sources

WOSP-C 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

145

mailto:cmw@sce.carleton.ca
https://doi.org/10.1145/3447545.3451203
mailto:Permissions@acm.org
https://doi.org/10.1145/3447545.3451203

proposes to evaluate the performance of alternatives using LQNs,
which were developed to represent the RPC-based architecture
directly. To apply LQNs to EDA, the asynchronous interaction
must be correctly represented, including the mechanisms used to
implement EDA. We consider here the use of persistent storage to
store the state of an incomplete service operation, and the use of
an Event Bus to transfer messages asynchronously. Additional
features of EDA, particularly the handling of transactions (see, e.g.
the Saga pattern in [7]) are not fully addressed here.
A method for incorporating these mechanisms will be introduced
using the same example, using three alternative architectures:
1. Sync: A direct implementation of the RPC-based architecture

with blocking interactions modelled by the LQN in Figure 2,
called here a “synchronous” architecture

2. Hybrid: A hybrid architecture in which only one component
(here, the Buy server) makes synchronous calls,

3. EDA: as in Figure 1.
The operational architecture, which shows the interactions
between the components, is displayed in Figure 1. The Figure uses
the notation of Layered Queueing Networks (LQNs), and shows
call-return interactions by arrows with filled arrowheads. These
create blocking interactions, that is the progress of an operation is
blocked when a call is made, until the reply is received.

Figure 2 Operational Architecture and LQN Model
Structure

The theory of layered queues was developed to address the
problem of modeling blocking interactions, and Figure 2 can be
interpreted as a LQN. In LQN terms concurrent components are
called tasks which offer operations called entries; entries make
synchronous (RPC-like) and asynchronous calls to other entries,
and a call can be forwarded to additional entries to describe a
pipeline of processing.
The Sync alternative is modeled immediately by the LQN defined
in Figure 2. To model full or partial EDA, the asynchronous calls
must be modeled, however the simple asynchronous calls defined
in LQN do not give the most useful model of EDA. We would
prefer a model that captures the user response time by retaining
the structure and content of the pattern of execution that makes
up a user response. There are two ways to capture this: first, from
the functional architecture, and second, from the workflow.

We will consider beginning from the functional architecture first,
using a transformation to convert a synchronous call into
asynchronous interactions using an event bus, which is applied to
alternatives 2 and 3.

2. Modeling a Call-Return in an EDA
The modeling of a call-return will be described using Figure 3
which shows a call from the Presentation to the Browse
component in LQN notation. One operation of Presentation
(invoked by Source) makes yPB calls to browseOp, the operation
performed by Browse.

Fig 3 One Synchronous Interaction, to be Transformed

In the EDA style, when PresentationOp makes a call, it first stores
its state in a Persistence Server, then sends its call to browseOp via
the EventBus. At this point it is completely disengaged from the
transaction. When browseOp replies via the EventBus, the state is
retrieved from the Persistence Server and the operation continues.
The transformation introduces a Persistence server for each
component, and calls to write and read the state to/from it.
To disengage the component from the operation of Browse, the
forwarding interaction in LQN is used together with some pseudo-
tasks. Forwarding a call from a server removes it from the return
path and means there is no blocking. Pseudo-tasks are LQN model
components that do not model software components, but exist
purely to describe behaviour. They describe some operation of a
system component separately, in order to provide details of the
behaviour.
Figure 4 shows the interaction for EBA. To exploit forwarding the
execution of presentationOp is divided into two parts, its own
execution with the persistence operations, and its calls. Only its
own execution is associated with presentationOp itself, then the
operation is forwarded to a pseudo-task CallsFromP which
represents the delay to make the calls. The pseudo-task makes all
calls to whatever further servers are called (here, just synchronous
calls to Browse). CallsFromP is modeled as having infinite
multiplicity, meaning that it places no limit on the number of
simultaneous calls from replicas of Presentation.
The calls are made through a component modeling the EventBus,
with two operations, a “client-side” operation to handle the call
from Presentation to Browse and forward it, and a “reply”
operation to handle the reply. The “reply” operation is the last step
in the forwarding path, after which the forwarding semantics
imply that a reply is received first at CallsFromP and finally (when
all calls are made) at Source.

