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ABSTRACT 
Performance monitoring is a useful tool to leverage when 
additional insight is needed or warranted when evaluating the 
performance results of a compute solution or benchmark. More 
often it seems, the use of performance monitoring is an 
afterthought and is utilized only when unexpected results are 
encountered. Given that most methods for implementing 
performance monitoring require running additional applications 
or kernel code in parallel with the application or benchmark itself, 
it is understandable that there may be a bias against or a 
reluctance to leverage performance monitoring capabilities 
throughout the performance evaluation period as well as 
extending its use into a production environment.  

In our paper, we’ll introduce a performance monitoring 
architecture that leverages an out of band (OOB) approach for 
measuring key server resource performance metrics. We will 
demonstrate that this approach has zero impact to the 
performance of the workload running on the server itself and is 
suitable for use in a production environment. Although the out of 
band approach inherently has   limits to the amount of 
information that can be gathered for performance analysis, we 
will demonstrate the usefulness of the information that is 
available today in debugging performance related issues.  
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1 Introduction 
Resource monitoring is not a new concept in the performance 
analysis and benchmarking community. The concepts behind 
monitoring hardware resource utilization and software 
interaction is well documented and beyond the scope of this 
paper. Until recently however, most approaches to performance 
monitoring have been accomplished by leveraging tools that have 
been written to run as applications or kernel modules designed for 
a given operating system and hardware architecture. Examples 
include top, sar, and turbostat on Linux based OSes as well as 
perfmon and Intel® VTune on Microsoft based OSes, to name just 
a few. These popular tools must be run in parallel with the 
benchmark/workload and analysis. These tools, while useful, also 
come with their own performance tax. Since they are executed 
within the same environment, the tools unavoidably use the same 
compute resources (CPU time, memory bandwidth, etc) as the 
workloads being analyzed. This arrangement has the potential to 
skew the performance results (usually negatively) and as a result, 
are often not employed in production, limiting their use as a first 
approach to performance analysis. 
 
Over the past several years, server hardware vendors have been 
gradually including basic performance monitoring capabilities for 
their out of band management solutions. As far back as the mid to 
late 2000s, HP Servers began offering methods for their customers 
to access basic CPU utilization and average frequency. Although 
it offered out of band access to CPU metrics, the information was 
gathered using host side methodologies and was not completely 
non-intrusive with applications running on the server itself. 
 
More recently, with the release of servers supporting Intel Xeon 
Scalable Processors in 2017, several server vendors began offering 
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a more robust approach to out of band performance monitoring 
that included expanded metrics that provided at least CPU 
utilization, I/O Utilization, and Memory Bus utilization metrics. 
These metrics are not only delivered out band through the base 
server management controller, but they are also measured outside 
the scope of the processor’s execution pipeline, meaning that they 
are nearly 100% non-interfering.  
 
One such server provider, HPE, offers the ability for their users to 
gather performance monitoring data from their servers leveraging 
an open standard set of APIs [1]. In this paper, we will utilize this 
capability to explore the following: 

1) Obtain OOB performance telemetry by leveraging open 
standard APIs 

2) Demonstrate “do no harm” (DNH) testing for compute 
intensive workloads 

3) Demonstrate DNH testing for power efficiency 
workloads 

4) Provide example performance analysis results from 
looking at various benchmark workload examples. 

2 Accessing Performance Monitoring Data 
Accessing performance monitoring data out of band, on a server, 
requires management access to the server’s base management 
controller (BMC.) The BMC is responsible for accessing server 
component (CPU, Memory, Fans, I/O devices) sensor telemetry if 
and when it is made available by the component vendor. When 
telemetry does exist, the BMC can optionally provide that data to 
customers through various closed or open interfaces.  
 
Since the BMC executes separately from the host (CPU, Memory, 
I/O, Operating System), requests to the BMC should not interfere 
with workloads running on the host – specifically when requests 
come via the external network. We will test/prove this theory in 
Section 4. 

2.1 Redfish (RESTful API) 
The DTMF forum (an industry member working group) publishes 
several open standard interfaces for managing information 
technologies. The Redfish [2] specification provides an open 
standard interface for interacting with a server’s BMC via simple 
HTTP style communication (RESTful API). The specification 
outlines the methods for interacting with BIOS configuration, 
plug-in devices configuration, basic server features, as well as 
server telemetry. 
 
