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ABSTRACT
Advances in deep neural networks have provided a significant im-
provement in accuracy and speed across a large range of Computer
Vision (CV) applications. However, our ability to perform real-time
CV on edge devices is severely restricted by their limited computing
capabilities. In this paper we employ Vega, a parallel graph-based
framework, to study the performance limitations of four heteroge-
neous edge-computing platforms, while running 12 popular deep
learning CV applications.

We expand the framework’s capabilities, introducing two new
performance enhancements: 1) an adaptive stage instance controller
(ASI-C) that can improve performance by dynamically selecting
the number of instances for a given stage of the pipeline; and 2)
an adaptive input resolution controller (AIR-C) to improve respon-
siveness and enable real-time performance. These two solutions
are integrated together to provide a robust real-time solution.

Our experimental results show that ASI-C improves run-time
performance by 1.4x on average across all heterogeneous platforms,
achieving a maximum speedup of 4.3x while running face detec-
tion executed on a high-end edge device. We demonstrate that
our integrated optimization framework improves performance of
applications and is robust to changing execution patterns.
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1 INTRODUCTION
Computer Vision (CV) is a fast growing field of research in both
academia and industry. Thanks to the latest GPU technology, we
have seen impressive improvements in the performance and accu-
racy achieved by machine learning and deep learning (DL) algo-
rithms [17]. These advances have spurred a resurgence of interest
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in CV applications. Self-driving vehicles [8] and vehicle surveil-
lance [4] are two examples of emerging DL applications requiring
real-time video processing, as shown in Figure 1.

Figure 1: Object recognition using a Recurrent Convolu-
tional Neural Networks implemented with Vega.

Real-time video processing places strict demands on a system’s
ability to process an input frame within a short time period, mea-
sured by the frames per second (FPS) rate. A video stream at 30 FPS
translates to a processing time of 33.3 ms per input frame. Lower
processing rates could result in the system dropping frames. Faced
with the competing resource constraints in CV applications, the
emergence of edge-computing makes this problem even harder. Pre-
vious work addressed this issue in different ways: 1) as full systems
targeting an area of computer vision [13], 2) as optimizations to
specific CV kernels such as [12], or 3) as full Hardware-Software
co-design solutions [1].

Our work extends a full system solution called Vega [7], where
we leverage the concepts of module replication [16] and introduce
dynamic control that can replicate modules on the fly. We have
selected this automated approach sincewe can enable inexperienced
users to achieve better performance across a range of computational
platforms, each possessing different compute capabilities.

We study the behavior of 12 applications implemented with Vega
on four platforms. We then propose two optimizations to improve
the responsiveness and performance across these devices: 1) an
adaptive stage-instance controller (ASI-C) to improve performance
by dynamically controlling the number of computing instances
in each stage of the pipeline; and 2) an adaptive input-resolution
controller (AIR-C) to improve responsiveness and enable real-time
performance in hardware-limited scenarios.

2 DESIGN AND IMPLEMENTATION
Many CV algorithms are composed of a set of pipeline stages that
execute in sequence to process a given image or frame from a video.
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Figure 2 shows an example of the flow through a set of processing
steps required to run a deep learning-based face recognition on an
input frame.

2.1 The Vega Framework
Vega constructs a directed acyclic graph (DAG) to represent the
connections between different stages in the CV application. The
DAG shows the concurrent execution of different stages across
frames by using a unique thread to execute each stage. Figure 2
shows the structure of the face recognition application, including
all the stages and queues in the framework. The implementation
of the queue, input stage and output stage are embedded into the
framework. This provides Vega users with an automated solution,
leaving the user to only implement the custom nodes required by
the custom application, as presented in Figure 2.

Framework User
Application

Read Input

Pre-processing

Face Detection

Post-processing

Display output

Queue

Queue

Queue

Queue

Feature Selection

Face Recognition

Queue

Queue

Figure 2: High-level pipeline for a face recognition algo-
rithm using the Vega framework.

