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ABSTRACT
It is well known that building analytical performance models in

practice is difficult because it requires a considerable degree of

proficiency in the underlying mathematics. In this paper, we pro-

pose a machine-learning approach to derive performance models

from data. We focus on queuing networks, and crucially exploit a

deterministic approximation of their average dynamics in terms

of a compact system of ordinary differential equations. We encode

these equations into a recurrent neural network whose weights can

be directly related to model parameters. This allows for an inter-

pretable structure of the neural network, which can be trained from

system measurements to yield a white-box parameterized model

that can be used for prediction purposes such as what-if analyses

and capacity planning. Using synthetic models as well as a real case

study of a load-balancing system, we show the effectiveness of our

technique in yielding models with high predictive power.
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1 INTRODUCTION
Motivation. Performance metrics such as throughput and re-

sponse time are important factors that impact on the quality of a

software system as perceived by users. They indicate how well the

software behaves, thus complementing functional properties that
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concern what the software does. A traditional way of reasoning

about the performance in a software system is by means of pro-

filing. A tool such as Gprof executes the program and allows the

identification of the program locations that are most performance

sensitive [23]. The main limitation is that this information is valid

for the specific run with which the program is exercised; different

inputs lead to different performance profiles in general. Thus, while

profiling can detect the presence of performance anomalies, it lacks

generalizing and predictive power (see also [64]).

As with all scientific and engineering disciplines, predictions

can be made with models. Software performance models are math-

ematical abstractions whose analysis provides quantitative insights

into real systems under consideration [15]. Typically, these are

stochastic models based on Markov chains and other higher-level

formalisms such as queueing networks, stochastic process algebra,

and stochastic Petri nets (see, e.g., [15] for a detailed account). Al-

though they have proved effective in describing and predicting the

performance behavior of complex software systems (e.g., [8, 50]), a

pressing limitation is that the current state of the art hinges on con-

siderable craftsmanship to distill the appropriate abstraction level

from a concrete software system, and relevant mathematical skills

to develop, analyze, and validate the model. Indeed, the amount

of knowledge required in both the problem domain and in the

modeling techniques necessarily hinders their use in practice [62].

Despite the promises that analytical performancemodeling holds,

we are confronted with a high adoption barrier. A possible solu-

tion might be to derive the model automatically. There has been
much research into extending higher-level descriptions such as

UML diagrams with performance annotations (using for example

appropriate profiles such asMARTE [42]) fromwhich both software

artifacts and associated performance models are generated (see the

surveys [6, 36]). However, since systems are typically subjected

to further modifications, the hard problem of keeping the model

synchronized with the code arises [20]. This makes such model-

driven approaches particularly difficult to use in general, especially

in the context of fast-paced software processes characterized by

continuous integration and development.

Main contribution. In this paper we propose a novel methodol-

ogy where analytical performance models are automatically learned

from a running system using execution traces. We focus on queue-

ing networks (QNs), a formalism that has enjoyed considerable

attention in the software performance engineering community,

since it has been shown to be able to capture main performance-

related phenomena in software architectures [2], annotated UML

diagrams [7], component-based systems [36], web services [18],

and adaptive systems [3, 29].
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A QN is characterized by a number of parameters that define the

following quantities: i) the behavior of each shared resource, such

as its service demand and the concurrency level, which describe the

amount of time that a client spends at the resource and the number

of independent entities that can provide the service (e.g., number

of threads in the pool or number of CPU cores), respectively; ii) the

behavior of clients in terms of their operational profile, i.e., how

they traverse the resources.

Some of these parameters can be assumed to be known. For

instance, the number of CPU cores is available from the hardware

specification (or from the virtual-machine settings in a virtualized

environment); the number of worker threads is a configuration

parameter in most servers. Other parameters are more difficult

to identify: the service demands, which depend on the execution

behavior of the program that requests access to a shared resource;

and the routing matrix, which defines how clients (probabilistically)

move between queuing stations.

In our approach, the input is the set of shared resources and their

concurrency level. The objective is to discover the QN model, i.e.,

the topology of the network and the service demands.

Obviously, the problem of learning a mathematical model from

data is not new. In the specific case of identifying parameters of

a QN, a substantial amount of research gone into the problem of

estimating service demands only ([49], see Section 5.3 for a more

detailed account of related work). Instead, we are not aware of ap-

proaches that deal with the estimation of both the service demands

and the topology. This setting is a rather difficult one from a math-

ematical viewpoint because, as will be formalized later, routing

probabilities and service demands appear as multiplicative factors

in the dynamical equations that describe the evolution of a QN [8].

Since learning a QN can be understood as fitting the parameters to

match these equations by some form of optimization, using both

routing probabilities and service demands as decision variables

will induce a nonlinear problem, which is very difficult to handle in

general. An additional problem to nonlinearity is that of scalability.

This is due to the issue that the exact dynamical equations of a QN

incur the well-known state explosion problem, because the number

of discrete states to keep track of grows combinatorially with the

number of clients and queuing stations.

Learning method: recurrent neural networks. To cope with both

issues, we propose a learning method based on recurrent neural

networks (RNNs) because of their ability to fitting nonlinear sys-

tems [41]. In particular, we develop a new architecture of the RNN

which encodes the QN dynamics in an interpretable fashion, i.e.,
by associating the weights of the RNN with QN parameters such

as concurrency levels, routing probabilities, and service rates. A

key instrument is the use of a compact system of approximate (but
still nonlinear) equations of the QN dynamics instead of the com-

binatorially large, but exact, original system of equations. Such

approximation—called fluid or mean-field—consists in only one or-

dinary differential equation (ODE) for each station. It describes

the time evolution of the queue length, i.e., the number of clients

contending for that resource. In practice, the fluid approximation

provides an estimate of the average queue length of the underlying

stochastic process. The QN approximation procedure is based on a

fundamental result by Kurtz [37] and is well-known in the litera-

ture, e.g., [9]. In the field of software performance, it has been used

for the analysis of variability-intensive software systems [34, 35]

and for model-based runtime software adaption using online opti-

mization [29] or satisfiability modulo theory approach [28]. This

formulation has also been recently adopted for learning, but for

service demands only [27], thus casting the problem into a (consid-

erably) simpler quadratic programming one.

The connection between RNN and ODEs is not new in the litera-

ture. In [44], authors have shown that recurrent neural networks

can be thought of as a discretization of the continuous dynamical

systems while, in [13] a specialized training algorithm for ODEs

has been recently proposed. However, despite the proliferation

of works along this research direction, still there is no clear un-

derstanding of how to employ such artificial intelligence/machine

learning techniques for supporting performance engineering tasks

such as modeling, estimation, and optimization [38].

