

Modeling Analytics for Computational Storage

Veronica Lagrange
Memory Solutions Lab

Samsung Semiconductor, Inc.
San Jose, U.S.A.

veronica.l@samsung.com

Harry (Huan) Li
Memory Solutions Lab

Samsung Semiconductor, Inc.
San Jose, U.S.A.

harry.li@samsung.com

Anahita Shayesteh
Memory Solutions Lab

Samsung Semiconductor, Inc.
San Jose, U.S.A.

anahita.sh@samsung.com

Abstract
Next generation flash storage will be armed with a substantial
amount of computing power. In this paper, we investigate
opportunities to utilize this computational capability to optimize
Online Analytical Processing (OLAP) applications. We have directed
our analysis at the performance of a subset of TPC-DS queries using
Hadoop clusters and two database engines, SPARK-SQL and Presto.
We model the expected speed-up achieved by offloading a few
operations that are executed first within most SQL plans. Offloading
these operations requires minimal cooperation from the database
engine, and no changes to the existing plan. We show that the speed-
up achieved varies significantly among queries and between engines,
and that the queries benefiting the most are I/O heavy with high
selectivity of the “needle in the haystack” variety. Our main
contribution is estimating the speed-up anticipated from pushing the
execution of a few key SQL building blocks (scan, filter, and project
operations) to computational storage when using read optimized,
columnar Parquet format files.

CCS CONCEPTS
• Computing methodologies → Modeling and simulation → Model
development and analysis → Model verification and validation;

• Hardware → Communication hardware, interfaces and storage → External
storage;

• Information systems → Data management systems → Database
management system engines → Database query processing → Query
planning;

• Information systems → Data management systems → Database
management system engines → Online analytical processing engines;

KEYWORDS
Columnar Database, Parquet, SQL, Smart Storage, acceleration,
offloading, TPC-DS, Spark, Presto, OLAP

ACM Reference Format:

Veronica Lagrange, Harry (Huan) Li, Anahita Shayesteh. 2020. Modeling
Analytics for Computational Storage. In Proceedings of the 2020 ACM/SPEC
International Conference on Performance Engineering (ICPE’20), April 20–24,
2020, Edmonton, AB, Canada. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3358960.3375794

1 Introduction
Current developments in “big data” storage solutions gear towards
moving data processing closer to where the data resides, reducing
unnecessary movement and speeding up data processing
considerably. Computational storage is an emerging trend where a
comparatively large amount of data processing occurs inside the
storage layer. Examples of new devices exposing flash storage
internal computing power include Samsung’s SmartSSD [1], NGD
Systems [2], and ScaleFlux [3]. This new functionality signals
performance improvement opportunities for I/O heavy workloads
containing operations amenable to being completed near the storage
source. One of the most critical types of database analytics – OLAP –
well exemplifies this type of opportunity. It is typically very I/O
intensive and contains quite a few building blocks that may be
seamlessly moved to, or executed by, a computational storage device.

Offloading is not a new concept. Network processors, GPUs and
recently machine learning specialized processors are widely used to
accelerate specific compute kernels while freeing CPU resources. We
will show that the offloading of many more time-consuming
operations from the host CPU to storage improves both workload
performance and system efficiency. The immediate benefit, of course,
is a sizeable decrease in I/O volume. This reduction in I/O leads to
less host resource utilization, which not only improves performance
of individual queries, but also increases server capacity. Besides
database operations, other frequent operations that can be executed
near the storage device include encryption and compression.

Database analytics workloads are especially read-intensive. It is not
uncommon for I/O reads to take 90% or more of the total execution
time. Offloading some of that to storage reduces I/O bandwidth along
with other host resource usage, and may improve performance
considerably. Furthermore, SSDs have an internal bandwidth that is
much higher than that which is exposed to the host computer
through existing channels (SAS, SATA, PCI-E, etc.) [4], which means
that computational storage has a large amount of untapped potential
to exploit.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
ICPE '20, April 20–24, 2020, Edmonton, AB, Canada
© 2020 Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-6991-6/20/04…$15.00
https://doi.org/10.1145/3358960.3375794

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

88

https://urldefense.proofpoint.com/v2/url?u=https-3A__doi.org_10.1145_3358960.3375794&d=DwQFaQ&c=JfeWlBa6VbDyTXraMENjy_b_0yKWuqQ4qY-FPhxK4x8w-TfgRBDyeV4hVQQBEgL2&r=piFE1roNT0wXOiJZkul56CXuPWQerqH_B5hyk98bAdU&m=Oqk5LB3vWoh-l0EfW_sGiZZgnTPq7zGB8yASlZ4aQho&s=82fKGdxgB2XoSwt6GJHQvnduXp9IsyKusgEPLH9WOME&e=
mailto:Permissions@acm.org
https://urldefense.proofpoint.com/v2/url?u=https-3A__doi.org_10.1145_3358960.3375794&d=DwQFaQ&c=JfeWlBa6VbDyTXraMENjy_b_0yKWuqQ4qY-FPhxK4x8w-TfgRBDyeV4hVQQBEgL2&r=piFE1roNT0wXOiJZkul56CXuPWQerqH_B5hyk98bAdU&m=Oqk5LB3vWoh-l0EfW_sGiZZgnTPq7zGB8yASlZ4aQho&s=82fKGdxgB2XoSwt6GJHQvnduXp9IsyKusgEPLH9WOME&e=

This paper discusses the expected performance benefits of offloading
some important basic database operations – namely Scan, Filter and
Project – to computational storage. We evaluate the performance
estimate model using TPC-DS workload and two database engines
running on Hadoop clusters: SPARK-SQL and Presto.