2.1.1 Queue. Our queuing mechanism is implemented as a ring
buffer, and is used to manage synchronization between stages. Each
stage, other than the first and last stage in the pipeline, is equipped
with an input queue and an output queue.

2.1.2 Stage Instances. We refer to a copy of a pipeline stage as an
instance of that stage. Multiple instances of a single stage enable
parallel execution of the stage logic. A thread is launched for every
stage instance. Vega provides the capability to add multiple stage
instances to help hide the latency of slower stages.

2.1.3 Performance Metrics. Figure 3 shows an example of how
the framework executes on a stream from a video camera, where

frames arrive at a constant rate of 30 frames per second (FPS). In
this example, all stages execute fast enough to meet the FPS rate
of the input video. As long as each stage execution time is within
this limit, the application is capable of achieving real-time response
times. We use FPS as our main performance metric.

LegendTimeline
Frame 1
Frame 2
Frame 3
Frame 4

Time (ms)
33 67 100 133 167 200

Read Input
Pre-processing
Face Detection

Post-processing
Display output

Feature Selection
Face RecognitionFrame 5

Frame 6
Frame 7

233 233

Figure 3: Execution timeline for our framework running a
face recognition application, where all stages meet the FPS
requirement.

2.2 Optimizations
In this section, we describe two new enhancements to the Vega
framework. These enhancements modify Vega’s run-time, allowing
the user to leverage their benefits without changes to the user’s
code.
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Figure 4: The flow of the Adaptive Stage Instance Controller,
where 𝑖 represents the current number of instances for the
slowest stage in the pipeline.
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2.2.1 Adaptive Stage-Instance Controller (ASI-C). This controller
is capable of selecting the number of instances for each computing
stage, based onmonitoring performance dynamically as we increase
the number of instances. A score, based on the observed FPS, is
computed as we vary the number of instances. This score is used
to control the number of instances, using the algorithm shown in
Figure 4. The number of instances is increased if it results in a higher
score. The controller considers thresholds for each comparison,
allowing for small variations in the score due to dynamic changes in
the run-time of the application. The maximum number of instances
allowed is limited by the number of logical cores in the hardware,
since it makes no sense to over-provision the available cores in a
real-time application.

2.2.2 Adaptive Input Resolution Controller (AIR-C). This controller
is in charge of adjusting the resolution of the input image to reduce
the computation costs during later stages of the application. This
results in an improvement in performance by reducing the latency
and increasing the FPS rate1. We elect to use a PID (Proportional
Integral Derivative) controller [2], which is a simple and effective
method that can adjust to dynamic variations in a real-time system.
By controlling each frame’s input resolution, the PID controller
adjusts the 𝐹𝑃𝑆𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 to match the 𝐹𝑃𝑆𝑖𝑛𝑝𝑢𝑡 of the input video.
The output 𝑢𝑡 of a basic discrete PID controller obeys the following
equation:

𝑢𝑡 = 𝐾𝑝𝑒𝑡 + 𝐾𝑖𝑇𝑠𝑒𝑡 + 𝐾𝑑
𝑒𝑡 − 𝑒𝑡−1

𝑇𝑠

Where 𝑢𝑡 is the output of the controller at the 𝑡𝑡ℎ sampling instant,
𝑒𝑡 = 𝐹𝑃𝑆𝑖𝑛𝑝𝑢𝑡 − 𝐹𝑃𝑆𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 is the value of the error at the 𝑡𝑡ℎ
sampling instant, 𝑇𝑠 is the time step (dt), and 𝐾𝑝 , 𝐾𝑖 and 𝐾𝑑 are the
proportional, integral and derivative gains, respectively. Figure 5
shows a block diagram of the PID controller used in this work. 𝐾𝑝 ,
𝐾𝑖 and 𝐾𝑑 gains can be manually tuned to fit the response time
required by the user.
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FPSinput et
ut 

(new resolution)

FPSobserved
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Figure 5: The basic operation of our PID controller.