We will leverage the telemetry services functionality that is 
defined in the Redfish specification and is implemented on the 
latest server offerings provided by HPE. The telemetry provided 
by HPE ProLiant and Synergy servers [3] support access to the 
following performance related sensors (metrics) in 10 minute, 1 
hour, 24 hour, and 1 week reports: 
 
 
 

1. CPU Utilization 
2. Memory Bus Utilization 
3. I/O Bus Utilization 
4. CPU Interconnect  Utilization 
5. Average CPU frequency 
6. Average CPU power 
7. Processor Jitter (frequency changes) 

2.2 Alternative methods. 
Beyond the Redfish interface, there exist other methods to access 
OOB performance data. Several server vendors, including HPE, 
also provide a graphical user interface via a web page (Web GUI) 
hosted by the BMC itself. These interfaces typically provide 
current performance status as well as the ability to view 
performance graphs over selected time frames. While these 
interfaces simply provide another access mechanism to the data, 
leveraging the interface typically doesn’t scale well as it requires 
human interaction (i.e. not scriptable.) 
 
Redfish and the RESTful API is not the only server programmable 
interface to obtain management data. The Intelligent Platform 
Management Interface (IPMI) [8] also provides a 
hardware/software management architecture that could be used 
to achieve similar results. This specification however lacks clear 
standard definitions for reporting performance metrics. 
Implementations that leverage IPMI for telemetry are likely to be 
OEM specific and vary between vendors.  
 
Regardless of which programming interface is used, it is 
important to distinguish the hardware interface that will be 
leveraged. For instance, with Redfish, you can access the data from 
the host side or out of band. While the data is still collected by the 
BMC via out of band mechanisms, there are allowances for the 
tools to run on the server host itself. It should be obvious that 
when accessing data from a host side tool, some of the advantages 
will be lost. Specifically the host side performance penalty when 
comparing to existing OS level tools that gather similar data. For 
our research, we will focus on using a remote connection (i.e. 
network – TCP/IP) to collect performance data. 

3 Experimental Setup 
To demonstrate the usefulness of leveraging the OOB 
performance monitoring, we will look at a setup in Figure [1], 
where a client running on hardware separate from the server 
under test, will request telemetry data from a server that supports 
reporting performance telemetry via the Redfish  interface. The 
client setup can be as simple or as complex as the solution dictates 
(monitoring a single server or scaled out to monitoring 1000s of 
servers). The data is stored on the remote client and reports can 
be generated for a particular server over a given time-frame.  
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Figure 1. Experimental setup for gathering server performance 
data 
 
Our DNH testing leveraged a Windows based client with Python 
3.4 installed, with the requests library installed in order to leverage 
the HTTP nature of RESTful API accesses. The client was set up 
to attempt to create a denial of service type of test. Thousands of 
back to back requests (occurring every X {timeframe}) for 
telemetry were initiated to ensure that the server’s host side 
performance wasn’t negatively impacted. 
 
For scale-out testing, we leveraged a server running Linux, with 
Python 3.7, and a structured database to store telemetry for dozens 
of managed servers in a lab that is setup to mimic a datacenter-
like environment. The managed servers were running a variety of 
benchmarks including SPEC CPU® 2017, SPECjbb®2015, 
SPECvirt_sc® 2013, etc. Given that these servers are used for 
publication of benchmark results for HPE, this is considered a 
“production” level environment where any impact to solution 
performance would have a negative impact to our business. 
Equally important in benchmark results analysis, the information 
gleaned from the performance reports would potentially be 
considered important and business critical. 
 
It is important to note that for 10 minute monitoring reports, the 
data is averaged at 20 second intervals. For 1 hour, 24 hour, and 1 
week reports, the data is averaged at 20 second, 5 minute, and 30 
minute averages respectively. For DNH testing, we requested 
reports from the test server for all 4 intervals. For scale out testing, 
only 24 hour data was captured to evaluate the usefulness of 
leveraging the longer 5 minute averages for the metrics.  

4 Evaluation and Analysis 
We break down our evaluation into two categories: DNH 
measurement verification, and workload profile characterization. 
For both categories, the target server’s configuration was 
unchanged during the measurements, except where noted.  

4.1 Do No Harm Verification  
For the first DNH test, SPEC CPU 2017 was run on a 2-processor 
HPE ProLiant DL380 Gen10 server running SLES 15 SP1. A single 
iteration of SPECrate®2017_int_base and 
SPECrate®2017_fp_base were run and an estimated overall metric 
was calculated from the results. A second measurement was then 
started. While the second run was executing, 7000 consecutive 
queries were made to the RESTful API to collect performance 
monitoring data. An estimated result was calculated from the 
second measurement’s results. Table [1] shows the SPEC CPU 
2017 metric estimates for each test. The results shown in the table 
are pulled from an actual SPEC CPU 2017 run. They are labeled as 
metrics since they show more detail than the standard FDR and 
are not published results. 
 

