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ABSTRACT
Software systems architected using multiple technologies are be-
coming popular. Many developers use these technologies as it offers
high service quality which has often been optimized in terms of
performance. In spite of the fact that performance is a key to the
technology-mixed software applications, still there a little research
on performance evaluation approaches explicitly considering the ex-
traction of architecture for modelling and predicting performance.

In this paper, we discuss the opportunities and challenges in
applying existing architecture extraction approaches to support
model-driven performance prediction for technology-mixed soft-
ware. Further, we discuss how it can be extended to support a
message-based system. We describe how various technologies de-
riving the architecture can be transformed to create the perfor-
mance model. In order to realise the work, we used a case study
from the energy system domain as an running example to support
our arguments and observations throughout the paper.
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1 INTRODUCTION
Mixed-technology architecture, commonly abbreviated as “hetero-
geneous architecture” or “microservice architecture” is the com-
bination of several technologies. Mixed-technology software sys-
tem usually consists of: lightweight container technologies (LXC
and Docker), service discovery technologies (Eureka and Consul,
zookeeper), container orchestration technologies (Mesos and Ku-
bernetes), continuous-delivery technologies (Ansible and Drone)
and many more other technologies as required by the specific soft-
ware [11]. Each of these technologies are individual components
and use loosely coupled services running in their own processes.
Components usually deployed in service containers like Docker
and communicate with each other via lightweight communication
protocols. Each component defines an interface that other com-
ponents can consume. The services offered by the components,
communicate via RESTful APIs (Representational State Transfer
Application Program Interface) or message brokers in certain cases.
This style facilitates the services for independent development,
scaling, deployment, service discovery and load balancing without
compromising the integrity of the application.

From both development and operation prospective such as, de-
ploying, running, and monitoring enormous number of service
instances pose a huge challenge. To address the development chal-
lenges, performance simulations are promising option. Performance
modelling and prediction based on architecture, is well accepted in
the community for design-time and run-time model extraction and
performance evaluation. For performance model construction, it
is essential to capture the component interaction as it has a great
impact on performance. However, the nature of interaction makes it
harder to extract component relations from static sources since com-
ponent relationships may only be captured at run-time dynamically
for such systems.

In order to collect the right set of performance parameters for
performance model construction, it is important to analyze the
communication relationships between services, which requires a
monitoring infrastructure. This dynamic information can be com-
bined with static information like API description and service to
generate architecture-based performance prediction model [1, 3].
Several reverse engineering approaches used for this purpose to
recover the up-to-date component-based architectural model from
the current implementation of such mixed-technology system. But,
most of the approaches fail to provide “sufficient and required”
performance-related attribute to model and predict architecture
based performance prediction for mixed-technology system. In our
observation, the objective of achieving an automated architecture
model from the system implementation mixed-technology system
is challenged by certain points.
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• in-sufficient performance model parameters
• unavailability of appropriate hybrid methods for mixed-tech-
nology architecture extraction

• difficulty in capturing the performance impact component
interaction during run-time

• lack of proper formalisation method to extract the perfor-
mance model from current implementation

In our work, we particularly investigate the above-mentioned chal-
lenges and discuss how our approach aim to tackle them. In our
long term goal and research output we aim to provide an acceptable
solution to the community to deal with such issues.

2 FOUNDATION
2.1 Component-Based Software
Component-based software engineering (CBSE) facilitates building
a modular and reusable system [15]. This enables a faster and low
cost development time. Due to the above-mentioned advantages,
mixed-technology software adheres to the principle of CBSE and
builds upon several components in a distributed software develop-
ment environment.

A component is a software element that conforms to a com-
ponent model and can be independently deployed and composed
without modification according to a composition standard [10].
CBSE is reinforced by component model. Component frameworks
such as OSGi or EJB define components and how to compose them.
Components are composed by connectors which connects compo-
nents via their ports. Ports are responsible for interaction between
the components. A component can have multiple interfaces (de-
fined by set of ports) to communicate with each other. Components
define their behavior by required and provided interfaces (ports).
Services of components are encapsulated through their required
and provided interfaces. In order to simulate the performance of the
software system, it is vital to capture the communication between
the components and their behavioural specification. Such parame-
ters will then be provided as inputs to the performance model for
performance prediction.