2.2.3 Watch Dog State Logic. The controllers are run at fixed time
intervals, as defined by the user. When both controllers are enabled,
the watch dog enforces exclusion so that competing controllers do
not lead to oscillations in performance. Figure 6 describes the state
logic implemented for the watch dog, guaranteeing convergence of
the controllers. We compare a long and short running average to
compute the stability of the application.

State 2 and State 4 in Figure 6 describe states where one of
the controllers has converged. In these two states, the margin of
1It should be noted that some CV applications do not benefit from this type of opti-
mization, as some require a fixed input resolution (as discussed in section 3).
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Stability
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Yes

Yes

No

No

No
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Figure 6: State machine logic used for the watch dog.

error to consider stable behavior is increased to avoid overreacting
to small variations in the FPS, due to the dynamic nature of the
application. Thewatch dogwill first leverage the ASI-C to obtain the
best possible FPS. It will then reach state 2, increasing the interval
time to ensure stability has been achieved. Once the results are
confirmed stable, state 3 executes the AIR-C. The AIR-C is used as
the final controller because it can guarantee real-time performance,
as long as the computations required by the algorithm scale with
regards to the input image resolution.

3 EXPERIMENTAL SETUP

Table 1: Platform hardware description.

Platform Nano Nx Xavier Desktop
GPU Cores (Gen) 128

(Maxwell)
384 (Volta) 512 (Volta) 2560 (Pas-

cal)
CPU Logical
Cores (Gen)

4 (ARM
A57)

6 (ARM
v8.2)

8 (ARM
v8.2)

8 (i7 6700k)

Memory (GB and
GB/s)

4 (25.6) 8 (51.2) 16 (137) 16 (25.6)

Perf (GFLOPS
FP32)

235.8 1 058 1 410 8 873

Power (W) 10 15 25 ∼350

To evaluate our contributions, we utilized the platforms de-
scribed in Table 1 and implement the experimental setup described
in this Section. We selected algorithms that represent a wide range
of CV applications, extracting all the deep learning baseline im-
plementations from the Learn OpenCV’s database [6], Dlib and
OpenCV’s open source algorithms.
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The original version of the targeted application is referred to as
the baseline. The baseline implements a sequential pipeline, process-
ing one frame at a time. We create a version of the same application
using the Vega framework and refer to it as the vega-baseline. This
version implements a concurrent pipeline, which can overlap pro-
cessing multiple frames. Finally, we enable the ASI-C controller
on top of the vega-baseline and refer to it as vega-opt. The suite of
application used in our analysis is summarized in table 2.

Table 2: Application description. NCS: Number of Compute
Stages (excludes the input and output stages). DIR: Default
Input Resolution. F: Fixed Resolution

Name Description NCS DIR Reference
od-ssd Object detection algo-

rithm using a MobileNet
version of Single Shot
MultiBox model (SSD)

3 300x300
(F)

[11]

od-rcnn Object detection and se-
mantic segmentation algo-
rithm using the R-CNN
model

3 1920x1080 [5, 15]

od-
yolov3

Object detection algo-
rithm using the YoloV3
model

3 416x416
(F)

[14]

td Text detection algorithm
using the East model

3 320x320
(F)

[19]

fd-
opencv

Face detection (fd) algo-
rithm using a ResNet ver-
sion of the SSD model

3 1920x1080 [11]

fd-dlib Face detection algorithm
using the MMOD model

3 1920x1080 [9]

ad Age detection algorithm
using the MMOD fd model
and a CNN model

4 1920x1080 [9, 10]

gd Gender detection algo-
rithm using the MMOD fd
model and a CNN model

4 1920x1080 [9, 10]

fr Face recognition (fr) algo-
rithm using the MMOD fd
model with a 128 feature
descriptor and a Resnet
model

