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Abstract 
Next generation flash storage will be armed with a substantial 
amount of computing power. In this paper, we investigate 
opportunities to utilize this computational capability to optimize 
Online Analytical Processing (OLAP) applications. We have directed 
our analysis at the performance of a subset of TPC-DS queries using 
Hadoop clusters and two database engines, SPARK-SQL and Presto. 
We model the expected speed-up achieved by offloading a few 
operations that are executed first within most SQL plans. Offloading 
these operations requires minimal cooperation from the database 
engine, and no changes to the existing plan. We show that the speed-
up achieved varies significantly among queries and between engines, 
and that the queries benefiting the most are I/O heavy with high 
selectivity of the “needle in the haystack” variety. Our main 
contribution is estimating the speed-up anticipated from pushing the 
execution of a few key SQL building blocks (scan, filter, and project 
operations) to computational storage when using read optimized, 
columnar Parquet format files.  

CCS CONCEPTS 
• Computing methodologies → Modeling and simulation → Model 
development and analysis → Model verification and validation; 

• Hardware → Communication hardware, interfaces and storage → External 
storage; 

• Information systems → Data management systems → Database 
management system engines → Database query processing → Query 
planning; 

• Information systems → Data management systems → Database 
management system engines → Online analytical processing engines; 
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1 Introduction 
Current developments in “big data” storage solutions gear towards 
moving data processing closer to where the data resides, reducing 
unnecessary movement and speeding up data processing 
considerably.  Computational storage is an emerging trend where a 
comparatively large amount of data processing occurs inside the 
storage layer. Examples of new devices exposing flash storage 
internal computing power include Samsung’s SmartSSD [1], NGD 
Systems [2], and ScaleFlux [3]. This new functionality signals 
performance improvement opportunities for I/O heavy workloads 
containing operations amenable to being completed near the storage 
source. One of the most critical types of database analytics – OLAP – 
well exemplifies this type of opportunity. It is typically very I/O 
intensive and contains quite a few building blocks that may be 
seamlessly moved to, or executed by, a computational storage device.  

Offloading is not a new concept. Network processors, GPUs and 
recently machine learning specialized processors are widely used to 
accelerate specific compute kernels while freeing CPU resources. We 
will show that the offloading of many more time-consuming 
operations from the host CPU to storage improves both workload 
performance and system efficiency. The immediate benefit, of course, 
is a sizeable decrease in I/O volume. This reduction in I/O leads to 
less host resource utilization, which not only improves performance 
of individual queries, but also increases server capacity. Besides 
database operations, other frequent operations that can be executed 
near the storage device include encryption and compression. 

Database analytics workloads are especially read-intensive. It is not 
uncommon for I/O reads to take 90% or more of the total execution 
time. Offloading some of that to storage reduces I/O bandwidth along 
with other host resource usage, and may improve performance 
considerably. Furthermore, SSDs have an internal bandwidth that is 
much higher than that which is exposed to the host computer 
through existing channels (SAS, SATA, PCI-E, etc.) [4], which means 
that computational storage has a large amount of untapped potential 
to exploit. 
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This paper discusses the expected performance benefits of offloading 
some important basic database operations – namely Scan, Filter and 
Project – to computational storage. We evaluate the performance 
estimate model using TPC-DS workload and two database engines 
running on Hadoop clusters: SPARK-SQL and Presto.  

This paper is organized as follows: after covering previous 
computational storage database offloading work, we explain the 
OLAP workload selection, and the configuration of our two clusters. 
In Section IV we dive into TPC-DS characteristics and examine the 
overall performance from running on the two Hadoop clusters, which 
have been the focus of our experimentation. In Section V, we explain 
our modeling methodologies, and in Section VI we describe and 
analyze results from that modeling. Specifically, we show how a 
substantial speed-up from computational storage optimization can 
depend on multiple factors. Finally, we briefly discuss other SQL 
building blocks amenable to computational storage pushdowns, and 
conclude. 

2 Previous Work 
Most previous work on pushing SQL functions down to computational 
storage concentrate on specific functions of a specific Database 
Engine. Summarizer [5] modifies the existing NVMe command 
interface to implement four operations: initialize variables or set 
queries; read data and execute computation; read data and filter – the 
selection case; and the transfer of the output results to the host.  From 
their case studies, using 3 TPC-H queries and a very small scale factor 
(100MB – 0.1SF), we determined that they could do similarity joins as 
well. They compare different degrees of computation offloading for 
these three queries. The authors show that somewhat complex 
computations can be carried out near storage, and briefly discuss the 
data integration problem: how to combine data from different formats 
and sources. They concentrate on one specific integration problem: 
similarity join, and describe the heuristics they use. Left unanswered 
is the bigger issue on how to integrate truly distinct formats. 
 
YourSQL [6] is based on MariaDB. YourSQL allows for complex query 
operations to be offloaded to a smart SSD in the form of an ISC task. 
That paper spends the bulk of its time talking about optimizer 
heuristics. One very interesting observation, from the authors’ 
performance analysis is that while your typical SQL application – 
OLTP or OLAP – cannot exhaust an NVMe bandwidth, its near-
storage implementation can. 
 
Biscuit [7] is what YourSQL uses to enable its computational storage 
operations. It provides the user application with C++ APIs. The user’s 
SSD-side C++ program with Biscuit APIs, called an SSDlet, is loaded 
in the device. A host-side program invokes and coordinates execution 
of the SSDlet tasks using libsisc; communication is done by linking 
input and output ports to specific tasks. Here they also claim that the 
APIs used to access files are nearly identical to standard libraries. 