This paper is organized as follows: after covering previous
computational storage database offloading work, we explain the
OLAP workload selection, and the configuration of our two clusters.
In Section IV we dive into TPC-DS characteristics and examine the
overall performance from running on the two Hadoop clusters, which
have been the focus of our experimentation. In Section V, we explain
our modeling methodologies, and in Section VI we describe and
analyze results from that modeling. Specifically, we show how a
substantial speed-up from computational storage optimization can
depend on multiple factors. Finally, we briefly discuss other SQL
building blocks amenable to computational storage pushdowns, and
conclude.

2 Previous Work
Most previous work on pushing SQL functions down to computational
storage concentrate on specific functions of a specific Database
Engine. Summarizer [5] modifies the existing NVMe command
interface to implement four operations: initialize variables or set
queries; read data and execute computation; read data and filter – the
selection case; and the transfer of the output results to the host. From
their case studies, using 3 TPC-H queries and a very small scale factor
(100MB – 0.1SF), we determined that they could do similarity joins as
well. They compare different degrees of computation offloading for
these three queries. The authors show that somewhat complex
computations can be carried out near storage, and briefly discuss the
data integration problem: how to combine data from different formats
and sources. They concentrate on one specific integration problem:
similarity join, and describe the heuristics they use. Left unanswered
is the bigger issue on how to integrate truly distinct formats.

YourSQL [6] is based on MariaDB. YourSQL allows for complex query
operations to be offloaded to a smart SSD in the form of an ISC task.
That paper spends the bulk of its time talking about optimizer
heuristics. One very interesting observation, from the authors’
performance analysis is that while your typical SQL application –
OLTP or OLAP – cannot exhaust an NVMe bandwidth, its near-
storage implementation can.

Biscuit [7] is what YourSQL uses to enable its computational storage
operations. It provides the user application with C++ APIs. The user’s
SSD-side C++ program with Biscuit APIs, called an SSDlet, is loaded
in the device. A host-side program invokes and coordinates execution
of the SSDlet tasks using libsisc; communication is done by linking
input and output ports to specific tasks. Here they also claim that the
APIs used to access files are nearly identical to standard libraries.

ExtraV [8] is IBM’s effort at computational storage for graph
processing based on their CAPRI [9]. This paper describes an FPGA
prototype that executes common graph traversal functions near the
device. It works like virtual memory for graph applications, as it
provides the host with the illusion that the entire graph lives in
memory, while it is actually partly stored and compressed in an SSD.
The authors have stated that graph processing is mostly done in

memory, either in single servers or clusters, and that it cannot be done
efficiently when graphs grow beyond the available memory.

PG-Strom [10] is an accelerator for PostgreSQL that offloads part of
the SQL workload to a GPU. Supports Joins and Aggregates. However,
by the time of that publication [10] all data fed to the GPU came from
main memory (not storage).

Neteeza was the first successful product to use FPGAs as
computational storage computing accelerators for analytics data
engines. It does not require any software installation or tuning. Just
plug and play. Neteeza database engine is based on Postgres [11], and
implements four functions in its FPGA engine: Compress, Project,
Restrict and Visibility. Francisco [12] claims that Neteeza’s engine
decompresses data at wire speed. Project and Restrict operations filter
out columns and rows, respectively, based on the parameters in the
SELECT and WHERE clauses of a query. The Neteeza Visibility engine
is focused on database integrity, and therein, filters out rows that
should not be seen by the query, such as any rows being inserted by a
transaction that has not yet committed.

Computational storage has also attracted interest beyond SQL and
database applications. For example, REGISTOR [24] is an FPGA
platform applying regex search, on-the-fly, to any file being
transferred from an SSD to the host; INSIDER [25], also an FPGA-
based drive controller, exposes a virtual file system with embedded
programmability, allowing programmers to push down operations
customized to the application’s specific needs.

3 Workload and setup
Here, we explain the TPC-DS benchmark, as well as the two cluster
configurations used in the experiments described. Moreover, we
describe the two database engines (SPARK-SQL and Presto), and
explain the rationale behind using the Parquet file format to offload
SQL operations to computational storage.

3.1 TPC-DS
“The TPC Benchmark DS (TPC-DS) is a decision support benchmark
that models several generally applicable aspects of a decision support
system” [13].

TPC-DS contains 24 tables, organized as a snowflake schema. It
contains 6 very large FACT tables, and many small DIMENSION
tables. Furthermore TPC-DS is comprised of 99 queries, each one
representing a different business question. So, even though this is an
artificial benchmark, it tries to mirror real-life applications. Schema
is scalable, with the smallest being 1GB and the largest 100TB. The
1GB dataset is used for QA only. Performance is measured in Queries
per Hour @ Scale Factor (QphDS@SF), and must include multiple
tests (pertaining to power, throughput, and data maintenance). In this
study, we consider a subset of the power test. For a more detailed
explanation of the TPC-DS benchmark, we refer the reader to [14].

TPC-DS has been around since 2007, but did not catch up until
recently and after a major re-write, with the first published official
report dated March 2018 (Cisco) [15]. As of January 2020, there are
only six official reports published. Nonetheless, subsets of TPC-DS
are heavily used informally by the industry to demonstrate up and
coming trends [16] [17]. TPC-DS is one of many Transaction

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

89

Processing Performance Council (TPC) benchmarks [18], and as such
covers enough general OLAP cases to be useful to practitioners.

Because FACT tables are orders of magnitude larger than
DIMENSION tables, we will gravitate towards queries that are “FACT
table Scan heavy,” as opposed to queries that are “DIMENSION table
Scan heavy.”

3.2 Test Configuration
Two clusters are used in this paper, and since they are configured to
run SPARK-SQL and Presto, we refer to them simply as the SPARK-
SQL cluster and the Presto cluster. Each has eight data nodes with
different hardware. The detailed configuration is listed in Table I.
Both engines use Hive Metadata, and the Parquet file format.