sourceOp Source
{{N}N}

presentationOp
[0.5]

Presentation
{∞}

buyOp
[5]

Buy
{mBuy}

browseOp
[1]

Browse
{∞}

invMgrOp
[5]

InventoryMgr
{∞}

authOp
[1]

Customer
{∞}

creditOp
[1]

 (to be

 transformed
for asynchronous

interactions
of stateless tasks)

sourceOp Source
{N}

presentationOp
[s

P
]

Presentation
{m

P
}

browseOp
[s

B
]

Browse
{m

B
}

(

(yPB)

WOSP-C 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

146

The transformation clusters all the calls from presentationOp
together and moves them to cfpOp. The execution-intervals of
presentationOp are modeled separated only by the persistence
calls. This structure is imposed by the semantics of forwarding in
layered queues. For an analytic mean-value analysis solution (such
as is provided by the LQNS solver), the two descriptions are
equivalent since they give the same total mean delay for the Caller
entry presentationOp.

Fig 4. Event-Based Transformation of One Interaction

The use of forwarding means that Source gets a reply when all the
operations are complete, so Source sees the correct average
response time.
In summary
• the operations with the Persistence server capture the

overheads of saving and restoring state, and block the server
so the delay of this step is captured,

• the forwarding makes the participation of Presentation
asynchronous, and means that EventBus forwards each
message it receives, without blocking.

• the CallsFromP pseudo-task imposes the calling pattern
without blocking Presentation. Each task sending through
EventBus has its own caller pseudo-task.

• Overhead and congestion at EventBus are captured.
The example does not include network delays, which may also
important for response time. For a blocking call the round-trip
network delay needs to be included in the response delay, and this
can be achieved in a variety of ways. One way is to include the
total average network delay of all its calls in the “CallsFrom”
pseudo-task think time parameter, which adds a pure delay to the
operation time.

3. Modeling a Pure Event-Driven Architecture
Figures 3 and 4 define a transformation for each call in the LQN of
Figure 1.
1. Each component that makes calls has a persistence server

deployed with it, and a CallsFromX pseudo-task created for
it.

2. each operation that makes calls adds a write and a read call
to the persistence server, for each call it makes.

3. for each operation that makes calls, it forwards to an entry
which is added to the CallsFromX pseudo-task, and the calls
are moved to the pseudo-task.

4. each call from the pseudo-task is replaced by three calls:
a. a single synchronous call to a “source” EventBus entry
b. forwarding to its destination entry
c. a forwarding call from the destination entry to a “reply”

EventBus entry.

Fig 5 LQN Model for a Fully Event-Based Architecture

Every distinct call must have a separate “client-side” entry in the
EventBus, to connect the call to the correct target server entry, but
all calls can share a single “reply” entry.
Applying this transformation gives the LQN model in Figure 5.
In Figure 5 a single EventBus messaging server has been assumed,
although it is shown twice for convenience, but both EventBus
symbols refer to the same component, since they share a name.
The deployment can in fact include a network of event buses.

sourceOp
Source

{N}

presentationOp
[s

P
]

Presentation
{m

P
}

browseOp
[s

B
]

Browse
{m

B
}

(1)

readP
Persistence

Server
writeP

cfpOp
[0]

CallsFromP
{∞}

(yPB)

ebOpBrowse
[s

EB
]

EventBus
{∞}

ebReply
[s

EB
]

(1)

(yPB)
(yPB)

(1)

sourceOp Source

presentationOp Presentation

buyOp
[5.0]

Buy
{mBuy}

browseOp
[1]

Browse

invMgrOp
[5.0]

InventoryMgr
{∞}

authOp
[1.0]

Customer
{∞}

creditOp
[1.0]

(y
PAuth

cfpOp
[0]

CallsFromP
{∞}

EventBus
{∞}

ebBrowse ebReply ebAuth ebBuy

readForP
[0.1]