 
ExtraV [8] is IBM’s effort at computational storage for graph 
processing based on their CAPRI [9]. This paper describes an FPGA 
prototype that executes common graph traversal functions near the 
device. It works like virtual memory for graph applications, as it 
provides the host with the illusion that the entire graph lives in 
memory, while it is actually partly stored and compressed in an SSD. 
The authors have stated that graph processing is mostly done in 

memory, either in single servers or clusters, and that it cannot be done 
efficiently when graphs grow beyond the available memory. 

 
PG-Strom [10] is an accelerator for PostgreSQL that offloads part of 
the SQL workload to a GPU. Supports Joins and Aggregates. However, 
by the time of that publication [10] all data fed to the GPU came from 
main memory (not storage). 

 
Neteeza was the first successful product to use FPGAs as 
computational storage computing accelerators for analytics data 
engines.  It does not require any software installation or tuning. Just 
plug and play. Neteeza database engine is based on Postgres [11], and 
implements four functions in its FPGA engine: Compress, Project, 
Restrict and Visibility. Francisco [12] claims that Neteeza’s engine 
decompresses data at wire speed. Project and Restrict operations filter 
out columns and rows, respectively, based on the parameters in the 
SELECT and WHERE clauses of a query. The Neteeza Visibility engine 
is focused on database integrity, and therein, filters out rows that 
should not be seen by the query, such as any rows being inserted by a 
transaction that has not yet committed. 

 
Computational storage has also attracted interest beyond SQL and 
database applications. For example, REGISTOR [24] is an FPGA 
platform applying regex search, on-the-fly, to any file being 
transferred from an SSD to the host; INSIDER [25], also an FPGA-
based drive controller, exposes a virtual file system with embedded 
programmability, allowing programmers to push down operations 
customized to the application’s specific needs. 

3 Workload and setup 
Here, we explain the TPC-DS benchmark, as well as the two cluster 
configurations used in the experiments described. Moreover, we 
describe the two database engines (SPARK-SQL and Presto), and 
explain the rationale behind using the Parquet file format to offload 
SQL operations to computational storage. 

3.1 TPC-DS 
“The TPC Benchmark DS (TPC-DS) is a decision support benchmark 
that models several generally applicable aspects of a decision support 
system” [13]. 

TPC-DS contains 24 tables, organized as a snowflake schema. It 
contains 6 very large FACT tables, and many small DIMENSION 
tables. Furthermore TPC-DS is comprised of 99 queries, each one 
representing a different business question. So, even though this is an 
artificial benchmark, it tries to mirror real-life applications. Schema 
is scalable, with the smallest being 1GB and the largest 100TB. The 
1GB dataset is used for QA only. Performance is measured in Queries 
per Hour @ Scale Factor (QphDS@SF), and must include multiple 
tests (pertaining to power, throughput, and data maintenance). In this 
study, we consider a subset of the power test. For a more detailed 
explanation of the TPC-DS benchmark, we refer the reader to [14]. 

TPC-DS has been around since 2007, but did not catch up until 
recently and after a major re-write, with the first published official 
report dated March 2018 (Cisco) [15]. As of January 2020, there are 
only six official reports published. Nonetheless, subsets of TPC-DS 
are heavily used informally by the industry to demonstrate up and 
coming trends [16] [17]. TPC-DS is one of many Transaction 
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Processing Performance Council (TPC) benchmarks [18], and as such 
covers enough general OLAP cases to be useful to practitioners. 

Because FACT tables are orders of magnitude larger than 
DIMENSION tables, we will gravitate towards queries that are “FACT 
table Scan heavy,” as opposed to queries that are “DIMENSION table 
Scan heavy.” 

3.2 Test Configuration 
Two clusters are used in this paper, and since they are configured to 
run SPARK-SQL and Presto, we refer to them simply as the SPARK-
SQL cluster and the Presto cluster. Each has eight data nodes with 
different hardware. The detailed configuration is listed in Table I. 
Both engines use Hive Metadata, and the Parquet file format.  

SPARK-SQL is Apache Spark's high-level tool for structured data 
processing [19]. It is an in-memory, distributed, RDBMS that 
understands SQL and a Dataset API (available in Java and Scala). User 
applications interface with SPARK-SQL via a command-line module, 
JDBC or ODBC. SPARK-SQL also supports reading and writing data 
stored in an existing Apache Hive installation.   

Table 1: CLUSTER CONFIGURATION 

 

Presto is a distributed SQL query engine designed to query large data 
sets distributed over one or more heterogeneous data sources [20].  
Presto provides a CLI interface, and query processing (parser, 
planner, scheduler), but will use data and metadata provided by other 
software components (HBase, Hive, MySQL, etc.). Presto interacts 
with these other components via connectors, and this is its claim to 
fame as it is possible to combine multiple, different data sources into 
one query seamlessly. There is no need for very expensive ETL 
(Export-Transform-Load) datasets in order to analyze them. 

Similar to classic massively parallel processing (MPP) DBMS [21], 
Presto is a distributed system that runs on a cluster. Presto client 
submits SQL statements to a master daemon coordinator. Using 
metadata from connectors, the coordinator parses the query, 
generates the plan, and then schedules and coordinates how it is 
executed by the workers. Workers get data from connectors, execute 
assigned tasks, and deliver results to the client. All processing 
happens in memory, and data is pipelined across the network 
between different stages. 