SPARK-SQL is Apache Spark's high-level tool for structured data
processing [19]. It is an in-memory, distributed, RDBMS that
understands SQL and a Dataset API (available in Java and Scala). User
applications interface with SPARK-SQL via a command-line module,
JDBC or ODBC. SPARK-SQL also supports reading and writing data
stored in an existing Apache Hive installation.

Table 1: CLUSTER CONFIGURATION

Presto is a distributed SQL query engine designed to query large data
sets distributed over one or more heterogeneous data sources [20].
Presto provides a CLI interface, and query processing (parser,
planner, scheduler), but will use data and metadata provided by other
software components (HBase, Hive, MySQL, etc.). Presto interacts
with these other components via connectors, and this is its claim to
fame as it is possible to combine multiple, different data sources into
one query seamlessly. There is no need for very expensive ETL
(Export-Transform-Load) datasets in order to analyze them.

Similar to classic massively parallel processing (MPP) DBMS [21],
Presto is a distributed system that runs on a cluster. Presto client
submits SQL statements to a master daemon coordinator. Using
metadata from connectors, the coordinator parses the query,
generates the plan, and then schedules and coordinates how it is
executed by the workers. Workers get data from connectors, execute
assigned tasks, and deliver results to the client. All processing
happens in memory, and data is pipelined across the network
between different stages.

Parquet is an open source columnar file format that was designed to
be used with OLAP systems [22]. The Parquet file format is READ

optimized, as inserts or updates can be expensive operations. It was
inspired by the “Dremel” paper [23], and is extensively used in the
Hadoop ecosystem. Furthermore, each Parquet disk file contains the
table’s schema. This feature resolves the issue of the device being
aware of the table metadata, a requirement for any computational
storage processing. Furthermore, existing Parquet readers are
capable of projecting and filtering certain data types using statistics
provided in metadata. Implementing some functionality in a
computational storage device is complementary and in addition to
the existing pushdown capabilities of Parquet.

TPC-DS queries are downloaded from the TPC website and results
were verified against sample output from the TPC. All queries run
sequentially as a single test job. Before each query, the memory cache
is cleared. In addition,

• SPARK-SQL is restarted before every query

• Presto is restarted before the job

4 TPC-DS Characterization
In this section, we discuss the many stages (or fragments) of the
execution plan generated by the query optimizer. Next, we show
SPARK-SQL and Presto query runtime results for TPC-DS. We list
them side by side to show that they behave differently in order to
illustrate and explain the different speed-ups that one might see for
the same query executed with different engines. Next, we examine
the concept of Scan Ratio, and how we use it to characterize and rank
queries.

4.1 Typical TPC-DS query plan

Scan/Filter
store_sales

Aggregate

Scan/Filter
store_sales

Aggregate

Scan/Filter
store_sales

Aggregate

Aggregate Aggregate AggregateAggregate

Join

Sort

Filter

Project

Filter

Join

Sort

Filter

Project

Filter

Sort Sort

Scan/Filter
item

Project

Project

Join

Project

Table1
Scan

Filter

Table2
Scan

Filter

Table3
Scan

Filter

Table4
Scan

Filter

Join Join

Sort Sort

Merge

Aggregate

Union

(A) Generic SQL query plan (B) SPARK-SQL plan for Query 44

Figure 1: SQL query plans

SQL query plans are composed of basic building blocks. They form
an execution tree. Each building block typically focuses on one
specific operation, and is scheduled by a SQL engine. How these
building blocks are assembled dictates query performance. Main
building blocks include: Scan, Filter, Project, Aggregate, Sort, Join,
Merge, Union. Figure 1 (A) illustrates a typical query sequence, with
building blocks being executed from top to bottom. Figure 1 (B) is the
building block sequence created by the SPARK-SQL planner for TPC-
DS Query 44.

SPARK-SQL Presto

CPU

Intel(R) Xeon(R)

Gold 6152 CPU @

2.10GHz

Intel(R) Xeon(R)

CPU E5-2699 v4 @

2.20GHz

Memory 256GB 256GB to 1024GB

Local Storage 2x NVMe SSD 3.2TB 3x NVMe SSD 1.6TB

OS Linux Kernel 4.13.0 Linux Kernel 4.x.x

SPARK-SQL/Presto 2.3.0 0.205

Hadoop 2.7.3 2.9.0

Hive 1.2.1000 1.2.2

HDFS Replication

Scale Factor

Storage Format

D
at

a
N

o
d

e

H
ar

d
w

ar
e

TP
C

-D
S 10000

Paquet

So
ft

w
ar

e
St

ac
k

1

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

90

The functionality of some building blocks includes:

• Scan: Read database content from storage to compute host
memory and apply any needed transformations

• Filter: Filter table rows in memory with giving criteria

• Project: Select table columns in memory

• Join: Combine two tables based on given criteria

4.2 Performance of all queries
Figure 2 shows the runtime for all TPC-DS queries for SPARK-SQL
and Presto. With 10TB dataset, SPARK-SQL completes 91 and Presto
completes 61 queries. Both database engines store all intermediate
results in memory, and the queries that failed incurred an “out-of-
memory” error. The query runtime has a wide range from less than a
minute to many hours. We have not matched our cluster hardware
configurations for SPARK-SQL and Presto, as it is not our goal to
compare the performance between them. The point of this paper is
to showcase a subset of the many different system parameters
influencing the potentially substantial speed-up afforded by
computational storage devices. We demonstrate that even though
computational storage can provide impressive speed-ups, the benefits
vary significantly depending on many other parameters such as table
size, selectivity, query plan, etc.

In the following sections, we will select five queries from each cluster
based on system characterization of the queries and potential offload
benefits, and provide further analysis of each.