The main technical contribution of this paper is to show that

there is a direct association between the structure of the QN fluid

approximation and standard activation functions and layers of

an RNN. To the best of our knowledge, this is the first approach

that formally unifies the expressiveness of analytical perfor-

mance models with the learning capability of machine learning,

contributing to positively answering the question whether “AI
will be at the core of performance engineering” [38].
The RNN is trained using time series of measured queue lengths

at each service station. Its learned weights can be interpreted back

as a QN with learned parameters, which can be used for predictive

purposes. It is worth remarking that, in principle, one could learn

a QN model by relying on a standard, black-box RNN architecture

by treating all the QN parameters (i.e., initial population, service

demand, number of servers and routing probabilities) as input fea-

tures of the learning algorithm. Unfortunately, this straightforward

approach would require a considerable amount of input traces since

the learning algorithm could not exploit the structural information

about the problem. For instance, it would not be possible to do

accurate what-if analyses by varying the value of a parameter if

the network had not been trained with some input configurations

where few variations of that parameter are considered. Moreover,

in such setting, it would even be unclear which weights must be

altered and how to reflect the changes into the model.

Instead, here we report on the effectiveness and the generalizing

power of our method by considering both synthetic benchmarks on

randomly generated QNs, as well as a real web application deployed

according to the load balancing architectural style. In both cases,

we evaluate the degree of predictive power of the learned model in

matching the transient as well as steady-state dynamics of unseen

configurations (i.e., by varying the system workload, number of

servers, and routing probabilities), reporting prediction errors less

than 10% across a validation set of 2000 instances.

Paper organization. We provide some background about QNs

in Section 2. The learning methodology is presented in Section 3,

which discusses how to encode a time-discretized version of the

fluid approximation into an RNN where the weights represent the

model parameters to identify. Section 4 presents the numerical

evaluation on both the synthetic benchmarks and the real case
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Figure 1: Load balancing example

study, providing implementation details on the RNN and on the

used benchmark application. Section 5 discusses further related

work. Section 6 concludes.

2 BACKGROUND
To make the paper self-contained, we present some background on

QNs with the objective of motivating the fluid approximation as

a deterministic estimator of average queue lengths, which will be

used for the RNN encoding.

2.1 Queuing Networks
We assume closed QNs, where clients keep circulating between

queuing stations. A closed QN is formally defined by the following:

• N : the number of clients in the network;

• M : the number of queuing stations;

• s = (s1, . . . , sM ): the vector of concurrency levels, where si
gives the number of independent servers at station i , with
1 ≤ i ≤ M ;

• µ = (µ1, . . . , µM ): the vector of service rates, i.e., 1/µi > 0 is

the mean service demand at station i , with 1 ≤ i ≤ M ;

• P = (Pi , j )1≤i , j≤M : the routing probability matrix, where

each element Pi , j ≥ 0 gives the probability that a client goes

to station j upon completion at station i;
• x (0) = (x1 (0) , . . . , xM (0)): the initial condition, i.e., xi (0)
is the number of clients at station i at time 0.

In a closed QN, the routing probability matrix is stochastic matrix,

meaning that the sum across each row sums up to one.

Example 2.1. In the remainder of this section we use the QN in

Fig. 1 as a running example. Depicted using the customary graphical

representation, it represents a simple load-balancing system with

M = 3 stations. Requests from reference station 1 are routed to two

compute server stations 2 and 3 with probabilities P1,2 and P1,3,
respectively. Upon service, a client returns back to station 1. An
instantiation of this abstract model is discussed in Section 4. □

Markov chain semantics. The stochastic behavior of a QN is rep-

resented by a continuous-time Markov chain (CTMC) that tracks

the probability of the QN having a given configuration of the

queue lengths at each station. Informally, the CTMC is constructed

as follows. A discrete CTMC state is a vector of queue lengths

X = (X1, . . . ,XM ). At each station i , if the number of clients Xi

is less than or equal to the number of servers si , then these pro-

ceed in parallel, each at rate µi . Instead, if Xi > si the number of

clients that are queueing for service is Xi − si . When one client

is serviced at station i , with probability pi j it goes to station j to
receive further service. This can be formalized by considering the

well-known model of Markov population processes, whereby the

CTMC transitions are described by jump vectors and associated

transition functions from a generic state X [9].

We define the jump vectors h(i j) to be the state updates due to

clients moving to station j upon service at i , and q(X,X +h(i j)) the
transition rate from state X to state X + h(i j), where

X + h(i j) = (X1, . . . ,Xi − 1, . . . ,X j + 1, . . . ,XM ).

In other words, with the jump vector h(i j) we have that the number

of clients at station i is decreased by one, and, correspondingly, the

number of clients at station j is increased by one. Then, the CTMC

is defined by:

q(X,X + h(i j)) = Pi , j µi min(Xi , si ), i, j = 1, . . . ,M . (1)

Example 2.2. In our running example, we have the jump vectors

h(12) = (−1,+1, 0) h(13) = (−1, 0,+1)

h(21) = (+1,−1, 0) h(31) = (+1, 0,−1)

where the first row describes the updates due to a client being

assigned to each compute server and the second row defines the

client returning to the load balancer after service. For completeness

we give the corresponding transitions:

q(X,X + h(12)) = P1,2µ1min(X1, s1)

q(X,X + h(13)) = P1,3µ1min(X1, s1)

q(X,X + h(21)) = P2,1µ2min(X2, s2)

q(X,X + h(31)) = P3,1µ3min(X3, s3)

□

It is well known that a CTMC is completely characterized by the

transitions (1) together with the initial condition x (0). This formu-

lation in terms of jump vectors allows for the efficient stochastic

simulation of CTMCs [22]; indeed, we will use this technique to

generate sample paths for the evaluation of our learning method

on synthetic benchmarks in Section 4. For our purposes, the main

limitation of this CTMC representation is that the exact equations

to analyze the probability distribution grow combinatorially with

the number of clients and stations, as one needs to keep track of

each possible discrete configuration of the queue lengths.

2.2 Fluid Approximation
The fluid approximation of a QN consists is an ODE system whose

size is equal to the number of stations M , independently from the

number of clients in the system. Informally, the ODE system can

be built by considering the average impact that each transition has

on the queue length at each station k . This is obtained by multiply-

ing the k-th coordinate of each jump vector, h
(i j)
k , by the function

associated with the corresponding transition rate q(X,X+h(i j)). De-
noting by x = (x1, . . . , xM ) the variables of the fluid approximation,
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the ODE system is given by:

dxk (t)
dt

=
∑
h(i j )

h
(i j)
k q(x(t), x(t) + h(i j)), k = 1, . . . ,M . (2)

The solution for each coordinate, xk (t), can be interpreted as

an approximation of the average queue length at time t as given
by the CTMC semantics [9]. The theorems in [37] provide a result

of asymptotic exactness of the fluid approximation, in the sense

that the ODE solution and the expectation of the stochastic process

become indistinguishable when the number of clients and servers

is large enough.

Using (1), the equations can be written as follows:

dxk (t)
dt

=
∑
i,k

Pi ,kµi min(xi (t) , si ) + (Pk ,k − 1)µk min(xk (t) , sk )

(3)

where we have singled out the rates due to self loops Pk ,k .