Parquet is an open source columnar file format that was designed to 
be used with OLAP systems [22]. The Parquet file format is READ 

optimized, as inserts or updates can be expensive operations. It was 
inspired by the “Dremel” paper [23], and is extensively used in the 
Hadoop ecosystem. Furthermore, each Parquet disk file contains the 
table’s schema. This feature resolves the issue of the device being 
aware of the table metadata, a requirement for any computational 
storage processing. Furthermore, existing Parquet readers are 
capable of projecting and filtering certain data types using statistics 
provided in metadata. Implementing some functionality in a 
computational storage device is complementary and in addition to 
the existing pushdown capabilities of Parquet. 

TPC-DS queries are downloaded from the TPC website and results 
were verified against sample output from the TPC. All queries run 
sequentially as a single test job. Before each query, the memory cache 
is cleared. In addition, 

• SPARK-SQL is restarted before every query 

• Presto is restarted before the job 

4 TPC-DS Characterization 
In this section, we discuss the many stages (or fragments) of the 
execution plan generated by the query optimizer. Next, we show 
SPARK-SQL and Presto query runtime results for TPC-DS. We list 
them side by side to show that they behave differently in order to 
illustrate and explain the different speed-ups that one might see for 
the same query executed with different engines. Next, we examine 
the concept of Scan Ratio, and how we use it to characterize and rank 
queries. 

4.1   Typical TPC-DS query plan 
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Figure 1: SQL query plans 

SQL query plans are composed of basic building blocks.  They form 
an execution tree. Each building block typically focuses on one 
specific operation, and is scheduled by a SQL engine. How these 
building blocks are assembled dictates query performance. Main 
building blocks include: Scan, Filter, Project, Aggregate, Sort, Join, 
Merge, Union. Figure 1 (A) illustrates a typical query sequence, with 
building blocks being executed from top to bottom. Figure 1 (B) is the 
building block sequence created by the SPARK-SQL planner for TPC-
DS Query 44. 
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The functionality of some building blocks includes: 

• Scan: Read database content from storage to compute host 
memory and apply any needed transformations 

• Filter: Filter table rows in memory with giving criteria 

• Project: Select table columns in memory 

• Join: Combine two tables based on given criteria 

4.2   Performance of all queries  
Figure 2 shows the runtime for all TPC-DS queries for SPARK-SQL 
and Presto. With 10TB dataset, SPARK-SQL completes 91 and Presto 
completes 61 queries. Both database engines store all intermediate 
results in memory, and the queries that failed incurred an “out-of-
memory” error. The query runtime has a wide range from less than a 
minute to many hours. We have not matched our cluster hardware 
configurations for SPARK-SQL and Presto, as it is not our goal to 
compare the performance between them. The point of this paper is 
to showcase a subset of the many different system parameters 
influencing the potentially substantial speed-up afforded by 
computational storage devices. We demonstrate that even though 
computational storage can provide impressive speed-ups, the benefits 
vary significantly depending on many other parameters such as table 
size, selectivity, query plan, etc. 

In the following sections, we will select five queries from each cluster 
based on system characterization of the queries and potential offload 
benefits, and provide further analysis of each.  

 

 

4.3   Scan Ratio 
Scan Ratio is defined as the total CPU time spent on a database Scan 
operation, divided by total CPU time consumed by the query. The 
CPU time is reported by query planner from database engine. This 
time is not the wall clock time and should not be confused with query 
runtime. 

For TPC-DS queries, the Scan Ratio ranges from near 0% to ~93% on 
SPARK-SQL and up to nearly 100% for Presto. In Figure 3, queries are 
sorted by their Scan Ratio, from left to right. Q9, with the highest 
Scan Ratio, is furthest to the right. Notice that most CPU intensive 
queries have a small Scan Ratio, but not all. Some complex queries, 
such as Q44, are both compute and I/O intensive.  

High Scan Ratio does not necessary mean the query reads more data 
from storage, it only indicates that time spent on I/O is higher relative 
to other query operations. For example, Query 45 has a total disk read 
of ~1.3TB, its Scan Ratio is only 2.99%. But for Query 9, which has the 
highest Scan Ratio of ~93%, total disk read is only ~105GB. Although 
the total query runtime difference is not large (Q9, 212.36 sec, Q45, 
176.02 sec.), the CPU cycles spent on non-I/O operations caused the 
Scan Ratio to be lower for Q45.  A high Scan Ratio indicates that a 
query is a strong candidate for computational storage optimization, 
since its I/O operations are likely to be in its critical path, while a low 
Scan Ratio indicates that operations other than I/O are the bottleneck.  

5   Offloading Model 
Here, we explain how we selected each plan stage to be offloaded to 
computational storage, followed by a detailed description of the 
model methodology used with both database engines. Notice that the 
methods are somewhat different, which we chose to do in order to 
cover more aspects of the offloading process. 
 

Figure 2: TPC-DS runtime query comparison 
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Figure 3: TPC-DS Scan Ratio and CPU utilization 

5.1   Offloading components (or kernels) 
In this section, we exploit opportunities to offload operations from 
host to computational storage. In order to execute a query, data flows 
from the leaves of the plan to the root. Usually the leaves contain 
some form of SCAN operation: table rows and columns are read in 
(usually from disk, unless this data was previously cached). The 
SCAN operation usually includes some sort of data transformation, 
from the format on disk to the one understood by the database 
engine. Once a table is scanned (or sometimes while the table is being 
scanned), rows may be filtered or projected. Next plan steps may 
contain aggregates, sorts, joins, window functions, or other advanced 
data transformations. Operations near the leaves will generally be 
“easier” to push down to computational storage. Basic SCANs, 
FILTERs, and PROJECTIONs may happen with virtually no change to 
the database engine query plan. More aggressive push down 
optimizations are possible, but require the cooperation of the 
database engine, and re-factoring of the query plan. 