4.3 Scan Ratio
Scan Ratio is defined as the total CPU time spent on a database Scan
operation, divided by total CPU time consumed by the query. The
CPU time is reported by query planner from database engine. This
time is not the wall clock time and should not be confused with query
runtime.

For TPC-DS queries, the Scan Ratio ranges from near 0% to ~93% on
SPARK-SQL and up to nearly 100% for Presto. In Figure 3, queries are
sorted by their Scan Ratio, from left to right. Q9, with the highest
Scan Ratio, is furthest to the right. Notice that most CPU intensive
queries have a small Scan Ratio, but not all. Some complex queries,
such as Q44, are both compute and I/O intensive.

High Scan Ratio does not necessary mean the query reads more data
from storage, it only indicates that time spent on I/O is higher relative
to other query operations. For example, Query 45 has a total disk read
of ~1.3TB, its Scan Ratio is only 2.99%. But for Query 9, which has the
highest Scan Ratio of ~93%, total disk read is only ~105GB. Although
the total query runtime difference is not large (Q9, 212.36 sec, Q45,
176.02 sec.), the CPU cycles spent on non-I/O operations caused the
Scan Ratio to be lower for Q45. A high Scan Ratio indicates that a
query is a strong candidate for computational storage optimization,
since its I/O operations are likely to be in its critical path, while a low
Scan Ratio indicates that operations other than I/O are the bottleneck.

5 Offloading Model
Here, we explain how we selected each plan stage to be offloaded to
computational storage, followed by a detailed description of the
model methodology used with both database engines. Notice that the
methods are somewhat different, which we chose to do in order to
cover more aspects of the offloading process.

Figure 2: TPC-DS runtime query comparison

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

91

Figure 3: TPC-DS Scan Ratio and CPU utilization

5.1 Offloading components (or kernels)
In this section, we exploit opportunities to offload operations from
host to computational storage. In order to execute a query, data flows
from the leaves of the plan to the root. Usually the leaves contain
some form of SCAN operation: table rows and columns are read in
(usually from disk, unless this data was previously cached). The
SCAN operation usually includes some sort of data transformation,
from the format on disk to the one understood by the database
engine. Once a table is scanned (or sometimes while the table is being
scanned), rows may be filtered or projected. Next plan steps may
contain aggregates, sorts, joins, window functions, or other advanced
data transformations. Operations near the leaves will generally be
“easier” to push down to computational storage. Basic SCANs,
FILTERs, and PROJECTIONs may happen with virtually no change to
the database engine query plan. More aggressive push down
optimizations are possible, but require the cooperation of the
database engine, and re-factoring of the query plan.

For example, in Figure 1 (B), we observe this pattern in both FACT
table and DIMENSION table I/O. By combining “Scan,” “Filter” and
“Project” into a new building block, we can estimate the performance
benefit of offloading this new building block (“Scan/Filter”) to
computational storage. Regardless, with “Scan/Filter” offloading, the
SPARK-SQL plan for Query 44 still looks the same.

5.2 SPARK-SQL model methodology
The performance estimate model for SPARK-SQL is based on how the
database engine plan is executed – in stages with dependencies. We
assume there is no resource limitation on the number of stages that
can be executed concurrently.

For example, Figure 4 shows a generic query that involves 3 tables, 1
DIMENSION table and 2 FACT tables. Stage-0 reads the content of
the DIMENSION table, while reading FACT tables happens in Stage-
1 and Stage-2. Then, Stage-3 and 4 sort the results from Stage-1 and

2. The results are subsequently passed to Stage-5 for the final Join
operation.

Figure 4: Query Stage Scheduling

First 3 stages (0, 1 and 2) include Scan/Filter/Project operations as
marked with light dot shade in Figure 4. The time spent on the
operations are 1, 5 and 8 seconds respectively, and could be
offloaded to computational storage. The offloaded execution time is
calculated as:

• Reserve 1 second for offloading-related handshaking. The
reserved time is an arbitrary number.

• Assumes that the Filter runtime on the device is at wire
speed and can be omitted. This is an optimistic
assumption that provides an upper bound for our analysis.
The actual Filter runtime depends on compute/IO
capabilities of the device, and can be further improved
with pre-processing in the device.

• Time-of-result data transfer between the device and the
host as calculated based on the device Read bandwidth
specification; in this paper, 3GB/sec has been used.

With these assumptions, the example execution time can be reduced
from 18 seconds to 12 seconds (see Figure 5).

Timestamp 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Note

Stage-0 Read dimension table: Scan,Filter,Project, Aggregate

Stage-1 Read fact table: Scan,Filter,Project,Aggregate

Stage-2 Read fact table: Scan,Filter,Project,Aggregate

Stage-3 Sort, Aggregate

Stage-4 Sort, Aggregate

Stage-5 Join

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

92

Figure 5: SPARK-SQL Offload Model

As the most fundamental step in building the estimate model, we
need to know the time spent for Scan/Filter/Project on each SPARK-
SQL query stage. Fortunately, with SPARK-SQL the log file provides
the following key logging information (Figure 6):

• 𝑀𝑒𝑎𝑠𝑊𝐶𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑔𝑒: The Stage wall clock runtime

• 𝑇ℎ𝑟𝑇𝑖𝑚𝑒𝐴𝑙𝑙𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠: Total execution time for the stage
from all execution threads. This is not wall clock time

• 𝑇ℎ𝑟𝑇𝑖𝑚𝑒𝑆,𝐹,𝑃: The execution time break down for Scan,
Filter, Project

With the above information, the estimated time spent on
Scan/Filter/Project can be calculated as

𝐸𝑠𝑡𝑊𝐶𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒𝑆,𝐹,𝑃 = 𝑀𝑒𝑎𝑠𝑊𝐶𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑔𝑒

∗
𝑇ℎ𝑟𝑇𝑖𝑚𝑒𝑆,𝐹,𝑃

𝑇ℎ𝑟𝑇𝑖𝑚𝑒𝐴𝑙𝑙𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

In addition to Scan time, we also consider the following:

• 𝑊𝐶𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒𝑆𝑒𝑡𝑢𝑝 -- The time to initialize computational
storage for offloading. We always assume one second for the
estimation calculation.