5 1920x1080 [9]

pe Pose estimation algorithm
using OpenPose

3 368x368
(F)

[3]

vd Vehicle detection algo-
rithm using a CNN +
MMOD model

3 1920x1080 [9]

color Colorization algorithm us-
ing a CNN model

3 224x224
(F)

[18]

The input video used for all experiments consist of a total of 790
frames, with a native resolution of 1920x1080 and a frame rate of
30 FPS. The input resolution of the videos were scaled by 0.5 and
0.3 for the Nx and Nano platforms, respectively, in our evaluations.
Each test was executed 5 times and averaged across runs.

4 PERFORMANCE EVALUATION
Next, we present experimental results of the Vega framework and
our proposed optimizations. Working with deep learning frame-
works, the accuracy of the models is paramount. But we omit accu-
racy results, as the ASI-C implementation does not change them.

The baseline and vega-opt implementations provide the same recog-
nition/detection outputs across all tests.

4.1 Stage Instance Increase Analysis
We use the Desktop platform to analyse the performance impact as
wemanually add more instances to the most time-consuming stages
in each pipeline. Figure 7 shows how the speedup changes when
we increase the number of instances for the compute stage(s). The
pe and od-ssd benchmarks are the only applications to experience
a decrease in performance when we increase the number of in-
stances. Note that at two instances, the od-ssd algorithm does show
improvement. All the remaining algorithms observed a speedup,
reaching stable performance within 3-4 instances. Minor differences
in execution time were observed when the number of instances
was further increased.

Figure 7: Performance comparison while varying the num-
ber of compute stage instances for each benchmark, as run
on the Desktop platform.

Upon further analysis of the od-ssd and pe benchmarks, we ob-
served a significant increase in the number of CPU context switches
and CPU migrations as we increased the number of instances. In-
creasing the number of threads used by an application will naturally
result in an increase in the number of CPU context switches and
CPU migrations. Od-ssd with one instance produced 64.4 K CPU
context switches and 600 CPU migration events. The same applica-
tion run with four instances generated 7.9 M CPU context switches
and 9 K CPU migrations.

The same experiments were conducted on the Nx platform. The
lower performance of the Nx GPU limits the framework’s ability to
improve performance by adding instances. We achieve a 7% average
reduction in execution time with two instances, after which perfor-
mance only degrades as more instances are added. An increase in
CPU context switching and CPU migrations was observed on this
platform as well. We also observed a 90% (or higher) GPU usage
across all benchmarks when using one instance. As a result, the po-
tential performance improvement is limited by the GPU capabilities
and the overhead associated with multi-threaded CPU scheduling.

4.2 ASI-C Performance Comparison
We compare the performance using our controller, with the best per-
formance achieved by manually selecting the number of instances,

WOSP-C 2021 Workshop ICPE ‘21 Companion, April 19–23, 2021, Virtual Event, France

142



as shown in the previous section. This comparison quantifies the
overhead associated with our controller. Figure 8 shows a compari-
son between the performance of our ASI-C controller and manually
selecting the best number of stage instances.

For seven applications, vega-opt is within 8% of the hand-tuned
run-time. This results in a small price to pay in performance when
using ASI-C, as compared to manually testing across all possible
number of instances. This controller additionally provides flexibility
for scenarios where the performance fluctuates, as a result of the
nature of real-time applications. ASI-C is capable of adjusting the
number of instances accordingly, and continue to provide the best
measured score. Vd, Fd-dlib and fr achieved lower performance
because the ASI-C module was not always able to converge to the
best solution.

Figure 8: ASI-C speedup comparison to manual stage in-
stance selection.