For example, in Figure 1 (B), we observe this pattern in both FACT 
table and DIMENSION table I/O. By combining “Scan,” “Filter” and 
“Project” into a new building block, we can estimate the performance 
benefit of offloading this new building block (“Scan/Filter”) to 
computational storage. Regardless, with “Scan/Filter” offloading, the 
SPARK-SQL plan for Query 44 still looks the same. 

5.2   SPARK-SQL model methodology 
The performance estimate model for SPARK-SQL is based on how the 
database engine plan is executed – in stages with dependencies. We 
assume there is no resource limitation on the number of stages that 
can be executed concurrently.  

For example, Figure 4 shows a generic query that involves 3 tables, 1 
DIMENSION table and 2 FACT tables. Stage-0 reads the content of 
the DIMENSION table, while reading FACT tables happens in Stage-
1 and Stage-2. Then, Stage-3 and 4 sort the results from Stage-1 and 

2. The results are subsequently passed to Stage-5 for the final Join 
operation. 

 

Figure 4: Query Stage Scheduling 

 
First 3 stages (0, 1 and 2) include Scan/Filter/Project operations as 
marked with light dot shade in Figure 4. The time spent on the 
operations are 1, 5 and 8 seconds respectively, and could be 
offloaded to computational storage. The offloaded execution time is 
calculated as: 

• Reserve 1 second for offloading-related handshaking. The 
reserved time is an arbitrary number.  

• Assumes that the Filter runtime on the device is at wire 
speed and can be omitted. This is an optimistic 
assumption that provides an upper bound for our analysis. 
The actual Filter runtime depends on compute/IO 
capabilities of the device, and can be further improved 
with pre-processing in the device. 

• Time-of-result data transfer between the device and the 
host as calculated based on the device Read bandwidth 
specification; in this paper, 3GB/sec has been used.  

 
With these assumptions, the example execution time can be reduced 
from 18 seconds to 12 seconds (see Figure 5). 
 

Timestamp 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Note

Stage-0 Read dimension table: Scan,Filter,Project, Aggregate

Stage-1 Read fact table: Scan,Filter,Project,Aggregate

Stage-2 Read fact table: Scan,Filter,Project,Aggregate

Stage-3 Sort, Aggregate

Stage-4 Sort, Aggregate

Stage-5 Join
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Figure 5: SPARK-SQL Offload Model 

As the most fundamental step in building the estimate model, we 
need to know the time spent for Scan/Filter/Project on each SPARK-
SQL query stage. Fortunately, with SPARK-SQL the log file provides 
the following key logging information (Figure 6):  

• 𝑀𝑒𝑎𝑠𝑊𝐶𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑔𝑒: The Stage wall clock runtime 

• 𝑇ℎ𝑟𝑇𝑖𝑚𝑒𝐴𝑙𝑙𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠: Total execution time for the stage 
from all execution threads. This is not wall clock time 

• 𝑇ℎ𝑟𝑇𝑖𝑚𝑒𝑆,𝐹,𝑃: The execution time break down for Scan, 
Filter, Project 

With the above information, the estimated time spent on 
Scan/Filter/Project can be calculated as 

𝐸𝑠𝑡𝑊𝐶𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒𝑆,𝐹,𝑃 =  𝑀𝑒𝑎𝑠𝑊𝐶𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑔𝑒

∗  
𝑇ℎ𝑟𝑇𝑖𝑚𝑒𝑆,𝐹,𝑃

𝑇ℎ𝑟𝑇𝑖𝑚𝑒𝐴𝑙𝑙𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
 

In addition to Scan time, we also consider the following: 

• 𝑊𝐶𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒𝑆𝑒𝑡𝑢𝑝 -- The time to initialize computational 
storage for offloading. We always assume one second for the 
estimation calculation. 

• 𝑊𝐶𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒𝐷𝑎𝑡𝑎𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟  -- The time required to transfer 
the results from the offloading device back to the host. It is 
calculated based the Read bandwidth of the computational 
device. In our model, the Filtered result is usually less than 
0.5% of the results that are unfiltered. It would take only a 
fraction of a second to read back to the host, therefore we 
ignored it this time. 

• With Parquet format, we assume that no Project operation 
or Project time is omitted.  

With the above assumption, the estimated stage runtime with 
offloading for SPARK-SQL is calculated as: 

𝐸𝑠𝑡𝑊𝐶𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒𝑆𝑡𝑎𝑔𝑒

=  𝑊𝐶𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒𝑆𝑒𝑡𝑢𝑝  +  𝐸𝑠𝑡𝑊𝐶𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒𝑆,𝐹,𝑃 

 

 

Figure 6: One SPARK-SQL Query Stage with Statistics 

5.3   Presto model methodology 
To model push down benefits of Scan/Filter/Project operations, we 
create and populate smaller tables we call “model tables.” These 
“model tables” contain only the rows and columns that would be 
selected by a computational storage engine executing the 
Scan/Filter/Project operations defined by the query. We repeat the 
query using the model table, and compare results against the same 
query using the original tables – see Figure 7. For Presto, both 
original and model queries generate the same query plan. Similar to 
our SPARK-SQL model, the performance difference is the upper 
bound of the speed-up that a computational storage device would 
yield, because this model assumes that the storage device would be 
capable of filtering and projecting rows and columns at wire speed. 
However, if we take into consideration the higher internal flash 
storage bandwidth [4], this is a realistic approximation of the 
expected speed-up. 