• 𝑊𝐶𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 -- The time required to transfer
the results from the offloading device back to the host. It is
calculated based the Read bandwidth of the computational
device. In our model, the Filtered result is usually less than
0.5% of the results that are unfiltered. It would take only a
fraction of a second to read back to the host, therefore we
ignored it this time.

• With Parquet format, we assume that no Project operation
or Project time is omitted.

With the above assumption, the estimated stage runtime with
offloading for SPARK-SQL is calculated as:

𝐸𝑠𝑡𝑊𝐶𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑔𝑒

= 𝑊𝐶𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒𝑆𝑒𝑡𝑢𝑝 + 𝐸𝑠𝑡𝑊𝐶𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒𝑆,𝐹,𝑃

Figure 6: One SPARK-SQL Query Stage with Statistics

5.3 Presto model methodology
To model push down benefits of Scan/Filter/Project operations, we
create and populate smaller tables we call “model tables.” These
“model tables” contain only the rows and columns that would be
selected by a computational storage engine executing the
Scan/Filter/Project operations defined by the query. We repeat the
query using the model table, and compare results against the same
query using the original tables – see Figure 7. For Presto, both
original and model queries generate the same query plan. Similar to
our SPARK-SQL model, the performance difference is the upper
bound of the speed-up that a computational storage device would
yield, because this model assumes that the storage device would be
capable of filtering and projecting rows and columns at wire speed.
However, if we take into consideration the higher internal flash
storage bandwidth [4], this is a realistic approximation of the
expected speed-up.

Figure 7: Presto Offload Model.

6 Offloading Evaluation
Here, we describe in detail the query selection process, and give a
high-level view of the results obtained by the modeling of both
database engines. Furthermore, we present side-by-side analysis of
the expected speed-up for a few selected queries.

6.1 The queries
In this study, we picked five queries from each configuration for deep
analysis. The queries were selected based on where they fall on the

Timestamp 0 1 2 3 4 5 6 7 8 9 10 11 Note

Stage-0 Read dimension table: Scan,Filter,Project, Aggregate

Stage-1 Read fact table: Scan,Filter,Project,Aggregate

Stage-2 Read fact table: Scan,Filter,Project,Aggregate

Stage-3 Sort, Aggregate

Stage-4 Sort, Aggregate

Stage-5 Join

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

93

different quadrants of the Scan Ratio versus a CPU utilization chart
(see Figure 8) to cover a wider range of characteristics. Because we
focus on offloading Scan/Filter/Project, we want queries that are I/O
intensive and show high selectivity when filtering and projecting
FACT tables. That is, we look for queries of the “needle in the
haystack” variety. Three of the queries (Q9, Q44, and Q75) are found
in both studies, while the other two are found exclusively in either
SPARK-SQL or Presto. We chose this approach because, due to their
different architecture and optimizer, interesting queries in one
environment are not necessarily interesting, or possible, in the other.
For example, Presto cannot execute Q4 (out-of-memory error).

Using the chart in Figure 8, we selected the following five SPARK-
SQL queries for analysis: Queries 9 and 44 have high Scan/Filter ratio;
Query 4 has high CPU utilization; Query 72 has the longest runtime
and higher CPU utilization; and Query 75 has a balanced Scan/Filter
ratio and CPU utilization.

Based on our analysis of the query plans generated by Presto, we
believe that Query 44, Query 49, and Query 76 are the natural
candidates for near storage FILTER because they are the ones that
filter out the largest portions of FACT tables. Furthermore, these are
all SCAN heavy queries (Figure 8). Another two, Query 9 and Query
75, are on the “Top Ten” Presto list both in terms of Scan operations
and complexity (number of fragments, or stages), and are queries that
appear in the SPARK-SQL study.

Figure 8: SPARK-SQL Scan Ratio vs CPU utilization

6.2 Characterization and performance summary
– SPARK-SQL

Table 2 summarizes the characterization and offloading estimation
for the SPARK-SQL queries identified above. We did not find any
cluster NVMe Read bandwidth bottleneck. The highest peak Read
bandwidth is ~2GB/sec. for Query 75, which is less than 3GB/sec of
the NVMe Read bandwidth specification.

For some queries, the CPU utilization can become the bottleneck at
several stages. In the presence of a computational storage device, the
CPU utilization should benefit from Scan/Filter offloading, but we did

not explore this topic for SPARK-SQL, and in our model we assumed
that CPU utilization is unchanged by Scan/Filter offloading.

The benefit of Scan/Filter offloading ranges from no speed-up to
~8.17x in query runtime. Scan Ratio, CPU utilization and SQL
execution plan all contribute to this speed-up, and will be analyzed
in detail in sub-section 6.4 below.

Table 2: SPARK-SQL COMPUTATIONAL STORAGE MODEL
RESULTS

6.3 Characterization and performance summary
– Presto

Figure 9 shows speed up for 10 queries we modeled, including the 5
selected queries we analyze in detail. Presto speed-up from
computational storage modeling varies from no speed-up for queries
that are not I/O bound, to an impressive 59.3x for Query 44. Let’s
look at how this happened. In Table 3, we list the primary
characteristics and system metrics for each selected query. For Presto,
CPU utilization is never above 80% busy for the queries tested. Most
issues arise from less than optimal query plans, and the queries that
failed ran out of DRAM memory.