2.2 Model-Based Performance Prediction
The goal of performance model is to deliver an abstract repre-
sentation of a real system that captures its performance proper-
ties i.e. run-time resource demanding, capacity planning and so
on. Later these quantitative attributes are given to the model to
measure the performance of the system as accurately as possible.
Model-based approaches again divided into two types: analytical
and architecture-level (architecture-based) performance models.
Major factors influencing performance like system architecture, re-
sources and usage-scenario are derived from architecture-level [5].
There exists twomodels, the Palladio Component Model (PCM) [19]
and the Descartes Modeling Language (DML) [12], with a major
focus to predict the performance of CBSE based on architecture-
level model. PCM performance model either can be generated at
design-time from the design specifications or can be extracted from
the running application of the systems with the help of appropriate
reverse engineering process.

2.3 Palladio Component Model
PCM is a modelling language used to model and simulate architec-
ture-based performance prediction. PCM has been used to predict
the software performance in various industries. Based on PCM
model, it is possible to perform simulation to estimate the perfor-
mance of the system. The Palladio approach also provides modeling
tools and environments to run this simulation. PCM models con-
tains structure of the software (e.g. components and interfaces),
the behavior (communication methods), the required resource en-
vironment, the allocation of software components and the usage
profile. Service Effect Specification (SEFF) in PCM captures the
behaviour of component using different control flow mechanism,
internal actions and external call actions (call to services like loop
and branching).

2.4 Reverse Engineering
Component-based mixed-technology software systems keep on
updating their components and services regularly to achieve the
service quality. It is hard to keep architecture models of these sys-
tems consistent with the on-going implementations. In such cases,
architecture level performance prediction using PCM become chal-
lenging. One way to get the PCM performance model is to use
reverse engineering (RE) approach.

RE approaches follow static, dynamic or hybrid analysis meth-
ods to extract the architecture from the source code and other
artefacts. Reconstruction of PCM performance model by SoMoX ap-
proach is purely static extraction approach, so the resulting model
does not contain any run-time performance parameters such as
resource demand [2]. Langhammer introduced RE tools Extract and
EJBmoX [14] that extract the behavior of the source code based
on hybrid analysis. He combined the static analysis and extracted
the model and later enhanced it with dynamic analysis. Spinner
[21] extracted PCM performance model based on dynamic analysis.
Finally, Mazkatli et al. [16] have included the estimation of para-
metric dependencies into the hybrid extraction by Langhammer
and extended the hybrid extraction approach to extract models
incrementally to be applicable in a continuous integration pipeline.
However, all these approaches are specific for a certain mapping
between source code and architecture model and do not support
the general architecture of mixed-technology software extraction.

In an earlier short paper, we sketched the challenges of extracting
architecture models from mixed-technology systems and presented
the idea to use common concepts between technologies to struc-
ture the extraction rules [20]. In this work, we have developed the
approach further and present our approach of a rule engine which
also considers dynamic analysis.

2.5 Message-Based Communication
Mixed-technology architecture often uses messaging middleware
for data and message passing to address non-functional require-
ments, e.g. reliability and availability [18]. It uses message channel,
a component in the middleware, for this asynchronous loosely-
coupled communication. Different services and system components
binds to the messaging middleware dynamically during run-time.
Messaging middleware also controls the data flow in such systems
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Figure 1: Services and their deployment of the ESDA system.

and has a decisive influence on the performance of the system. In or-
der to complete performance model of the systems with messaging
middleware, it is important to capture the temporal behaviour of
such communication during run-time. Automatic reconstruction of
the performance parameters from system implementation is helpful
in this context. To the best of our knowledge there exists no such
formal approach which support the automatic reconstruction of
architecture-level performance prediction for mixed-technology
software systems particularly talking via message-based middle-
ware.

3 LONG-TERM VISION
The long-term vision of the approach we are pursuing is to automat-
ically create and calibrate a performance prediction model as part
of the continuous integration / continuous deployment pipeline
of modern software development. Once the performance model is
automatically created, it can be used to predict performance and
answer open design decision questions. These model-based per-
formance tests are intended to identify problems as early and as
cost-effectively as possible. In doing so, evaluating performance re-
quirements at the model level should reduce the cost of a complete
performance test environment.

Since we want to model and take advantage of the knowledge
of the technologies used, we expect that our proposed approach
will generate performance prediction models that better fit the
actual architecture and performance characteristics. Likewise, by
explicitly modeling the established concepts of component-based
systems, we expect the user of the performance prediction model
to better understand the relationships between a technology with
the underlying concepts.