Example 2.3. The fluid approximation for the load balancer is:

dx1 (t)
dt

= −µ1min(x1 (t) , s1) + µ2min(x2 (t) , s2)+

+ µ3min(x3 (t) , s3)

dx2 (t)
dt

= −µ2min(x2 (t) , s2) + P1,2µ1min(x1 (t) , s1)

dx3 (t)
dt

= −µ3min(x3 (t) , s3) + P1,3µ1min(x1 (t) , s1)

□

Based on the solution to Eq. 3, which directly provides queue-

length estimates, one can derive other important performance met-

rics such as throughput, utilization, and response time. See, for in-

stance [56, 57] for a study of these results in a process algebra [25],

and [54, 55, 58] for applications to layered queueing networks [19].

In the remainder of this paper, we shall focus on QNs that do

not have self loops (i.e., a client served at a queue cannot re-enter

the same queue immediately), i.e., Pi ,i = 0 for 1 ≤ i ≤ M . This is

because we can show that, in the fluid approximation, for each k ,
Pk ,k can be chosen freely as long as we adjust each Pk ,i with i , k
and µk . More formally, we can prove the following theorem.

Theorem 2.1. For each π ∈ [0, 1)M , stochastic matrix P and µ≥ 0

where (3) holds, there exist P̂ and µ̂ such as for each k :

(a) dxk (t )
dt =

∑
i,k P̂i ,k µ̂i min(xi (t) , si )

+ (P̂k ,k − 1)µ̂k min(xk (t) , sk );
(b) P̂k ,k = πk ;
(c)

∑
i P̂k ,i = 1;

(d) ∀i P̂k ,i ≥ 0;
(e) µ̂k ≥ 0.

Proof. Available in Appendix A. □

Thus, using the fluid approximation, for each network with

self loops there is another one without them which cannot be

distinguished. To identify a specific network among them, we need

to know the self-loop values.

�-¨t��1

�-¨t��2�

�¨t�
� 2�P
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V2
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min

∑

∑

�¨t��1 �P1,2

�-¨t��0�

VM min ∑

Figure 2: RNN encoding

3 LEARNING METHODOLOGY
As apparent in both Equations (1) and (3), a QN features routing

probabilities and service demands as multiplicative factors in the

defining dynamical equations. If we wish to learn a QN by assuming

that both quantities are unknown, we are faced with a nonlinear

(i.e., polynomial) optimization problem. Here we propose an RNN in

order to estimate these parameters.We develop an RNN architecture

which encodes the QN dynamics in an interpretable fashion, i.e., by
associating the weights of the RNN with QN parameters such as

concurrency levels, routing probabilities, and service rates.

3.1 ODE Discretization
Wefirst obtain a time-discrete representation of the fluid approxima-

tion such that each time step is associated with a layer of the RNN.

In matrix notation, for an arbitrary QN the fluid approximation is

given by:

dx (t)
dt

= −µmin (x (t) , s) + PT µmin(x (t) , s)

where x (t) is the M-dimensional vector of queue lengths at time

t . We consider a finite-step approximation of the above ODE for a

small ∆t , obtaining:

x (t + ∆t) = x (t) + ∆t ·
(
− µmin (x (t) , s) + µPmin(x (t) , s)

)
Finally, this can be rewritten as

x (t + ∆t) = x (t) + ∆t · u (t) · (µ ⊙ (P − I)) (4)

where u (t) = min (x (t) , s), I is the identity matrix of appropriate

dimension, and ⊙ is the operator where if C = a ⊙ B, then Ci , j =
ai · Bi , j .

3.2 RNN Encoding
The discretization (4) of the fluid approximation of the QN admits

a direct encoding as an RNN. It consists of anM-dimensional input

layer x̂0 that corresponds to the initial condition of the QN. The

RNN has H − 1 cells, with the h-th cell computing the estimate of

the queue length at time h∆t , denoted by x̂h (see Fig. 2). That is, the

h-th cell computes the quantity x̂h = x̂h−1+∆t · ûh−1 · (µ ⊙ (P − I)),
where, according to (4), ûh−1 estimates u ((h − 1)∆t) as ûh−1 =
min (s, x̂h−1).
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Figure 3: Numerical evaluation of the running example (see
Figure 1). Comparison between simulations of the queue
lengths using the RNN-learned QN (marked lines) and the
ground-truth one (straight lines) in two different cases: a) a
trace used for training (err = 0.69%) with initial population
x(0) = (26, 86, 0) and concurrency levels (s1=1000, s2=30, s3=25)
b) what-if analysis under unseen initial population vector
and unseen concurrency levels (s1=1000, s2=6, s3=1) and ini-
tial population x(0) = (49, 47, 0), causing a significant change
in the dynamics (err = 1.49%).

With this set up, we will have to learn the matrix P (made of

M(M − 1) weights, since the diagonal is empty) and the vector µ
(made ofM weights).

The main goal of this methodology is to learn the actual pa-

rameters of the network. Therefore, we enforce some feasibility

constraints, namely we require that P rows sum up to 1 (such that

P is a stochastic matrix), absence of self loops and µ ≥ 0 (such that

the speed of the stations is non-negative). The non-negativity of the

weights is enforced in the framework by clamping the candidate

values within the range [0,∞); stochasticity of P is guaranteed by di-
viding each weight by the sum of the weights in the corresponding

row; the absence of self loops is achieved by setting ∀i, Pi ,i = 0 as a

constant. This approach puts our work in the explainable machine
learning research area [45], and it allows us to link each learned

parameter with its role in the system. This link allows us to predict

the behavior of the system under new conditions (what-if analysis).
In contrast, a traditional approach to neural networks would not

impose a model and constraints on the parameters, hence giving a

read-only model which cannot be clearly interpreted. Indeed, with-

out a direct association between parameters and physical quantities,

we cannot study the system under new conditions unless learning

a new model.

Example 3.1. The RNN encoding for the h-th cell (i.e., the queue

length transient evolution at time h∆t ) of our running example is:

ûh−1,1 = max

(
s1, x̂h−1,1

)
ûh−1,2 = max

(
s2, x̂h−1,2

)
ûh−1,3 = max

(
s3, x̂h−1,3

)
x̂h,1 = x̂h−1,1 + ∆t

(
−µ1ûh−1,1 + µ2P2,1ûh−1,2 + µ3P3,1ûh−1,3

)
x̂h,2 = x̂h−1,2 + ∆t

(
µ1P1,2ûh−1,1 − µ2ûh−1,2 + µ3P3,2ûh−1,3

)
x̂h,3 = x̂h−1,3 + ∆t

(
µ1P1,3ûh−1,1 + µ2P2,3ûh−1,2 − µ3ûh−1,3

)
□
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Figure 4: a) Prediction error of the what-if instances where
each randomly generated QN is tested with 100 unseen ini-
tial population vectors, distinguished in colors with respect
to the network size M . The x-axis N is the total number of
clients in the network which is scatter-plotted against the
prediction error defined in Eq. (5). b) Statistics on the pre-
diction error. In each box-plot, the line inside the box repre-
sents the median error, the upper and lower side of the box
represent the 25th and 75th percentiles, while the upper and
lower limit of the dashed line represent the extreme points
not to be considered outliers, and in red we depict the out-
liers (12 with M=5, 4 with M=10).