 

 

Figure 7: Presto Offload Model. 

6   Offloading Evaluation 
Here, we describe in detail the query selection process, and give a 
high-level view of the results obtained by the modeling of both 
database engines. Furthermore, we present side-by-side analysis of 
the expected speed-up for a few selected queries. 

6.1   The queries 
In this study, we picked five queries from each configuration for deep 
analysis. The queries were selected based on where they fall on the 

Timestamp 0 1 2 3 4 5 6 7 8 9 10 11 Note

Stage-0 Read dimension table: Scan,Filter,Project, Aggregate

Stage-1 Read fact table: Scan,Filter,Project,Aggregate

Stage-2 Read fact table: Scan,Filter,Project,Aggregate

Stage-3 Sort, Aggregate

Stage-4 Sort, Aggregate

Stage-5 Join
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different quadrants of the Scan Ratio versus a CPU utilization chart 
(see Figure 8) to cover a wider range of characteristics. Because we 
focus on offloading Scan/Filter/Project, we want queries that are I/O 
intensive and show high selectivity when filtering and projecting 
FACT tables. That is, we look for queries of the “needle in the 
haystack” variety. Three of the queries (Q9, Q44, and Q75) are found 
in both studies, while the other two are found exclusively in either 
SPARK-SQL or Presto. We chose this approach because, due to their 
different architecture and optimizer, interesting queries in one 
environment are not necessarily interesting, or possible, in the other. 
For example, Presto cannot execute Q4 (out-of-memory error). 

Using the chart in Figure 8, we selected the following five SPARK-
SQL queries for analysis: Queries 9 and 44 have high Scan/Filter ratio; 
Query 4 has high CPU utilization; Query 72 has the longest runtime 
and higher CPU utilization; and Query 75 has a balanced Scan/Filter 
ratio and CPU utilization. 

Based on our analysis of the query plans generated by Presto, we 
believe that Query 44, Query 49, and Query 76 are the natural 
candidates for near storage FILTER because they are the ones that 
filter out the largest portions of FACT tables. Furthermore, these are 
all SCAN heavy queries (Figure 8). Another two, Query 9 and Query 
75, are on the “Top Ten” Presto list both in terms of Scan operations 
and complexity (number of fragments, or stages), and are queries that 
appear in the SPARK-SQL study.  



Figure 8: SPARK-SQL Scan Ratio vs CPU utilization 

6.2   Characterization and performance summary 
– SPARK-SQL 

Table 2 summarizes the characterization and offloading estimation 
for the SPARK-SQL queries identified above.  We did not find any 
cluster NVMe Read bandwidth bottleneck. The highest peak Read 
bandwidth is ~2GB/sec. for Query 75, which is less than 3GB/sec of 
the NVMe Read bandwidth specification. 

For some queries, the CPU utilization can become the bottleneck at 
several stages. In the presence of a computational storage device, the 
CPU utilization should benefit from Scan/Filter offloading, but we did 

not explore this topic for SPARK-SQL, and in our model we assumed 
that CPU utilization is unchanged by Scan/Filter offloading. 

The benefit of Scan/Filter offloading ranges from no speed-up to 
~8.17x in query runtime. Scan Ratio, CPU utilization and SQL 
execution plan all contribute to this speed-up, and will be analyzed 
in detail in sub-section 6.4 below. 

Table 2: SPARK-SQL COMPUTATIONAL STORAGE MODEL 
RESULTS 

 

6.3   Characterization and performance summary 
– Presto 

Figure 9 shows speed up for 10 queries we modeled, including the 5 
selected queries we analyze in detail. Presto speed-up from 
computational storage modeling varies from no speed-up for queries 
that are not I/O bound, to an impressive 59.3x for Query 44.  Let’s 
look at how this happened. In Table 3, we list the primary 
characteristics and system metrics for each selected query. For Presto, 
CPU utilization is never above 80% busy for the queries tested. Most 
issues arise from less than optimal query plans, and the queries that 
failed ran out of DRAM memory.  
 

 

Figure 9: Summary Presto Speed-up 

Query 9 Query 44 Query 4 Query 72 Query 75

# of SPARK-SQL Stages 31 9 19 14 19

# of FACT Table Used 1 1 3 2 6

# of DIMENSION Table Used 1 1 1 7 2

# of FACT Table Scan 15 3 3 2 9

# of DIMENSION Table Scan 1 1 2 9 3

# of Filter 16 8 9 9 9

# of Project 16 11 22 19 28

# of Aggregate 30 7 12 2 8

# of Sort 0 4 18 4 14

# of Join (All Join Types) 0 3 17 10 19

Runtime (sec.) 212 89 849 8205 298

Scan Ratio 93% 81% 4% 0% 41%

Total Data Read (GB) 1,276 605 940 168 1,182

Average CPU Utilization 31% 54% 76% 35% 53%

Peak CPU Utilization 94% 99% 100% 95% 100%

Average NVMe Bandwidth 

(MB/s)
146 292 257 5 258

Peak NVMe Bandwidth (MB/s) 1,365 1,625 1,008 1,026 1,918

Runtime with Scan/Filter 

Offloading (sec.)
26 25 780 8190 144

Speedup from offloading 

Scan/Filter
8.17x 3.61x 1.09x 1.00x 2.07x

TPC-DS Query ID
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Table 3: PRESTO COMPUTATIONAL STORAGE MODEL 
RESULTS 

 

6.4   Characterization and performance details – 
SPARK-SQL and Presto 

Now let’s examine the SQL plan, CPU, and I/O for the seven queries 
described in section 6.1 above. 