4 RUNNING EXAMPLE
Energy State Data Analysis (ESDA)1 is an open-source component-
based reference and test application for use in performance bench-
marks and testing. This small case study emulates a message-based
system for analyzing energy state data. ESDA is a distributed mi-
croservice application with three distinct services plus a Kafka bro-
ker. Each service can be replicated indefinitely and can be deployed
on different hardware nodes. The services communicate mainly
through Spring’s standardized consumer and producer interfaces
for Kafka and can be configured through Spring’s standardized
interfaces.
1https://github.com/kit-sdq/esda

The figure 1 shows the services and their deployment in UML
notation. The Importer service is responsible for receiving and
sending measurement data via a REST interface to the Kafka
broker. The Aggregate service is responsible for aggregating
measurement data. To do this, it receivesmultiplemeasurement data
from the Kafka broker, aggregates a specified number of them into
a new value, and sends it back to the Kafka broker. In this context,
the number specified in this way creates a so-called parametric
dependency, which describes the relationship between the input
parameters of a component and its performance characteristics. The
Analysis service emulates a possible analysis of this aggregated
measurement data.

The ESDA case study was explicitly implemented with regard to
the use of the most common technologies. Thus, it is intended to
be a sample of the most common message-based architecture using
modern technologies. For example, Kafka is used as the message
broker, and the services with message-based communication are
built entirely on the Spring framework and deployed in Docker
containers. In the further part, we will use this case study to show
how we want to use knowledge about used technologies to de-
rive a model of this message-based architecture for performance
prediction.

5 APPROACH
The focus of our proposed approach is on the recovery of compo-
nent-based architectures from projects. For this purpose, an already
developed component-based system must be available, which con-
sists of source code and additional artifacts such as Docker files. A
pure reconstruction of models to predict the performance of the
component-based system using only the source code is often not
possible anymore. Therefore, the idea of our proposed approach is
to bring in artifacts from different information sources for the re-
construction and then transform them into a model for performance
prediction.

5.1 Rule Engine
The idea of our proposed approach is to develop a rule engine for
architecture reconstruction with a focus on mixed-technology soft-
ware. The main contribution of the approach can be divided into
two tasks. First, the engine itself, which parses the rules provided
later and applies them to generate PCM models. Second, the defini-
tion and creation of rule artifacts for component identification.

For example, several frameworks are available for component-
based development. Some frameworks support explicitly marking
parts of the source code as components like the Java annotation
@Component in Spring. In Spring, not only components but also
their provided interfaces can be precisely identified by annotations
like @RequestMapping . This would allow one to easily identify
all components in a Spring-based framework by searching for the
appropriate annotations.

This fact that modern component-based mixed-technology soft-
ware systems built on top of a given framework or library are likely
to use the same standardized mechanisms as annotations is the
basis for component detection in our proposed approach. This leads
to the idea that such component recognition structures can be for-
mulated and collected as rules. Each rule thus represents a pattern
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Figure 2: Overview of the proposed approach

for identifying and mapping source code parts to a component, an
interface, parameters, or other parts of a model for predicting the
performance of CBSE.

Before the actual implementation can begin, a structure for the
precise formulation of transformation rules must be defined. For
this purpose, different technologies that support this goal have to
be compared. In addition, the formulation mechanism for these
rules must be simple enough to ensure good usability for users.
Additionally, the rules should use fully qualified names to avoid
collisions with e.g. annotations with the same name. Since existing
transformation languages tend to take structures from common
programming languages, a user might face a steep learning curve
when trying to formulate their own rules. Therefore, one idea could
be to define a DSL (Domain Specific Language) for one of the pro-
posed transformation languages. This would result in using already
established transformation ecosystems while providing users with
a more readable and thus understandable way of formulating rules.
The rules would be designed that they can be reused across project
boundaries. This means, for example, that the Spring Components
rules for all software projects can identify the components that
were implemented with the Spring framework.

5.1.1 Parsing. The artifacts in the software development of a com-
ponent-based system should first be transformed into appropriate
models suitable for further processing as an intermediate step. The
approaches, which are used for parsing the information and trans-
fer into the intermediate model, can differ from source to source.
For this purpose, we are currently working for enabling Java source
code and Docker configuration files to be used as artifacts. Then, the
transformed artifacts along with already formulated rules lead to a
transformation into model for performance prediction representing
the software architecture.

The text-to-model transformation approach differs for the two
information sources. For the Java source code, we use an existing
Eclipse JDT2 parser. The information of the abstract syntax tree ob-
tained from this will be transformed into a previously defined EMF
model. For the Docker configuration files, a classic text-to-model
transformation is to be applied using Xtext3. The information of
the configuration files is to be transferred with it by an appropriate
grammar into a model, whereby Xtext creates the model.