Figure 9: Summary Presto Speed-up

Query 9 Query 44 Query 4 Query 72 Query 75

of SPARK-SQL Stages 31 9 19 14 19

of FACT Table Used 1 1 3 2 6

of DIMENSION Table Used 1 1 1 7 2

of FACT Table Scan 15 3 3 2 9

of DIMENSION Table Scan 1 1 2 9 3

of Filter 16 8 9 9 9

of Project 16 11 22 19 28

of Aggregate 30 7 12 2 8

of Sort 0 4 18 4 14

of Join (All Join Types) 0 3 17 10 19

Runtime (sec.) 212 89 849 8205 298

Scan Ratio 93% 81% 4% 0% 41%

Total Data Read (GB) 1,276 605 940 168 1,182

Average CPU Utilization 31% 54% 76% 35% 53%

Peak CPU Utilization 94% 99% 100% 95% 100%

Average NVMe Bandwidth

(MB/s)
146 292 257 5 258

Peak NVMe Bandwidth (MB/s) 1,365 1,625 1,008 1,026 1,918

Runtime with Scan/Filter

Offloading (sec.)
26 25 780 8190 144

Speedup from offloading

Scan/Filter
8.17x 3.61x 1.09x 1.00x 2.07x

TPC-DS Query ID

O
ff

lo
ad

in
g

Es
ti

m
at

io
n

Q
u

er
y

C
h

ar
ac

te
ri

za
ti

o
n

Sy
st

em
 M

et
ri

cs

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

94

Table 3: PRESTO COMPUTATIONAL STORAGE MODEL
RESULTS

6.4 Characterization and performance details –
SPARK-SQL and Presto

Now let’s examine the SQL plan, CPU, and I/O for the seven queries
described in section 6.1 above.

Query 9 is the Highest Scan Ratio SPARK-SQL query, and one of the
highest for Presto too (see Figure 8). Both SPARK-SQL and Presto
follow the same query plan for Q9: They scan and filter the same
FACT table 15 times with differing filter values. An Aggregation
operation follows each Scan/Filter, the results are used for final
joining with a DIMENSION table. All 15 FACT table Scan/Filter
stages start simultaneously and are followed by their Aggregation
stage (see Figure 10). Within the Scan/Filter stage, the first half
involves most I/O operations (Scan), and the second half mostly
performs the Filter function. Although all 15 Scan/Filter stages start
at the same time, because of SPARK-SQL executor limitations, not all
workers get scheduled immediately. Some stages have to wait for
resources. This is reflected in the I/O chart (Figure 10). The I/O
bandwidth peaks at the beginning. As the stages start Filter
operation, CPU get busier and I/O bandwidth decreases. As the stages
complete and release resources to the next waiting stage, I/O
bandwidth goes up and CPU utilization goes down. We see this I/O
spike after four Scan/Filter stages complete.

Figure 11 illustrates the offloading performance estimate of
computational storage with SPARK-SQL. Blue bars show the
measured stage execution time and red bars show the estimated stage
execution. Stage dependency is unchanged.

Figure 10: SPARK-SQL Query 9 CPU Utilization and Cluster
Read Bandwidth

Figure 11: Query 9 SPARK-SQL Stage Breakdown with
estimation

In our study, we only model Scan, Filter and Projection, but Query 9
also stands to benefit from Aggregate Pushdown, since the 15 scans
result in 15 single, aggregated values. Because the Presto schema
partitions table store_sales by ss_quantity, Query 9 does not
significantly benefit from FILTER. The gains observed at the higher
scale factor happen because of an artifact of the Presto model process.
For Query 9 with 10TB dataset, the total I/O ratio between the
original query and the Presto model is comparatively small: 1.54x.
This I/O savings is not enough to justify the 5.3x speed-up observed
at 10TB (Table 3). Our hypothesis is that this was caused by the
modeling, which generated five smaller tables – while the model

Query 9 Query 44 Query 49 Query 75 Query 76

of Presto Fragments* 31 18 19 44 17

of FACT Tables Used 1 1 6 6 3

of DIMENSION Tables Used 1 1 1 2 2

of FACT Table Scan 15 4 6 12 3

of DIMENSION Table Scan 1 2 3 12 6

of ScanFilterProject FACT

Table 0 4 6 0 2

of ScanFilterProject

DIMENSION Table 1 0 3 6 0

of Window functions 0 2 6 0 0

of Joins 15 5 6 19 6

10TB dataset original original original original original

Runtime(seconds) 338 1126 719 1555 314

Scan Ratio 99% 100% 94% 77% 95%

Total Data Read (GB) 14 63 86 118 47

Average CPU% 70 38 24 31 31

10TB dataset model model model model model

Runtime(seconds) 64 19 125 821 43

Total Data Read (GB) 9 0.12 19 81 0.75

Average CPU% 47 9 41 43 19

Runtime Speedup

Original/Model 5.28x 59.3x 6.1x 2.05x 7.3x

Query ID

Q
u

er
y

C
h

ar
ac

te
ri

za
ti

o
n

Sy
st

em

M
et

ri
cs

M
o

d
el

* Equavilant to Stage from SPARK-SQL

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

95

reads from five different tables (each three sets of workers reads from
one table), the original query reads 15 concurrent times from one
table. To reinforce this point, notice that the I/O savings ratio of the
second largest Presto speed-up -7.3x for Query 76 at 10TB, is 62.66x
(see Table 3).