3.3 Input data
The RNN is trained over a set of traces. Each trace is made of H vec-

tors, indicated as x̃0, x̃1, ..., x̃H−1 ∈ RM
≥0
. The i-th component x̃h,i

of each vector x̃h represents a sample of the queue length of each

station i at time h · ∆t . Since, as discussed, the fluid approximation

can be interpreted as an estimator of the average queue lengths,

each trace used in the learning process consists of measurements

averaged over a number of independent executions started with

the same initial condition; different traces rely on different initial

conditions to exercise distinct behaviors of the system.

3.4 Learning function
The learning error function, denoted by err , aims to minimize the

difference between the queue lengths estimated by the RNN, x̂h ,
and the measurements x̃h . It is defined as follows:

err =
max

H−1
h=1 ∥x̃h − x̂h ∥

2N
· 100 (5)

where ∥ · ∥ indicates the L1 norm. Essentially, it is a maximum

relative error. Indeed, since we are studying closed QNs with fixed

N circulating clients, the quantity ∥x̃h − x̂h ∥/(2N ) intuitively mea-

sures the proportion of clients (relative to their total number N )

that are “misplaced” (i.e., which are allocated in a different station)

at each time step. Since a misplaced client is counted twice (once

when missing in a queue and once when is extra in another queue),

we divide the norm by 2. Then, the overall error err computes the

maximum of such misplacements across all times.

Example 3.2. Let us consider our running example by fixing

ground-truth parameters as follows. During the learning phase,

we studied the system with s = (1000, 30, 25) and predicted the
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Figure 5: Comparison between the ground-truth queue lengths and those predicted by the RNN-learned QN on the test case
that induced the maximum prediction error among the what-if over population (error: 9.41%). The error was attained on a
randomly generated QN with M = 5 stations, using the unseen initial population vector (86,111,13,15,28). The straight line
represents the ground-truth dynamics of the QN model; the dashed line represents the evolution of the RNN-learned QN.
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Figure 6: a) Prediction error of the what-if instances by
changing the concurrency level of the most utilized station
in each of the randomly generated QNs. b) Statistics on the
prediction error.

behavior with s = (1000, 6, 1), while we kept P and µ unchanged at

P =

0 0.5 0.5

1 0 0

1 0 0

 µ = (1, 11, 11)

Using the experimental set up that will be discussed in the next sec-

tion, we generated the training dataset by collecting 50 traces, one

for a different randomly generated initial population vector. Each

trace was the average of 500 independent simulations recording

the transient evolutions of the queue lengths. Figure 3 reports the

comparison between queue lengths of the RNN-learned QN and

the ground-truth one, showing very good accuracy on an instance

of the training set (Figure 3a) as well as high predictive power of

the model under unseen initial populations and concurrency lev-

els which cause bottleneck shift and considerable longer transient

dynamics (Figure 3b).

4 NUMERICAL EVALUATION
In this section we evaluate the effectiveness of the proposed ap-

proach by considering both synthetic benchmarks and a real case

study. For all our tests, the RNNs were implemented using the Keras

framework [14] with the TensorFlow backend [1]. Learning was

performed using a machine running the 4.15.0-55-generic Linux

kernel on a Intel(R) Xeon(R) CPU E7-4830 v4 machine at 2.00GHz

with 500 GB of RAM.

4.1 Synthetic case studies
Set-up. For our synthetic tests we considered randomly gener-

ated networks of sizeM = 5 andM = 10. For each case, we gener-

ated 5 QNs by uniformly sampling at random the entries of the rout-

ing probability matrices, the service rates in the interval [4.0, 30.0],

and the concurrency levels in the interval {15, 16, . . . , 30}. For the

training of each QN, we generated 100 traces, each being the aver-

age over 500 independent stochastic simulations (generated using

Gillespie’s algorithm [22]). Each trace exercised the model with a

distinct initial population vector such that the number of clients

at each station was drawn uniformly at random from {0, . . . , 40};

as a result, the total number of clients in the network varies across

traces. For each network, learning was performed by equally split-

ting the 100 traces for training and validation, iterating Adam [33]

with learning rate equal to 0.05, until the error computed on the

validation set did not improve by at least 0.01% in the last 50 itera-

tions. On average, the learning took 74 minutes and 86 minutes for

the casesM = 5 andM = 10, respectively.

Discretization methodology. Two important parameters are the

length of the trace, i.e., the time horizon T of the stochastic simu-

lations, and the choice of the discretization interval ∆t ; these are
related with the number of cells in the RNN H by T = (H − 1)∆t .
Longer time horizons lead to larger simulation (hence, training)

runtimes. Too short traces might not expose the full dynamics of

the system. Further, following basic facts about ODE discretiza-

tion [4], the interval ∆t should be chosen small enough such that

no important dynamics is lost across two successive time steps;

thus, longer time horizons might need more time steps, hence more

cells in the RNN. It is worth remarking that these considerations

are model-specific. That is, the choice of such hyper-parameters

must be carefully done depending on the specific QN under study.

For the synthetic case studies, we set T = 10 and ∆t = 0.01,

hence H = 1000.

Predictive power. We evaluate the predictive power of the learned

QNs by performing two distinct “what-if” analyses under unseen

configurations, by changing populations of clients and the concur-

rency levels of the stations, respectively.

What-if analysis over client population. We tested each of the

randomly generated QNs with 100 new initial population vectors

that were not used in the learning phase. We compared the averages
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Figure 7: Comparison between the ground-truth queue lengths and those predicted by the RNN-learned QN on the test case
that induced the maximum prediction error (4.19%), before and after the what-if change of server concurrency. The error was
attained on a randomly generated QN with M = 5 stations. The cyan line denotes the averages under the original conditions
(before the what-if change) with the ground-truth QN; the green line gives the predictions of the RNN-learned QN with the
original values; the red line shows ground-truth simulations with the unseen number of servers for the bottleneck station
(increased from 17 to 37); the blue line shows the averages after the what-if change for the RNN-learned QN.

(over 500 stochastic simulations) of the the ground-truth queue-

length dynamics with those produced by the RNN-learned QN with

those unseen initial conditions.

Figure 4a shows a scatter plot of the prediction error with respect

to the total number of clients circulating in the system, reporting

errors less than 10% in all cases. The box-plots in Figure 4b show

that there is no statistically significant difference between the errors

for the diffrent sized models. Figure 5 compares the predicted and

ground-truth queue lengths for the instance with the maximum

prediction error, showing a very good generalizing power for the

queue-length dynamics at all stations.