2https://www.eclipse.org/jdt
3https://www.eclipse.org/Xtext

5.1.2 Asynchronous Message Communication. The current on-go-
ing work on rule engine supports only RESTful services with a
focus to Spring applications. We will extend the rule engine to
extract the mixed-technology architectures based on asynchronous
message communication. message-based communication comes
in two flavours: point-to-point and publish-subscribe. In case of
message-based communication the data management and message
routing is decentralized. The service locator component integrates
the services and data elements. The interaction method is com-
monly enabled by the smart end points. The message queues and
message-based middleware often perform indirect communication.
We aim to capture and model the messaging communication by
two ways, as architects may prefer different views on the system
depending on their current information needs.

Messaging as a basic component Here the messaging compo-
nent, such as Kafka, will be represented as a so-called ba-
sic component in the architecture model, similarly to other,
logical components of the system. Considering ESDA sys-
tem in which Importer component communicates to Anal-
yse via Kafka would be represented using three compo-
nents Importer , Analysis , and Kafka in the architec-
ture model where Importer is connected to Kafka and
Kafka is connected to Analysis . The representation com-
munication via Kafka is presented in Figure 1. We will gener-
ate an aggregation function to aggregate the run time infor-
mation to the messaging component and provide a high-level
view of the system. We will enable an additional service to
collect the request and associated responses. This will collect
the service-to-service communication of particular message-
based interactions, deriving an architecture diagram in terms
of components and communication relations.

Messaging as middleware The idea here is to consider message-
based communication as indirect communication. It is possi-
ble to model the asynchronous message exchange via mes-
sage channels. In case of our running example ESDA, the
Importer component communicates to the Aggregator com-
ponent via Kafka would be represented using only two
components Importer and Aggregator and an explicit
model element for a message channel via Kafka in the ar-
chitecture model. In this case, Importer is connected to
Aggregator and this connector is annotated to use Kafka
(using the event-based modelling approach for PCM by Rath-
felder et al. [8]) (cf. Fig. 3). Before performance simulation,
the model transformation by Rathfelder et al. then inserts
adapters and middleware components as shown in Fig. 4 as a
so-called model completion. Exchanging messages between
components describes a dataflow from one component to
another, which is critical for the understanding of the sys-
tem in total. We plan to tackle this understandability to the
reconstructed performance model by modeling the message
exchange in the direction of the data flow.

The following example briefly illustrates how we intend to use
knowledge of a particular technology to automatically discover
message-based communication between services from source code,
and thus automatically generate parts for a architecture-based per-
formance prediction model.
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Figure 4: Completed model for simulation

@Component

public class EsdaListenerController {

// ...

@KafkaListener(topics =

"𝑒𝑠𝑑𝑎.𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒.𝑡𝑜𝑝𝑖𝑐 − 𝑛𝑎𝑚𝑒”, 𝑐𝑙𝑖𝑒𝑛𝑡𝐼𝑑𝑃𝑟𝑒 𝑓 𝑖𝑥 = ”
{spring.kafka.consumer.client-id}",

containerFactory = "kafkaListenerContainerFactory")

public void listenAsObject(

final ConsumerRecord<String, Measurement> cr,

@Payload final Measurement payload) {

// ...

template.send(topicName, data);

// ...

}

}

Listing 1: Snippet of source code for a Kafka receiver.

Listing 1 shows a shortened snippet of source code for a Kafka
receiver implemented using the Spring framework. This receiver is
used to receive new measurements in the aggregate service from
the ESDA case study. As well, shows a snippet for a Kafka sender,
which is used to send aggregated measurement values in the same
service.

5.2 Dynamic Analysis
In our subsequent work, we want to combine both static analysis
and dynamic analysis to extract the architecture.
Static analysis The goal of static analysis is to identify which mes-

sage channel a component under study communicates with.
The result should be an assignment of the sender-receiver
relationship. Our idea is to examine the calls of the commu-
nication methods in the source code. By the planned annota-
tion of the messaging-API, the signature of the methods and
also the parameter types will be known. The analysis will

read the concrete variable instance of the parameters and ex-
amine the rest of the source code for the value of the variable
instance. However, the static analysis may not be sufficient
to discriminate between different possible receivers of a mes-
sage, thus we augment the analysis by dynamic analysis.