However, Query 44, is the one query displaying dramatic speed-ups
from Presto modeling. This happens because we have a lot of filtering
that is increasing at scale. Query 44, which scans FACT table
store_sales four times, is filtering rows where column ss_store_sk is
equal to 2. With 1TB dataset, Query 44 uses only 0.15% of store_sales
rows, and with 10TB dataset, it uses only 0.13% of store_sales rows.
For both SPARK-SQL and Presto, Query 44 is a High Scan Ratio query
with a CPU-intensive query operation. Notice that Presto and
SPARK-SQL plans for Query 44 are different (Figure 12). The SPARK-
SQL plan is smart enough to see a repeat subquery, execute it only
once, and to broadcast the small dimension table. Presto plan is not
scalable, and benefits immensely from the I/O savings afforded by the
computational storage speed-up.

Figure 12: Query 44 plan compare

Figure 13: SPARK-SQL Query 44 CPU Utilization and Cluster
Read Bandwidth

Figure 14: Query 44 SPARK-SQL Stage breakdown with
estimate

For SPARK-SQL, Query 44 has other CPU intensive operations, such
as Sort and Join, and its average cluster CPU utilization is at ~54%,
but because of SPARK-SQL’s worker scheduling, not all Data Nodes
are utilized. See, for example, in Figure 13, the 3rd fact table
Scan/Filter in Stage 5 only uses up to four Data Nodes. Data Node D9
is idling while D10 is nearly saturated. We do not explore the
offloading impact on CPU cycles for SPARK-SQL, but moving Filter
operation to computational storage should relieve Data Node CPU
utilization and further improve performance. SPARK-SQL speedup
for Q44 is 3.61x (Figure 14).

For Presto, Query 49’s model response time is 6.1x faster than the
original query, our third best result. Response time went from 12+
minutes to 2+ minutes (see Table 3). Query 49 reads in 4.5 times more
bytes than its model, and this savings impacts both response times
and CPU utilization, which becomes more efficient with the model:
average CPU busy % went from 24 with the original query to 41 with
the model.

SPARK-SQL Query 75 is a balanced query with all six FACT tables
being used plus two DIMENSION tables. All FACT table Scan/Filter
processing can benefit from computational storage offloading, but
some stages are CPU bottlenecked (see Figure 15), and the SPARK-
SQL speed-up for this query is 2.07x (Figure 16). Similarly, Presto
Query 75 scans all six FACT tables, but there is no filter opportunity,
just projection. Still, even though there is no speed-up for Presto, at
1TB we see excellent speed-up at 10TB: query response time went
from 26 minutes to 13+ minutes. This result shows that the Parquet
reader used by Presto may not be adequately implementing
projection, while the Spark Parquet reader is doing so.

For Presto, Query 75 behavior is similar to Query 9. Both queries
display no speed-up with the 1TB dataset, but modest gains with the
10TB dataset. Query 75 shows less speed-up than Query 9 at 10TB.
From Figure 17, we see another interesting pattern: both the original
and model show a barrier around three minutes before query
completion, when all CPU and I/O utilization for all servers is near
zero. This moment is identified by a vertical green bar in Figure 17.
The elapsed time gain from the model happens before that barrier ―
the original query runs for about 23 minutes while the model runs
for about 10 minutes. From Figure 17, we see that the model is
handling less I/O both before and after the barrier, but no elapsed

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

96

time gain is observed after the barrier. Query 75 total I/O ratio
between the original and the model is only 1.5x.

Query 4 is SPARK-SQL’s most CPU-intensive query. It uses three
FACT tables and one DIMENSION table with many Sort, Join and
other operations. These operations saturate cluster compute
resources and the CPU becomes the bottleneck (see Figure 18). Presto
cannot execute Query 4 with the 10TB dataset – it gets an “out of
memory” error. Because most query runtime is spent on CPU-
intensive, non-I/O operations, the Scan/Filter offloading benefit is
limited to 9% as shown in Figure 19.

Figure 15: SPARK-SQL Query 75 CPU Utilization Cluster Read
Bandwidth

Figure 16: Query 75 SPARK-SQL Offloading estimate

Figure 17: Query 75 Presto CPU and I/O activity

Figure 18: SPARK-SQL Query 4 CPU Utilization and Cluster
Read Bandwidth

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

97

Figure 19: Query 4 SPARK-SQL Stage breakdown and estimate

Presto Query 76 filters and scans the three largest FACT tables
(store_sales, web_sales, and catalog_sales). Furthermore, the
selectivity is significant: only 4.50% of table store sales, 0.03% of
web_sales, and 0.50% of catalog_sales are used after the filter
operation. Consequently, we see excellent speed-ups for Presto at
both scale factors. At 10TB, query response time went from 5+
minutes to 43 seconds, with the total I/O ratio between the original
and the model an impressive 62.66x (see Table 3).

Query 72 has the longest runtime of all TPC-DS queries. It has 10 Join
operations, and they are scheduled almost sequentially by SPARK-
SQL within a single stage. Compared to the total runtime, the time
spent on I/O counts only a small fraction. Because offloading is
applied only on I/O, for this query, we observed no performance gain
when offloading Scan/Filter.

Overall, for the computational storage operations being considered,
everything is impacted by the selectivity of each filter and projection
operation yield. And those yields can be substantial. For example,
Query 44 reads 530 times more bytes than its model.

8 Thoughts on offloading other components
SCAN, FILTER, and PROJECTION are SQL operations that can be
easily pushed down to computational storage. They are the
proverbial “low hanging fruit.” There are other operations that also
wisely might be pushed down to computational storage, though some
require cooperation from the database engine. For example, some
aggregates, such as SUM, COUNT, MIN, MAX, are amenable to being
pushed down even in a distributed environment. Other aggregates,
such as AVERAGE and MEAN, can be partially pushed down, and
would require active participation of the database engine.
Furthermore, some JOINs, such as broadcast-join, can be pushed
down. In the case of TPC-DS, for example, if dimension table
DATE_DIM was replicated for all storage devices and its JOIN
operations to fact tables were pushed down, this could potentially
benefit 90% of the workload (89 queries) that scans and joins
DATE_DIM.