Query 9 is the Highest Scan Ratio SPARK-SQL query, and one of the 
highest for Presto too (see Figure 8). Both SPARK-SQL and Presto 
follow the same query plan for Q9: They scan and filter the same 
FACT table 15 times with differing filter values. An Aggregation 
operation follows each Scan/Filter, the results are used for final 
joining with a DIMENSION table. All 15 FACT table Scan/Filter 
stages start simultaneously and are followed by their Aggregation 
stage (see Figure 10). Within the Scan/Filter stage, the first half 
involves most I/O operations (Scan), and the second half mostly 
performs the Filter function. Although all 15 Scan/Filter stages start 
at the same time, because of SPARK-SQL executor limitations, not all 
workers get scheduled immediately. Some stages have to wait for 
resources. This is reflected in the I/O chart (Figure 10).  The I/O 
bandwidth peaks at the beginning. As the stages start Filter 
operation, CPU get busier and I/O bandwidth decreases. As the stages 
complete and release resources to the next waiting stage, I/O 
bandwidth goes up and CPU utilization goes down. We see this I/O 
spike after four Scan/Filter stages complete. 

Figure 11 illustrates the offloading performance estimate of 
computational storage with SPARK-SQL. Blue bars show the 
measured stage execution time and red bars show the estimated stage 
execution. Stage dependency is unchanged. 

 

 

Figure 10: SPARK-SQL Query 9 CPU Utilization and Cluster 
Read Bandwidth 

 

Figure 11: Query 9 SPARK-SQL Stage Breakdown with 
estimation 

In our study, we only model Scan, Filter and Projection, but Query 9 
also stands to benefit from Aggregate Pushdown, since the 15 scans 
result in 15 single, aggregated values. Because the Presto schema 
partitions table store_sales by ss_quantity, Query 9 does not 
significantly benefit from FILTER. The gains observed at the higher 
scale factor happen because of an artifact of the Presto model process. 
For Query 9 with 10TB dataset, the total I/O ratio between the 
original query and the Presto model is comparatively small: 1.54x. 
This I/O savings is not enough to justify the 5.3x speed-up observed 
at 10TB (Table 3). Our hypothesis is that this was caused by the 
modeling, which generated five smaller tables – while the model 

Query 9 Query 44 Query 49 Query 75 Query 76

# of Presto Fragments* 31 18  19 44 17 

# of FACT Tables Used 1 1 6 6 3

# of DIMENSION Tables Used 1 1 1 2 2

# of FACT Table Scan 15 4 6 12  3

# of DIMENSION Table Scan 1 2 3 12 6

# of ScanFilterProject FACT 

Table 0 4 6 0 2

# of ScanFilterProject 

DIMENSION Table 1 0 3 6 0

# of Window functions 0 2 6 0 0

# of Joins 15 5 6 19 6

10TB dataset original original original original original

Runtime(seconds) 338 1126 719 1555 314

Scan Ratio 99% 100% 94% 77% 95%

Total Data Read (GB) 14 63 86 118 47

Average CPU% 70 38 24 31 31

10TB dataset model model model model model

Runtime(seconds) 64 19 125 821 43

Total Data Read (GB) 9 0.12 19 81 0.75

Average CPU% 47 9 41 43 19

Runtime Speedup 

Original/Model 5.28x 59.3x 6.1x 2.05x 7.3x

Query ID
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reads from five different tables (each three sets of workers reads from 
one table), the original query reads 15 concurrent times from one 
table. To reinforce this point, notice that the I/O savings ratio of the 
second largest Presto speed-up -7.3x for Query 76 at 10TB, is 62.66x 
(see Table 3). 

However, Query 44, is the one query displaying dramatic speed-ups 
from Presto modeling. This happens because we have a lot of filtering 
that is increasing at scale. Query 44, which scans FACT table 
store_sales four times, is filtering rows where column ss_store_sk is 
equal to 2. With 1TB dataset, Query 44 uses only 0.15% of store_sales 
rows, and with 10TB dataset, it uses only 0.13% of store_sales rows. 
For both SPARK-SQL and Presto, Query 44 is a High Scan Ratio query 
with a CPU-intensive query operation. Notice that Presto and 
SPARK-SQL plans for Query 44 are different (Figure 12). The SPARK-
SQL plan is smart enough to see a repeat subquery, execute it only 
once, and to broadcast the small dimension table. Presto plan is not 
scalable, and benefits immensely from the I/O savings afforded by the 
computational storage speed-up.  

 

Figure 12: Query 44 plan compare 

 

Figure 13: SPARK-SQL Query 44 CPU Utilization and Cluster 
Read Bandwidth 

 

Figure 14: Query 44 SPARK-SQL Stage breakdown with 
estimate 

For SPARK-SQL, Query 44 has other CPU intensive operations, such 
as Sort and Join, and its average cluster CPU utilization is at ~54%, 
but because of SPARK-SQL’s worker scheduling, not all Data Nodes 
are utilized. See, for example, in Figure 13, the 3rd fact table 
Scan/Filter in Stage 5 only uses up to four Data Nodes. Data Node D9 
is idling while D10 is nearly saturated. We do not explore the 
offloading impact on CPU cycles for SPARK-SQL, but moving Filter 
operation to computational storage should relieve Data Node CPU 
utilization and further improve performance. SPARK-SQL speedup 
for Q44 is 3.61x (Figure 14). 