Dynamic analysis We plan to base the dynamic analysis on com-
munication methods and their signatures, as well as on
knowledge of themessaging-API annotations. However, there
will be no parser that extracts the values of the parameters
from the source code. So, we will use the logging mechanism
that writes the values to a log or will monitor the files at
run-time. On these values, the analysis will augment the
sender-receiver relationships found by the static analysis.
Further, we will instrument the source to refine the SEFF. It
will provide us the most exact PCM performance model.

The internal behavior of large message-based systems cannot be
determined by static analysis alone. The Kieker Monitoring Frame-
works [22] provides additional dynamic analysis capabilities, i.e.
monitoring and analyzing the runtime behavior of a software sys-
tem. The Performance Model eXtractor (PMX) [23] tool automates
the extraction of architectural performance models from log files
using Kieker as input data format. PMX separates the learning of
generic aspects from model creation and is able to extract PCM
models purely based on dynamic analysis. PMX provides a solution
that integrates established tools for monitoring, log processing, and
resource requirement estimation. However, PMX requires existing
source code to be instrumented and executed. Here, Kieker pro-
vides several instrumentation options for control flow tracking, e.g.,
intercepting middleware for the Spring framework.

In our proposed approach, we plan to use technology-specific
knowledge to set instrumentation for tracking message-based com-
munication at relevant points in the source code. In the same way,
we plan to replace the automatic learning of generic aspects with
the results of the rule engine, so that the PCM model is calibrated
by the dynamic analysis. The extracted architecture via the rule
engine will be transferred to the target PCM model to predict the
performance of the system. The discussed overall approach can be
envisioned through Figure 2.

6 PLANNED EVALUATION
For our evaluation, we will use open-source GitHub projects for
which the architectural documents are available. Using our ap-
proach, we will extract the architecture from the source code of the
selected GitHub projects. We will then enrich the architecture with
the performance parameter gathered from run-time data. Later we
will compare the final PCM performance architecture extracted by
our approach with the architecture provided by the project and con-
sider how accurately components and communication links were
extracted. We will use precision and recall metrics to measure the
results. Additionally, we will evaluate the accuracy of the perfor-
mance prediction approach. Both evaluation aspects will quantify
the extraction process answering our guiding question “how well
our approach will extract the architecture level performance model
of mixed-technology software systems.”
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7 RELATEDWORK
In the context of performance model extraction there exists several
publications. Walter et al. [23] propose a tool to extract an archi-
tectural performance model and performance annotation based on
analysing monitoring data. Krogmann [13] extracts parametrized
PCM performance model based on hybrid analysis. These extrac-
tions particularly do not support mixed-technology architecture
and do not include the domain knowledge of various technologies
during static analysis.

A number of RE approaches available and can be used for ar-
chitecture extraction [7]. Often these approaches are limited in
the case of mixed-technology architectures particularly commu-
nicating via messaging middleware. RE tools like Sotograph [4],
Zipkin [9] are available for architecture recovery from source code.
However, they only provide the information about component de-
pendencies present in the source code. The recovered architecture
largely misses the performance attributes required to model PCM
performance model.

A wide range of works are available dealing with performance
model with special attention to message-based communication
[6, 8]. Happe [8] modelled the message-based communication con-
sidering platform specific middleware. Later Rathfelder [17] ex-
tended the approach with PCM meta model to explicitly model
asynchronous communication. They provide us a good collection
of performance related attributes and modelling approaches with
PCM for message-based communication. But, we in our work focus
to extract these performance attributes from source code. We are
trying to generate such PCM model through a RE approach by
capturing these performance attributes and SEFF from dynamic
analysis which has not been tried yet.

8 CONCLUSION
In this work, we propose the development of a novel approach for
recovery of the architectural-level performance model for mixed-
technology software systems communicating via messaging middle-
ware. This is achieved by two-step approach, first, static extraction
of the architecture based on domain-knowledge of the technolo-
gies used (rule engine) in our case, second, refining the extracted
architecture with performance attributes measured from run-time
(dynamic analysis). The refined architecture obtained as the final
result of these two steps provide us with a performance model
which conforms to PCM. The generated performance model is then
simulated with PCM for performance simulation and prediction.

The major contributions of our approach are: first, automatic
extraction of architectural-level performance model for CBSE com-
municating via message, second, suitable reverse engineering ap-
proach with behavioural extraction along with static performance
attributes, third, re-useable rule engine to encapsulate the technical
knowledge for upcoming mixed-technology software systems. In
our future work, we aim to integrate our approach into a continuous
integration pipeline to enable our reverse engineering approach.
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