Persistence
ForP

writeForP
[0.1]

(Σy
P

= y
PAuth

+ y
PBuy

 + y
PBro

)

(Σy
 (Σy

(y
PBuy

) (y
PBro

)

cfbOp

CallsFromBuy
{∞}

EventBus
{∞}

ebInv1 ebInv2 ebCre1 ebCre2

Persistence
For Buy

readForBuy
[0.1]

writeForBuy
[0.1]

WOSP-C 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

147

4. Comparison of Alternative Architectures
To complete the set of alternative models, Fig 6 shows a model for
the hybrid architecture with a legacy Buy server making
synchronous calls to creditOp and invMgrOp. The operations for
persistence and for the EventBus were assumed to require 0.1 unit
of CPU time, the other operations are labelled with their CPU
demands. Tasks are labeled with their multiplicity, representing
thread pool size; stateless servers are modeled as infinite for
convenience.

Fig 6 LQN Model of EBA with Legacy “Buy” Server

The question of system scalability is addressed by considering
increasing values of N, the number of Sources (typically, users).
Figure 7 shows the system throughput obtainable for the three
architectures. The top line for EBA scales smoothly and continues
to scale beyond 100 users, assuming that additional processing
resources are added as needed. The other curves represent both
the Sync and Hybrid versions, which give almost identical
throughputs for different values of mBuy, the thread pool size for
the Buy server. Thus the hybrid architecture buys no improvement
in scalability, because the Buy server is the limiting factor in the
performance of the system. Adding event-based operations to the
other components did not yield any scalability benefit.

5. Modeling Event-Based Architectures via
Workflows

An alternative structure can be used to model pure event-based
systems with LQNs, which is better for some purposes. It is
outlined here for completeness, but the example is not worked out
in full. If the workflows of the system are known, the workflows
themselves are first modeled by LQN activity graphs (see [2] or [8]
for details of activity graphs) embedded in workflow pseudo-tasks.
Since the pseudo-tasks invoke the execution of the workflows they
have the role of EBA Orchestrators.

Fig 7 Throughput vs Number of Request Sources

LQN activity graph semantics include the basic flow semantics of
workflows, with sequence, alternative and parallel branching of
the flow, and loops. In the workflow graph each activity executes a
workflow step by making calls to model elements, which can be
tasks to execute operations, or other orchestrators. Figure 8 shows
an example describing a workflow over some of the system
elements as we considered above (the Presentation server is left
out). Note that the arrows between activities (which are suffixed
“Act” here) represent precedence, while the arrows from activities
to entries represent synchronous calls.

Figure 8 LQN based on Workflow

In this alternative structure the messages between tasks are not
represented as such in the model. The workflow tasks are infinite,
assigned to notional infinite hosts, and do no execution. They only
act as orchestrators. The calls to task entries are all synchronous
because they just invoke the operation and return; no task makes
calls in this form of model.
To complete an EBA model using an EventBus for messaging, two
elements are added to Figure 8 to give Figure 9:
• Persistence servers for each task which makes calls, with a

number of calls equal to the total request messages sent. In
this case only the Buy server makes calls,

sourceOp Source

presentationOp
[0.5]

Presentation
{∞}

buyOp
[5.0]

Buy
{mBuy}

browseOp
[1.0]

Browse
{∞}

invMgrOp
[5.0]

InventoryMgr
{∞}

authOp
[1.0]

Customer
{∞}

creditOp
[1.0]

(y
PAuth

)

cfpOp
[0]

CallsFromP
{∞}

EventBus
{∞}

ebBro1 ebBro2 ebAuth1 ebAuth2 ebBuy1 ebBuy2

readForP
[0.1]

Persistence
{∞}

writeForP
[0.1]

(Σy
P

= y
PAuth

+ y
PBuy

 + y
PBro

)

(Σy
P
)

(Σy
P
)

(y
PBuy

)
(y

PBro
)

sourceOp
Source

{N}

buyOp Buy

browseOp Browse

invMgrOp InventoryMgr authOp Customer creditOp

workflowOp

Workflow
{∞} browseAct buyAct

buyWorkflowOp

BuyWorkflow
{∞} startAct enterInfoAct

Number of Users

Throughput
/sec

EBA

mBuy =
10

5

3

1

Hybrid and Sync
alternative

architectures

WOSP-C 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

148

• messaging delay calls to insert the EventBus delays into the
response. Each activity which invokes an operation that
makes calls, adds a call to a “client-side” entry and one to a
“reply” entry of EventBus for each call. In the Figure these
are added to buyAct.