For Presto, Query 49’s model response time is 6.1x faster than the 
original query, our third best result. Response time went from 12+ 
minutes to 2+ minutes (see Table 3). Query 49 reads in 4.5 times more 
bytes than its model, and this savings impacts both response times 
and CPU utilization, which becomes more efficient with the model: 
average CPU busy % went from 24 with the original query to 41 with 
the model. 

SPARK-SQL Query 75 is a balanced query with all six FACT tables 
being used plus two DIMENSION tables. All FACT table Scan/Filter 
processing can benefit from computational storage offloading, but 
some stages are CPU bottlenecked (see Figure 15), and the SPARK-
SQL speed-up for this query is 2.07x (Figure 16). Similarly, Presto 
Query 75 scans all six FACT tables, but there is no filter opportunity, 
just projection. Still, even though there is no speed-up for Presto, at 
1TB we see excellent speed-up at 10TB: query response time went 
from 26 minutes to 13+ minutes. This result shows that the Parquet 
reader used by Presto may not be adequately implementing 
projection, while the Spark Parquet reader is doing so. 

For Presto, Query 75 behavior is similar to Query 9. Both queries 
display no speed-up with the 1TB dataset, but modest gains with the 
10TB dataset. Query 75 shows less speed-up than Query 9 at 10TB. 
From Figure 17, we see another interesting pattern: both the original 
and model show a barrier around three minutes before query 
completion, when all CPU and I/O utilization for all servers is near 
zero. This moment is identified by a vertical green bar in Figure 17. 
The elapsed time gain from the model happens before that barrier ― 
the original query runs for about 23 minutes while the model runs 
for about 10 minutes. From Figure 17, we see that the model is 
handling less I/O both before and after the barrier, but no elapsed 
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time gain is observed after the barrier. Query 75 total I/O ratio 
between the original and the model is only 1.5x. 

Query 4 is SPARK-SQL’s most CPU-intensive query. It uses three 
FACT tables and one DIMENSION table with many Sort, Join and 
other operations. These operations saturate cluster compute 
resources and the CPU becomes the bottleneck (see Figure 18). Presto 
cannot execute Query 4 with the 10TB dataset – it gets an “out of 
memory” error. Because most query runtime is spent on CPU-
intensive, non-I/O operations, the Scan/Filter offloading benefit is 
limited to 9% as shown in Figure 19.  

 

 

Figure 15: SPARK-SQL Query 75 CPU Utilization Cluster Read 
Bandwidth 

 

Figure 16: Query 75 SPARK-SQL Offloading estimate  

 

Figure 17: Query 75 Presto CPU and I/O activity 

 

Figure 18: SPARK-SQL Query 4 CPU Utilization and Cluster 
Read Bandwidth 
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Figure 19: Query 4 SPARK-SQL Stage breakdown and estimate 

Presto Query 76 filters and scans the three largest FACT tables 
(store_sales, web_sales, and catalog_sales). Furthermore, the 
selectivity is significant: only 4.50% of table store sales, 0.03% of 
web_sales, and 0.50% of catalog_sales are used after the filter 
operation. Consequently, we see excellent speed-ups for Presto at 
both scale factors. At 10TB, query response time went from 5+ 
minutes to 43 seconds, with the total I/O ratio between the original 
and the model an impressive 62.66x (see Table 3). 

Query 72 has the longest runtime of all TPC-DS queries. It has 10 Join 
operations, and they are scheduled almost sequentially by SPARK-
SQL within a single stage. Compared to the total runtime, the time 
spent on I/O counts only a small fraction. Because offloading is 
applied only on I/O, for this query, we observed no performance gain 
when offloading Scan/Filter. 

Overall, for the computational storage operations being considered, 
everything is impacted by the selectivity of each filter and projection 
operation yield. And those yields can be substantial. For example, 
Query 44 reads 530 times more bytes than its model.  

 

8   Thoughts on offloading other components 
SCAN, FILTER, and PROJECTION are SQL operations that can be 
easily pushed down to computational storage. They are the 
proverbial “low hanging fruit.” There are other operations that also 
wisely might be pushed down to computational storage, though some 
require cooperation from the database engine. For example, some 
aggregates, such as SUM, COUNT, MIN, MAX, are amenable to being 
pushed down even in a distributed environment. Other aggregates, 
such as AVERAGE and MEAN, can be partially pushed down, and 
would require active participation of the database engine. 
Furthermore, some JOINs, such as broadcast-join, can be pushed 
down. In the case of TPC-DS, for example, if dimension table 
DATE_DIM was replicated for all storage devices and its JOIN 
operations to fact tables were pushed down, this could potentially 
benefit 90% of the workload (89 queries) that scans and joins 
DATE_DIM. 