What-if over concurrency levels. To validate the predictive power
under varying concurrency levels, for each generated QN we found

the station with the highest ratio between the steady state queue

length and its number of servers (bottleneck), and added servers in

steps of 20 to this station until it was not the bottleneck anymore.

Then we compared the dynamics of the ground-truth model (i.e.,

simulated with the original P and µ but with the new server con-

currency levels) against those obtained by simulating the learned

model with the new server concurrency levels. We considered the

notion of prediction error as shown in Equation (5).

Figure 6a shows the results of this what-if study, reporting a

prediction error less than 5% across all instances. Also in this case,

there is no statistically significant difference in the error statistics

depending on the network sizeM (see Figure 6b). Figure 7 plots the

comparison of the queue-length dynamics of the what-if instance

(i.e., with an unseen server concurrency level) that reported the

maximum prediction error (i.e., 4.5%) against the original ones (i.e.,

prediction error of 3.1%). We can appreciate that the unseen con-

currency levels do change the QN behavior dramatically, effectively

switching the bottleneck from station 3 to station 2.

This result does support the combination of machine learning

and white-box performance models by showing that, once learned,

the QN can be used for evaluating the behavior of the model under

execution scenarios for which the QN has not been trained.

4.2 Real case study
Set-up. The benchmark used in this evaluation is based on an

in-house developed web application that serves user requests with

an input dependent load. We deployed the target application as

a NodeJs [53] load-balancing system with three replicas. Figure 8

(left) depicts the system architecture. ComponentW represents the

reference station, where clients enter the system by issuing requests

to the load balancer LB, which redistributes them across the web

servers uniformly. In the real system, such uniform assignment is

achieved by fixing equal weights to the target nodes. Components

C1, C2, and C3 represent the three web-server instances devoted

to the actual processing of user requests (e.g., producing an HTML

page). Each node in the Figure 8 is annotated with its concurrency

level (i.e., the number of available processes), which we considered

fixed parameters.

Specifically, we implemented W as a multi-threaded Python

program. Each thread runs an independent concurrent user (i.e., one

of the N processes) that iteratively accesses the system, sleeping for

an exponentially distributed delay between subsequent requests;LB
is a single-threaded NodeJs web server which act as a randomized

load balancer. Finally, C1, C2 and C3 are multi-threaded NodeJs

Clusters
1
whose load is generated by sleeping for an exponential

distributed delay (i.e., the average value is given as input parameter

of each cluster). We remark that although we were able to roughly

fix the distribution of the service demands their exact shape is still

unknown since it is influenced by subtler factors that are hidden to

developers (e.g., internal behavior of theweb server, communication

aspects). Moreover, in order to evaluate our learning methodology

in an interesting scenario, we deployed the three replicas of the

system with different parallelism levels and different service rates.

Similarly to [61], we collected the queue length traces used as

input of the learning process (see Section 3) by parsing the access

logs generated by each component of the system. However, other

monitoring solutions could be used, based for instance on recording

the TCP backlog [29]. With this set-up, we were able to sample

data with a measurement step ∆t = 0.01 s, which turned out to be

sufficient for observing the transient dynamics of each component

without altering the application behavior. The replication package

for this evaluation is publicly available at https://zenodo.org/record/

3679251.

Model Learning: We built the training dataset as a collection of

queue length traces produced by the target application under 50

different initial population vectors where each station had a number

of clients drawn uniformly at random between 0 and 30. For each

1
https://nodejs.org/api/cluster.html
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Figure 9: Comparison between the real system dynamics (i.e., marked lines) and the RNN-learned QN (i.e., straight lines) in
what-if cases over increasing circulating populations N , given by N = 26k .

such initial population vector the trace consisted of the average

queue-length dynamics over 500 independent executions.

The target model of the learning process is reported in the right

side of Figure 8. In particular, components C1, C2, C3 are modeled

by queuing stationsM2,M3,M4, while both the workload generator

W and the load balancer LB are abstracted by the same station

M1, since the delay introduced by LB is negligible with respect to

the other components of the network. All the parameters of the

resulting QN were considered parameters to be learned by the RNN.

Similarly to the synthetic case, the collected traces were split

into two halves for training and validation, respectively. We used

Adam [33] as the learning algorithm with learning rate equal to

0.01 and iterated until the error computed on the validation set did

not improve at least 0.01% in the last 50 iterations. With this, the

system parameters were learned in 27 minutes on average, with a

validation error of 3.89%.

What if analysis: In the following we evaluate the predictive

power of the RNN learned QN under an unseen number of clients,

concurrency levels and routing probabilities. Differently from the

synthetic case, here we emulate a concrete usage scenario in which

an initially hidden performance bottleneck is discovered and solved

only relying on the insights given by the learned model. For doing

so, we exercised both the QN model and the real system under

an increasing number of clients (here each simulation averaged

over 300 simulation runs instead of 500 since for evaluating the

what-if analysis less runs are needed) by a factor k = 2, . . . , 5 with

respect to an initial population which had 26 circulating clients.

Figure 9 reports the numerical results of this evaluation, showing a

trend that induces a saturation condition in stationM3. Overall, the

prediction error of the RNN is less than 10% across all instances.

In Figure 10 we report two different strategies that can be used

in order to remove the bottleneck: we reevaluated both the learned

model and the real system starting from the case k = 4 (see Fig-

ure 9c), varying either the number of servers or the load-balancing

weights/routing probabilities. Figure 10a shows the dynamics of

the system when the number of servers ofM3 is increased from 5 to

8, Figure 10b reports the what-if scenario in which we change the

load distribution strategy from a uniform probability distribution

to one where stationsM2,M3, andM4 are targeted with probability

0.35, 0.20 and 0.45, respectively. Consistently with the intuition,

both what-if instances show a lighter pressure (i.e., smaller queue

length) at M3. Furthermore, both situations are well predicted by

the RNN, yielding an accuracy error of ca. 6% with respect to the

real system dynamics.

5 RELATEDWORK
In this section we relate against techniques related to the following

lines of research: performance prediction from programs, gener-

ation of performance models from programs, and estimation of

parameters in QNs.
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Figure 10: a)What-if scenario changing the concurrency level ofM3 from5 to 8. b)What-if scenario changing the load balancing
strategy from a uniform probability distribution to the case where stationsM2,M3, andM4 are reached with probabilities 0.35,
0.20 and 0.45, respectively. Both scenarios have been evaluated on the real case study and the RNN-learned QN with an initial
population vector with k = 4 from Figure 9c.

5.1 Program-driven Performance Prediction
A line of work focuses on the derivation of performance predictions

from code analysis. PerfPlotter uses program analysis (specifically,

probabilistic symbolic execution [21]) to generate a performance
distribution, i.e., the probability distribution function of a perfor-

mance metric such as response time [12]. Thus, the result of the

overall analysis is a quantitative model but it is not predictive.