Figure 9 LQN Based on Workflow with Persistence and
EventBus Operations Added.

With this approach to modeling a workflow it is straightforward
to model additional features that may affect performance. The
example of admission control will be described here. The
behaviour of admitted jobs is modeled by a separate workflow
pseudo-task with multiplicity equal to the size limit for admission.

For example to control the number of users who can enter the
buying workflow to a maximum of 7, the multiplicity of the
BuyWorkflow pseudo-task would be set to 7 instead of infinity.
Similarly the behaviour of a transaction feature implemented in an
event-based style such as the Saga pattern [7] can be modeled by a
workflow pseudo-task.

ACKNOWLEDGMENTS
This research was supported by NSERC, the Natural Sciences and
Engineering Research Council of Canada, through its Discovery
Grants program.

REFERENCES
[1] Tanmay Ambre, “Architectural considerations for event-driven microservices-

based systems”, IBM Developer, July 10, 2020. Online at
https://developer.ibm.com/depmodels/microservices/articles/eda-and-
microservices-architecture-best-practices/.

[2] Greg Franks, Tariq Al-Omari, Murray Woodside, Olivia Das, Salem Derisavi,
"Enhanced Modeling and Solution of Layered Queueing Networks", IEEE Trans.
on Software Eng. Aug. 2008

[3] Helen (Huai) Liu, Multilevel Performance Analysis of Scenario Specification for a
Presence System, MSc thesis, Carleton University, October 2002.

[4] Sumeet Puri, “The Architect's Guide to Implementing Event-Driven
Architecture”, Solace, 2020. Online at https://solace.com/resources/white-
papers/wp-download-architects-guide-to-implementing-event-driven-
architecture

[5] Christoph Rathfelder, Benjamin Klatt, Kai Sachs & Samuel Kounev “Modeling
event-based communication in component-based software architectures for
performance predictions”, Software & Systems Modeling v 13, (2014), 1291–1317

[6] Mark Richards, Event-Driven Architecture, chapter 2 in “Software Architecture
Patterns”, O’Reilly, 2015

[7] Chris Richardson, Microservices Patterns, Manning Publications, Nov. 19 2018
[8] Murray Woodside, “Tutorial Introduction to Layered Modeling of Software

Performance”, online at http://www.sce.carleton.ca/rads/lqns/lqn-
documentation/tutorialh.pdf

sourceOp Source
{N}

buyOp Buy
{mBuy}

browseOp Browse

invMgrOp InventoryMgr authOp Customer creditOp

workflowOp

Workflow

{∞} browseAct buyAct

buyWorkflowOp

BuyWorkflow

{∞} startAct enterInfoAct

readForP
[0.1]

Persistence
For Buy

writeForP

EventBus
{∞}

ebInv ebCre

WOSP-C 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

149

https://developer.ibm.com/depmodels/microservices/articles/eda-and-microservices-architecture-best-practices/
https://developer.ibm.com/depmodels/microservices/articles/eda-and-microservices-architecture-best-practices/
https://solace.com/resources/white-papers/wp-download-architects-guide-to-implementing-event-driven-architecture
https://solace.com/resources/white-papers/wp-download-architects-guide-to-implementing-event-driven-architecture
https://solace.com/resources/white-papers/wp-download-architects-guide-to-implementing-event-driven-architecture
http://www.sce.carleton.ca/rads/lqns/lqn-documentation/tutorialh.pdf
http://www.sce.carleton.ca/rads/lqns/lqn-documentation/tutorialh.pdf