These fluctuations in the result of vd, fd-dlib and fr are caused by
high variance in the stage execution times, resulting from the nature
of multi-threaded benchmarks. These applications achieved the
best manually-tuned performance with 5 or more stage instances.
With vega-opt, the ASI-C will migrate to average lower FPS rate
sometimes, resulting in a lower score for an otherwise good solution.
This results in ASI-C converging to a sub-optimal solution. This
problem can be mitigated by increasing the range of measurements
taken to obtain the average FPS rate. However, this can have an
adverse effect since it will take longer to compute the stability of
the result.

4.3 AIR-C Performance Evaluation Under Load
Figure 9 displays the watch dog running with both optimizations
enabled. We can see how the framework reacts when a task is added
in the middle of the execution. A new CPU+GPU task starts at time
point 𝐴 in the execution. As expected, this new task impacts the
overall FPS rate of the benchmark, as it is now sharing CPU and
GPU resources. The watch dog notices the drop in the FPS rate
and reverts to state 3, restarting the AIR-C. The AIR-C modifies
the input resolution to compensate for the drop in performance,
until stability is achieved. The new task completes at time point
𝐵, resulting in a release of the hardware resources and an increase
in the FPS rate of our benchmark. This change restarts the AIR-C,

enabling the input image resolution scale to be corrected to reach
the original FPS.

Figure 9: AIR-C performance evaluation for the fd-dlib face
detection application on the Desktop platform.

There is a delay between the moment the new task starts and the
moment the AIR-C starts. This is because the watch dog logic is at
state 4, where stability has been reached, so AIR-C is not running.
The controller goes back to state 3 if the FPS rate changes by 15%
or more.

4.4 Platform Performance Comparison
Figure 10 shows a performance comparison between the three im-
plementations for each benchmark across all platforms. We observe
high correlation between GPU usage and performance improve-
ments when using vega-opt. For example, the GPU usage of the
baseline code for fd-dlib on the Desktop represents 20.4% of the
total execution time. Our optimized version resulted in 69.4% GPU
usage, translating to a 3.4X increase in GPU usage, which tracks the
performance gains we observed. The time spent on data transfers
remains the same across all versions. This is true for the remaining
applications.

Figure 10(a) shows the performance achieved with the Desktop
platform. The vega-baseline achieved a 1.2x speedup on average.
Vega-opt achieves a 2.1x speedup on average, with a maximum
of 4.3x over the baseline. Pose estimation is the only application
where vega-baseline performs better than vega-opt, requiring only
one instance. Pose estimation reaches 98% GPU usage with vega-
baseline, limiting the ASI-C capacity to improve performance.

Figure 10(b) shows the performance of theXavier platform. Using
vega-opt, we observed a 1.4x speedup on average, with a maximum
of 2.2x.We observed similar trends on this platform compared to the
Desktop platform. Figure 10(c) and (d) shows the performance of the
Nx and Nano platforms, respectively. Using vega-opt, we observed a
1.1x speedup on average, with a maximum of 1.3x. The vega-baseline
implementation performs better on average, compared to vega-opt,
averaging 1.2x speedup. As expected, performance increases just
by pipelining the algorithm, but the benefits of additional instances
were not observed on these platforms. These results confirm our
conclusions observed in Section 4.1.
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(a) Desktop (b) Xavier

(c) Nx (d) Nano

Figure 10: Performance comparison of all of our platforms running the applications using the ASI-C controller (vega-opt).

5 CONCLUSION
In this paper we introduced ASI-C and AIR-C and applied them to
CV applications, showing they can achieve significantly improved
performance and enable real-time processing. Our study showed
that combining these optimizations can further improve perfor-
mance and responsiveness across a range of CV applications.

The performance impact of thread over-subscription on low-
power devices is high, as the cost of scheduling and context switches
dominate the weaker CPUs. By increasing the performance capabil-
ities of the platform, the more easily performance can be improved
by leveraging our framework optimizer. GPU usage was found to
be a good indicator if an improvement can be achieved using ASI-C.
If the GPU is already saturated by an application, adding more
instances may result in reduced performance.
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