Furthermore, the approach applies to single-threaded applications,

hence important performance-influencing sources such as threads

contention cannot be captured.

Other related approaches consist in predicting performance mod-

els using black-box methods. They are particularly relevant for

variability-intensive systems, where they relate configuration set-

tings in a software system with their performance impact [47, 48].

Machine-learning techniques have been used also in this case to

build the predictive model [24, 30, 47, 59]. For instance, in [48]

the system model is assumed to be a linear combination of binary

variables (e.g., tree structured models), each of them denoting the

presence or the absence of a feature. Then the performance model

is computed by means of linear regression over pairs of configura-

tions and measured performance indices. The influence of possible

feature interactions is embedded in the model by introducing fresh

variables so as to preserve the linear structure of the model. As

discussed in [59], these black-box approaches can be seen as com-

plementary to ours, which can provide a reliable mathematical

abstraction by which performance can be explicitly associated to

software components, thus increasing the explanatory power of

the prediction.

5.2 Program-driven Generation of
Performance Models

While model-driven approaches to software performance have been

researched quite intensively [15], program-driven generation of per-

formance models has been less explored, and has been concerned

with specific kinds of applications. Indeed, the early approach by

Hrischuk et al. is concerned with the generation of software perfor-

mance models (specifically, layered queuing networks [19]) from

a class of distributed applications whose components communi-

cate solely by remote procedure calls [26]. Brosig et al. derive a

component-based performance model from applications running on

the Java EE platform [10, 11]. Tarvo and Reiss develop a technique

for the extraction of discrete-event simulation models from a class

of multi-threaded programs covering task-oriented applications,

whereby the business logic consists in assigning a given workload

(i.e., a task) to a number of worker threads from a pool [52]. Their

use of a simulation model as opposed to an analytical model is

justified by the difficulty in building the latter, especially to model

such diverse performance-related phenomena as queuing effects,

inter-thread synchronization, and hardware contention. This is in-

deed the limitation that we aim to overcome with our approach, by

building the analytical model automatically from measurements.

5.3 Estimation of service demands in queuing
networks

Most of the literature concerning the estimation of QN parameters

focuses on service demands. In particular, it considers the situation

when the system is in the steady-state, i.e., when a sufficiently large

amount of time has passed such that its behavior does not depend

on the initial conditions [49]. Mathematically, the assumption of

a steady-state regime enables the leveraging of a wealth of ana-

lytical results for QNs [8]. Based on these are several estimation

methods using techniques such as linear regression [43], quadratic

programming [27], non-linear optimization [5, 40], clustering re-

gression [16], independent component analysis [46], pattern match-

ing [17], Gibbs sampling [51, 60], and maximum likelihood [61].

The main advancement of our approach with respect to the state

of the art is the ability to learn the whole model, i.e., both the service

demands and the QN topology (via the routing probabilities). In

addition, since it uses an ODE representation, it does not make

assumptions about the stationarity of the system; indeed, we do

train our RNN using traces that include the transient dynamics.

Actually, our approach uses the same QN model as the service-

demand estimation method recently proposed in [27], which is also

based on fluid approximation.
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Another difference with practical implications regards the type

of data using for the estimation. Approaches such as [16, 17, 31,

39, 46] require measurements of quantities that may be difficult to

obtain. For example, utilization metrics may not be available to the

user when there is no complete information about the underlying

hardware stack, for instance in a virtualized system running on

a Platform-as-a-Service environment. Instead, measuring queue-

length samples only has been regarded as more advantageous [27,

61], since this information can be often obtained from application

logs or by means of operating system calls.

6 CONCLUSIONS
We presented a novel methodology for learning queuing network

(QN) models of software systems. The main novelty lies in the

encoding of the QN as an explainable recurrent neural network

where inputs and weights are associated to standard queuing net-

work inputs and parameters. We reported promising results on

synthetic examples and on a real case study, where the maximum

discrepancy between the dynamics predicted by the learned models

and those computed through the ground truth is less than the 10%

when the system is evaluated under unseen configurations that

are not included in the training set. We plan to extend our tech-

nique for capturing more complex models and systems, such as

mixed multi-class and layered QNs, and to explore other learning

methodologies such as neural ODEs [13] and residual networks [63].

Moreover, in order to improve the accuracy of the learned models

and to reduce the simulation time, we plan to investigate active

learning techniques that enable an informed sampling of the initial

conditions [32].

ACKNOWLEDGMENTS
This work has been partially supported by the PRIN project “SE-

DUCE” no. 2017TWRCNB.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, and Paul Barham et Al. 2015. TensorFlow: Large-

ScaleMachine Learning onHeterogeneous Systems. https://www.tensorflow.org/

Software available from tensorflow.org.

[2] Aldeida Aleti, Barbora Buhnova, Lars Grunske, Anne Koziolek, and Indika

Meedeniya. 2013. Software Architecture Optimization Methods: A Systematic

Literature Review. IEEE Trans. Software Eng. 39, 5 (2013), 658–683. https:

//doi.org/10.1109/TSE.2012.64

[3] Davide Arcelli, Vittorio Cortellessa, Antonio Filieri, and Alberto Leva. 2015.

Control Theory for Model-based Performance-driven Software Adaptation. In

QoSA. 11–20. https://doi.org/10.1145/2737182.2737187

[4] Uri M. Ascher and Linda R. Petzold. 1988. Computer Methods for Ordinary
Differential Equations and Differential-Algebraic Equations. SIAM.

[5] Mahmoud Awad and Daniel A. Menasce. 2017. Deriving Parameters for Open

and Closed QN Models of Operational Systems Through Black Box Optimization.

In ICPE.
[6] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni.

2004. Model-Based Performance Prediction in Software Development: A Survey.

IEEE Trans. Software Eng. 30, 5 (2004), 295–310.
[7] Simonetta Balsamo and Moreno Marzolla. 2005. Performance evaluation of UML

software architectures with multiclass Queueing Network models. InWOSP.
[8] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor Trivedi. 2005. Queue-

ing networks and Markov chains: modeling and performance evaluation with com-
puter science applications. Wiley.

[9] Luca Bortolussi, Jane Hillston, Diego Latella, and Mieke Massink. 2013. Con-

tinuous approximation of collective system behaviour: A tutorial. Performance
Evaluation 70, 5 (2013), 317–349.

[10] Fabian Brosig, Nikolaus Huber, and Samuel Kounev. 2011. Automated extrac-

tion of architecture-level performance models of distributed component-based

systems. In ASE.

[11] Fabian Brosig, Samuel Kounev, and Klaus Krogmann. 2009. Automated Extraction

of Palladio Component Models from Running Enterprise Java Applications. In

VALUETOOLS.
[12] Bihuan Chen, Yang Liu, and Wei Le. 2016. Generating performance distributions

via probabilistic symbolic execution. In ICSE.
[13] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. 2018.