9 Conclusion
This paper characterizes an Online Analytical Processing (OLAP)
benchmark, TPC-DS, when implemented with a read-optimized,
columnar Parquet format in the Hadoop ecosystem. We

experimented with two database engines: SPARK-SQL and Presto.
Furthermore, we modeled performance gains from pushing a few
SQL building blocks to a computational storage device using Parquet,
without any cooperation from the database engine. We showed that
these gains can be substantial, but are not universal. Queries with
high selectivity on the leaves of their plan with the largest tables
benefit the most from such optimization. Queries with low selectivity
in their SCAN operations, even if they are scan-heavy, see more
modest performance gains per our modeling. Notice, however, that
our models do not consider the cost to decompress and decode data
from a storage format to an internal database format. It is worth
noticing that scan-heavy operations may benefit significantly from
performing decompression and decoding in storage, even if they
present little or no filter opportunities.
Our main contribution is estimating the expected speedup from
pushing down a few SQL building blocks (SCAN, FILTER, and
PROJECT operations) to computational storage when using
optimized, columnar Parquet format files. We demonstrate that these
operations are not only universal and simple to offload, but that they
may be implemented with little or no software changes for most
database engines. As SmartSSD and other near storage computing
technologies become available, we will see new opportunities and
significant speedups for big data analytics and data mining.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their comments and
suggestions to improve our earlier draft.

REFERENCES
[1] Samsung SmartSSD: https://samsungatfirst.com/smartssd/ Accessed

August, 10,2019.

[2] NGD systems: https://www.ngdsystems.com/ Accessed August 10, 2019.

[3] ScaleFlux: http://www.scaleflux.com/ Accessed October 1, 2019.

[4] SIMMS https://www.simms.co.uk/tech-talk-2/sas-sata-or-pcie-know-
your-interface/ Accessed 8/15/2019.

[5] G. Koo, et al. “Summarizer: Trading Communication with Computing
Near Storage” MICRO’17, Oct 14-18, 2017, Boston, MA, USA.

[6] I. Jo, et al. “YourSQL: A High-Performance Database System Leveraging
In-Storage Computing” Proceedings of the VLDB Endowment, Vol. 9, No
12, pp. 924-935, August 2016.

[7] B. Gu, et al. “Biscuit: A Framework for Near-Data Processing of Big Data
Workloads” ISCA, Seoul, Korea, pp. 153-165, June 2016.

[8] J. Lee, et al. “ExtraV: Boosting Graph Processing Near Storage with a
Coherent Accelerator”, Proceedings of the VLDB Endowment, Vol. 10,
No. 12, pp. 1706-1717, August 2017.

[9] J. Stuecheli, B. Blaner, C. Johns, M. Siegel. “CAPRI: A coherent
accelerator processor interface”. IBM Journal of Research and
Development, 59(1):7:1{7:7, January 2015.

[10] K. Kohei, “GPCPU Accelerates PostgreSQL”, DB Tech Showcase, Tokyo,
Japan, November 2014.

[11] “Postgres Derived Databases”, Documentation at
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases.
Accessed 6/12/2018.

[12] P. Francisco “IBM PureData System for Analytics Architecture” IBM
White Paper, 2014.

[13] TPC Benchmark DS Standard Specification Version 2.10.1.
www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.10.1.pdf
Accessed May 13, 2019.

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

98

https://samsungatfirst.com/smartssd/
https://www.ngdsystems.com/
http://www.scaleflux.com/
https://www.simms.co.uk/tech-talk-2/sas-sata-or-pcie-know-your-interface/
https://www.simms.co.uk/tech-talk-2/sas-sata-or-pcie-know-your-interface/
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases

[14] M. Poess, et al. “Analysis of TPC-DS the first standard benchmark for
SQL-based big data systems”, Proceedings of the 2017 Symposium on
Cloud Computing, Santa Clara, CA, USA, pp. 573-585, September 2017.

[15] TPC-DS Top Results.
www.tpc.org/tpcds/results/tpcds_advanced_sort.asp Accessed May 13,
2019.

[16] T. Ansley “Accelerating the Apache Hadoop 3.1-based Distribution
Ecosystem with Flash Storage”
www.micron.com/about/blog/2018/july/accelerating-the-apache-
hadoop-based-distribution-ecosystem-with-flash-storage July 31, 2018.

[17] A. Thapliyal “Azure HDInsight Performance Benchmarking: Interactive
Query, Spark and Presto” azure.microsoft.com/en-us/blog/hdinsight-
interactive-query-performance-benchmarks-and-integration-with-
power-bi-direct-query/ December 20, 2017.

[18] Transaction Processing Performance Council website www.tpc.org

[19] Apache Spark Documentation 2.4.3. spark.apache.org/docs/latest/
Accessed 8/6/2019.

[20] Presto Hive Connector. prestodb.io/docs/current/connector/hive.html
Accessed 6/1/2018.

[21] Presto Documentation. prestodb.io/docs/current/overview.html
Accessed 4/5/2018.

[22] B. Braams, “Predicate Pushdown in Parquet and Apache Spark” Master’s
Thesis. Univ. of Amsterdam. December, 2018.

[23] S. Melnik, S. et al. “Dremel: interactive analysis of web-scale datasets”.
Proceedings of the VLDB Endowment 3.1-2 (2010), pages 330-339.

[24] S. Pei, J. Yang, Q. Yang “REGISTOR: A Platform for Unstructured Data
Processing Inside SSD Storage” SYSTOR, June 4-8, 2018, Haifa, Israel.

[25] Z. Ruan, T. He, J. Cong “INSIDER: Designing In-Storage Computing
System for Emerging High-Performance Drive” USENIX ATC 2019,
Renton, WA, USA.

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

99

http://www.tpc.org/