9   Conclusion 
This paper characterizes an Online Analytical Processing (OLAP) 
benchmark, TPC-DS, when implemented with a read-optimized, 
columnar Parquet format in the Hadoop ecosystem. We 

experimented with two database engines: SPARK-SQL and Presto. 
Furthermore, we modeled performance gains from pushing a few 
SQL building blocks to a computational storage device using Parquet, 
without any cooperation from the database engine. We showed that 
these gains can be substantial, but are not universal. Queries with 
high selectivity on the leaves of their plan with the largest tables 
benefit the most from such optimization. Queries with low selectivity 
in their SCAN operations, even if they are scan-heavy, see more 
modest performance gains per our modeling. Notice, however, that 
our models do not consider the cost to decompress and decode data 
from a storage format to an internal database format. It is worth 
noticing that scan-heavy operations may benefit significantly from 
performing decompression and decoding in storage, even if they 
present little or no filter opportunities. 
Our main contribution is estimating the expected speedup from 
pushing down a few SQL building blocks (SCAN, FILTER, and 
PROJECT operations) to computational storage when using 
optimized, columnar Parquet format files. We demonstrate that these 
operations are not only universal and simple to offload, but that they 
may be implemented with little or no software changes for most 
database engines. As SmartSSD and other near storage computing 
technologies become available, we will see new opportunities and 
significant speedups for big data analytics and data mining. 
 

ACKNOWLEDGMENTS 
We thank the anonymous reviewers for their comments and 
suggestions to improve our earlier draft.  
 

REFERENCES 
[1] Samsung SmartSSD: https://samsungatfirst.com/smartssd/ Accessed 

August, 10,2019. 

[2] NGD systems: https://www.ngdsystems.com/ Accessed August 10, 2019. 

[3] ScaleFlux: http://www.scaleflux.com/ Accessed October 1, 2019. 

[4] SIMMS https://www.simms.co.uk/tech-talk-2/sas-sata-or-pcie-know-
your-interface/ Accessed 8/15/2019. 

[5] G. Koo, et al. “Summarizer: Trading Communication with Computing 
Near Storage” MICRO’17, Oct 14-18, 2017, Boston, MA, USA. 

[6] I. Jo, et al. “YourSQL: A High-Performance Database System Leveraging 
In-Storage Computing” Proceedings of the VLDB Endowment, Vol. 9, No 
12, pp. 924-935, August 2016. 

[7] B. Gu, et al. “Biscuit: A Framework for Near-Data Processing of Big Data 
Workloads” ISCA, Seoul, Korea, pp. 153-165, June 2016. 

[8] J. Lee, et al. “ExtraV: Boosting Graph Processing Near Storage with a 
Coherent Accelerator”, Proceedings of the VLDB Endowment, Vol. 10, 
No. 12, pp. 1706-1717, August 2017. 

[9] J. Stuecheli, B. Blaner, C. Johns, M. Siegel. “CAPRI: A coherent 
accelerator processor interface”. IBM Journal of Research and 
Development, 59(1):7:1{7:7, January 2015. 

[10] K. Kohei, “GPCPU Accelerates PostgreSQL”, DB Tech Showcase, Tokyo, 
Japan, November 2014. 

[11] “Postgres Derived Databases”, Documentation at 
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases. 
Accessed 6/12/2018. 

[12] P. Francisco “IBM PureData System for Analytics Architecture” IBM 
White Paper, 2014. 

[13] TPC Benchmark DS Standard Specification Version 2.10.1. 
www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.10.1.pdf   
Accessed May 13, 2019. 

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

98

https://samsungatfirst.com/smartssd/
https://www.ngdsystems.com/
http://www.scaleflux.com/
https://www.simms.co.uk/tech-talk-2/sas-sata-or-pcie-know-your-interface/
https://www.simms.co.uk/tech-talk-2/sas-sata-or-pcie-know-your-interface/
https://wiki.postgresql.org/wiki/PostgreSQL_derived_databases


[14] M. Poess, et al. “Analysis of TPC-DS the first standard benchmark for 
SQL-based big data systems”, Proceedings of the 2017 Symposium on 
Cloud Computing, Santa Clara, CA, USA, pp. 573-585, September 2017. 

[15] TPC-DS Top Results. 
www.tpc.org/tpcds/results/tpcds_advanced_sort.asp  Accessed May 13, 
2019. 

[16] T. Ansley “Accelerating the Apache Hadoop 3.1-based Distribution 
Ecosystem with Flash Storage” 
www.micron.com/about/blog/2018/july/accelerating-the-apache-
hadoop-based-distribution-ecosystem-with-flash-storage  July 31, 2018. 

[17] A. Thapliyal “Azure HDInsight Performance Benchmarking: Interactive 
Query, Spark and Presto” azure.microsoft.com/en-us/blog/hdinsight-
interactive-query-performance-benchmarks-and-integration-with-
power-bi-direct-query/  December 20, 2017. 

[18] Transaction Processing Performance Council website www.tpc.org 

[19] Apache Spark Documentation 2.4.3. spark.apache.org/docs/latest/ 
Accessed 8/6/2019. 

[20] Presto Hive Connector. prestodb.io/docs/current/connector/hive.html  
Accessed 6/1/2018. 

[21] Presto Documentation. prestodb.io/docs/current/overview.html   
Accessed 4/5/2018. 

[22] B. Braams, “Predicate Pushdown in Parquet and Apache Spark” Master’s 
Thesis. Univ. of Amsterdam. December, 2018. 

[23] S. Melnik, S. et al. “Dremel: interactive analysis of web-scale datasets”. 
Proceedings of the VLDB Endowment 3.1-2 (2010), pages 330-339. 

[24] S. Pei, J. Yang, Q. Yang “REGISTOR: A Platform for Unstructured Data 
Processing Inside SSD Storage” SYSTOR,  June 4-8, 2018, Haifa, Israel. 

[25] Z. Ruan, T. He, J. Cong “INSIDER: Designing In-Storage Computing 
System for Emerging High-Performance Drive” USENIX ATC 2019, 
Renton, WA, USA. 

 

 

 
 
 

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

99

http://www.tpc.org/