Neural ordinary differential equations. In Advances in neural information process-
ing systems. 6571–6583.

[14] François Chollet et al. 2015. Keras. https://keras.io.

[15] Vittorio Cortellessa, Antinisca Di Marco, and Paola Inverardi. 2011. Model-Based
Software Performance Analysis. Springer.

[16] Paolo Cremonesi, Kanika Dhyani, and Andrea Sansottera. 2010. Service time esti-

mation with a refinement enhanced hybrid clustering algorithm. In International
Conference on Analytical and Stochastic Modeling Techniques and Applications.
Springer, 291–305.

[17] Paolo Cremonesi and Andrea Sansottera. 2014. Indirect estimation of service

demands in the presence of structural changes. Performance Evaluation 73 (2014),

18–40.

[18] A. Di Marco and P. Inverardi. 2004. Compositional generation of software

architecture performance QN models. In WICSA 2004. 37–46. https://doi.org/10.

1109/WICSA.2004.1310688

[19] Greg Franks, Tariq Al-Omari, Murray Woodside, Olivia Das, and Salem Derisavi.

2009. Enhanced Modeling and Solution of Layered Queueing Networks. IEEE
Trans. Software Eng. 35, 2 (2009), 148–161.

[20] JoshuaGarcia, Ivo Krka, ChrisMattmann, andNenadMedvidovic. 2013. Obtaining

ground-truth software architectures. In ICSE. 901–910.
[21] Jaco Geldenhuys, Matthew B. Dwyer, and Willem Visser. 2012. Probabilistic

Symbolic Execution. In ISSTA. 166–176.
[22] Daniel T. Gillespie. 2007. Stochastic Simulation of Chemical Kinetics. Annual

Review of Physical Chemistry 58, 1 (2007), 35–55.

[23] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. 1982. Gprof: A

Call Graph Execution Profiler. In Proceedings of the 1982 SIGPLAN Symposium on
Compiler Construction (SIGPLAN’82). 120–126.

[24] J. Guo, K. Czarnecki, S. Apel, N. Siegmund, and A. Wasowski. 2013. Variability-

aware performance prediction: A statistical learning approach. In ASE.
[25] J. Hillston. 1996. A Compositional Approach to Performance Modelling. Cambridge

University Press.

[26] C Hrischuk, J Rolia, and C Murray Woodside. 1995. Automatic generation of a

software performance model using an object-oriented prototype. In MASCOTS.
[27] Emilio Incerto, Annalisa Napolitano, andMirco Tribastone. 2018. MovingHorizon

Estimation of Service Demands in Queuing Networks. In MASCOTS.
[28] Emilio Incerto, Mirco Tribastone, and Catia Trubiani. 2016. Symbolic Perfor-

mance Adaptation. In Proceedings of the 11th International Symposium on Software
Engineering for Adaptive and Self-managing Systems (SEAMS).

[29] Emilio Incerto, Mirco Tribastone, and Catia Trubiani. 2017. Software Performance

Self-Adaptation through Efficient Model Predictive Control. In ASE.
[30] Pooyan Jamshidi, Miguel Velez, Christian Kästner, and Norbert Siegmund. 2018.

Learning to sample: exploiting similarities across environments to learn perfor-

mance models for configurable systems. In ESEC/FSE.
[31] Amir Kalbasi, Diwakar Krishnamurthy, Jerry Rolia, and Michael Richter. 2011.

MODE: Mix driven on-line resource demand estimation. In Proceedings of the
7th International Conference on Network and Services Management. International
Federation for Information Processing, 1–9.

[32] Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, Jianmei Guo,

and Sven Apel. 2019. Distance-based sampling of software configuration spaces.

In Proceedings of the 41st International Conference on Software Engineering. IEEE
Press, 1084–1094.

[33] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio
and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6980

[34] Matthias Kowal, Ina Schaefer, and Mirco Tribastone. 2014. Family-Based Perfor-

mance Analysis of Variant-Rich Software Systems. In Fundamental Approaches to
Software Engineering (FASE). 94–108.

[35] Matthias Kowal, Max Tschaikowski, Mirco Tribastone, and Ina Schaefer. 2015.

Scaling Size and Parameter Spaces in Variability-Aware Software Performance

Models. In ASE. 407–417. https://doi.org/10.1109/ASE.2015.16

[36] Heiko Koziolek. 2010. Performance evaluation of component-based software

systems: A survey. Performance Evalutation 67, 8 (2010), 634–658.

[37] T. G. Kurtz. 1970. Solutions of ordinary differential equations as limits of pure

Markov processes. In J. Appl. Prob., Vol. 7. 49–58.
[38] Marin Litoiu. 2019. Panel: AI and Performance. In International Conference on

Performance Engineering (ICPE). https://icpe2019.spec.org/conference-program.

html#session5

[39] Zhen Liu, Laura Wynter, Cathy H Xia, and Fan Zhang. 2006. Parameter inference

of queueing models for IT systems using end-to-end measurements. Performance
Evaluation 63, 1 (2006), 36–60.

SESSION 2: Performance Learning ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

65

https://www.tensorflow.org/
https://doi.org/10.1109/TSE.2012.64
https://doi.org/10.1109/TSE.2012.64
https://doi.org/10.1145/2737182.2737187
https://keras.io
https://doi.org/10.1109/WICSA.2004.1310688
https://doi.org/10.1109/WICSA.2004.1310688
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/ASE.2015.16
https://icpe2019.spec.org/conference-program.html#session5
https://icpe2019.spec.org/conference-program.html#session5


[40] Daniel A Menasce. 2008. Computing Missing Service Demand Parameters for

Performance Models.. In Int. CMG Conference. 241–248.
[41] Tom M. Mitchell. 1997. Machine learning. McGraw-Hill. http://www.worldcat.

org/oclc/61321007

[42] Object Management Group. 2007. UML Profile for Modeling and Analysis of Real-
Time and Embedded Systems (MARTE). Beta 1. OMG. OMG document number

ptc/07-08-04.

[43] Giovanni Pacifici, Wolfgang Segmuller, Mike Spreitzer, and Asser Tantawi. 2008.

CPU demand for web serving: Measurement analysis and dynamic estimation.

Performance Evaluation 65, 6-7 (2008), 531–553.

[44] Barak A Pearlmutter. 1989. Learning state space trajectories in recurrent neural

networks. Neural Computation 1, 2 (1989), 263–269.

[45] Wojciech Samek, Thomas Wiegand, and Klaus-Robert Müller. 2017. Explainable

Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning

Models. CoRR abs/1708.08296 (2017).

[46] Abhishek B Sharma, Ranjita Bhagwan, Monojit Choudhury, Leana Golubchik,

Ramesh Govindan, and Geoffrey M Voelker. 2008. Automatic request categoriza-

tion in internet services. ACM SIGMETRICS Performance Evaluation Review 36, 2

(2008), 16–25.

[47] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner. 2015.

Performance-influence Models for Highly Configurable Systems. In ESEC/FSE.
[48] Norbert Siegmund, Sergiy S. Kolesnikov, Christian Kästner, Sven Apel, Don

Batory, Marko Rosenmüller, and Gunter Saake. 2012. Predicting performance via

automated feature-interaction detection. In ICSE. 167–177.
[49] Simon Spinner, Giuliano Casale, Fabian Brosig, and Samuel Kounev. 2015. Eval-

uating approaches to resource demand estimation. Performance Evaluation 92

(2015), 51–71.

[50] William J. Stewart. 2007. Performance Modelling and Markov Chains. In SFM.

1–33.

[51] Charles Sutton and Michael I Jordan. 2011. Bayesian inference for queueing

networks and modeling of Internet services. The Annals of Applied Statistics
(2011), 254–282.

[52] Alexander Tarvo and Steven P. Reiss. 2014. Automated analysis of multithreaded

programs for performance modeling. In ASE.
[53] Stefan Tilkov and Steve Vinoski. 2010. Node. js: Using JavaScript to build high-

performance network programs. IEEE Internet Computing 14, 6 (2010), 80–83.

[54] Mirco Tribastone. 2010. Relating layered queueing networks and process algebra

models. InWOSP/SIPEW.

[55] Mirco Tribastone. 2013. A Fluid Model for Layered Queueing Networks. IEEE
Transactions on Software Engineering 39, 6 (2013), 744–756. https://doi.org/10.

1109/TSE.2012.66

[56] Mirco Tribastone, Jie Ding, Stephen Gilmore, and Jane Hillston. 2012. Fluid

Rewards for a Stochastic Process Algebra. IEEE Trans. Software Eng. 38 (2012),
861–874.

[57] Mirco Tribastone, Stephen Gilmore, and Jane Hillston. 2012. Scalable Differential

Analysis of Process Algebra Models. IEEE Transactions on Software Engineering
38, 1 (2012), 205–219. https://doi.org/10.1109/TSE.2010.82

[58] Mirco Tribastone, Philip Mayer, and Martin Wirsing. 2010. Performance Predic-

tion of Service-Oriented Systems with Layered Queueing Networks. In Leveraging
Applications of Formal Methods, Verification, and Validation (Lecture Notes in Com-
puter Science), Tiziana Margaria and Bernhard Steffen (Eds.), Vol. 6416. Springer,

51–65. http://cse.lab.imtlucca.it/~mirco.tribastone/papers/isola2010.pdf

[59] Pavel Valov, Jean-Christophe Petkovich, Jianmei Guo, Sebastian Fischmeister,

and Krzysztof Czarnecki. 2017. Transferring Performance Prediction Models

Across Different Hardware Platforms. In ICPE.
[60] Weikun Wang and Giuliano Casale. 2013. Bayesian service demand estimation

using Gibbs sampling. In MASCOTS.
[61] Weikun Wang, Giuliano Casale, Ajay Kattepur, and Manoj Nambiar. 2016. Max-

imum likelihood estimation of closed queueing network demands from queue

length data. In ICPE.
[62] MurrayWoodside, Greg Franks, and Dorina C Petriu. 2007. The future of software

performance engineering. In Proceedings of the Future of Software Engineering
(FOSE). 171–187.

[63] Sergey Zagoruyko and Nikos Komodakis. 2016. Wide residual networks. arXiv
preprint arXiv:1605.07146 (2016).

[64] Dmitrijs Zaparanuks and Matthias Hauswirth. 2012. Algorithmic Profiling. In

PLDI. 67–76.

A APPENDIX
Proof of Theorem 2.1. We construct P̂ and µ̂ as follows:

P̂k ,i =


πk if i = k
Pk ,i

1−Pk ,k
(1 − πk ) if Pk ,k < 1 and i , k

1−πk
M−1

otherwise

µ̂k =

{ Pk ,k−1
πk−1

µk if Pk ,k < 1

0 otherwise

We prove that, for each i , k we have P̂k ,i µ̂k = Pk ,iµk and

(P̂k ,k − 1)µ̂k = (Pk ,k − 1)µk . Then (a) follows by substitution.

We now consider the case Pk ,k < 1.

P̂k ,i µ̂k =
Pk ,i

1 − Pk ,k
(1 − πk )

Pk ,k − 1

πk − 1

µk

=
Pk ,i

Pk ,k − 1

(πk − 1)
Pk ,k − 1

πk − 1

µk

= Pk ,iµk .

(P̂k ,k − 1)µ̂k = (πk − 1)
Pk ,k − 1

πk − 1

µk

= (Pk ,k − 1)µk .

We now consider the case Pk ,k = 1. We remark that, in this case,

Pk ,i = 0 if i , k .

P̂k ,i µ̂k =
1 − πk
M − 1

0 = 0 = 0µk = Pk ,iµk .

(P̂k ,k − 1)µ̂k = (πk − 1)0 = 0 = 0µk = (Pk ,k − 1)µk .

The point (b) is true by definition of P̂. Statement (c) can be

shown as follows. When Pk ,k < 1:∑
i
P̂k ,i = P̂k ,k +

∑
i,k

P̂k ,i

= πk +
∑
i,k

Pk ,i
1 − Pk ,k

(1 − πk )

= πk + 1 − πk = 1

where the last statement follows because

∑
i Pk ,i = 1,

∑
i,k Pk ,i =

1 − Pk ,k . When Pk ,k = 1:∑
i
P̂k ,i = P̂k ,k +

∑
i,k

P̂k ,i

= πk +
∑
i,k

1 − πk
M − 1

= πk +
M − 1

M − 1

(1 − πk )

= πk + 1 − πk = 1

Statement (d) can be shown observing that 0 ≤ πk < 1, 1−Pk ,k ≥ 0

(since Pk ,k ≤ 1) and 1 − πk > 0. Statement (e) can be shown

observing that µk ≥ 0, Pk ,k − 1 ≤ 0 and πk − 1 < 0. □

SESSION 2: Performance Learning ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

66

http://www.worldcat.org/oclc/61321007
http://www.worldcat.org/oclc/61321007
https://doi.org/10.1109/TSE.2012.66
https://doi.org/10.1109/TSE.2012.66
https://doi.org/10.1109/TSE.2010.82
http://cse.lab.imtlucca.it/~mirco.tribastone/papers/isola2010.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Queuing Networks
	2.2 Fluid Approximation

	3 Learning methodology
	3.1 ODE Discretization
	3.2 RNN Encoding
	3.3 Input data
	3.4 Learning function

	4 Numerical Evaluation
	4.1 Synthetic case studies
	4.2 Real case study

	5 Related work
	5.1 Program-driven Performance Prediction
	5.2 Program-driven Generation of Performance Models
	5.3 Estimation of service demands in queuing networks

	6 Conclusions
	Acknowledgments
	References
	A Appendix