SPEC CPU 2017  metrics 
Server under 
no external 
monitoring 

Server under 
high external 
monitoring 

SPECrate2017_int_base 
(est.) 

299.33 300.40 

SPECrate2017_fp_base 
(est.) 

255.20 255.54 

Table 1. Do no harm validation results using SPEC CPU 2017 as 
workload  
 
The performance difference between the unmonitored and 
monitored measurements was less than 0.5%. This difference is 
well within the run-to-run variation of the benchmark. 
 
The second DNH test was run using the SPECpower_ssj2008 
benchmark. In this test case, both server power and workload 
performance are captured. A 2-processor HPE ProLiant DL380 
Gen10 server running Windows Server 2012 R2 Datacenter was 
used for the test. As with the first test, an initial measurement was 
made by running the benchmark with no external monitoring of 
the server. A second measurement was performed while 1000 
consecutive queries were made to the RESTful API. Table [2] 
shows the results for both measurements. 
 

SPECpower_ssj2008  
metrics 

Server under 
no external 
monitoring 

Server under 
high external 
monitoring 

SPECpower_ssj2008 result 
(overall ssj_ops/watt) 

11,022 11,052 

Server power at 100% load 
(W) 

465 465 

ssj_ops at 100% load 5,304,235 5,307,336 
Server power at idle (W) 55.9 55.9 

Table 2. Do no harm validation results using SPECpower_ssj2008 
as workload 
 
Table [2] shows that the difference in power and performance 
between the unmonitored and monitored measurements was less 
than 0.5%, within the run-to-run variation of the benchmark. 
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Both of the DNH test cases demonstrate that the impact of 
accessing the OOB performance monitoring data is negligible to 
the system performance. Additionally, the SPECpower_ssj2008 
test case shows the effect of OOB performance monitoring to the 
system power is likewise negligible. 
 

4.2  SPEC CPU 2017 run analysis 
In this section we will show OOB performance measurements 
gathered while running the SPECrate2017 benchmark suites. The 
benchmarks were run on the same 2-processor server running 
SLES15 SP1 as was used in the DNH tests. The SPEC CPU 2017 
benchmark harness was configured on the server as was the 
compiler needed to create the benchmark suites’ workload 
binaries. SPECrate2017_int_base was run first, which required the 
compilation of the workload binaries. Immediately following the 
benchmark’s completion, SPECrate2017_fp_base was run; its 
workload binaries were also compiled at the start of the 
measurement. Finally, both the integer and floating point suites 
were then immediately run again. For all 4 measurements, a single 
execution of each base workload module was performed. Figures 
[2] and [3] show the plotted data gathered from the OOB 
performance monitor during the runs.  Figure [2] shows the 
utilization statistics and Figure [3] shows the processor 
characteristics. Note that the vertical axis for Figure [3] is 
logarithmic in order to clearly see all plots. 
 
The first SPECrate2017_int_base run started at 20:15:19 and 
completed at 22:00:26. The first SPECrate_fp_base run started 
immediately afterward and completed at 02:58:11. The second sets 
of runs completed at 04:25:51 and 08:22:55, respectively. 

 
The periods of lower CPU utilization coincide with the 
compilation phases for the first executions of the 
SPECrate2017_{int,fp}_base suites. The difference in the run 
profile of the benchmarks run with un-compiled and precompiled 
executables is highlighted in Figure [4], which shows the side-by-
side comparison of the CPU utilization during each run. 
 
Examining the performance counter data reveals a number of 
interesting insights into the benchmarks’ utilization patterns. It is 
clear that neither benchmark heavily taxes the IO subsystem, as 
its utilization rarely shows any significant usage. Likewise  little 
inter-socket IO traffic is seen, as represented by the CPU Int Con 
utilization graph in Figure [2], This is indicative of highly NUMA-
aware workloads, in this case a well-tuned SPEC CPU 2017 
configuration. Patterns can also be seen between the two sets of 
benchmark runs. Similar peaks and dips can be seen at the same 
point during each set of runs in the CPU, memory, and CPU 
interconnect utilizations, as well as the  Jitter Count and CPU0 
Power consumption. These peaks and valleys represent the 
differences in resource utilization of the individual workload 
modules within the benchmark suites. Correlating the usage 
patterns to the specific workload modules can provide insight into 
the modules’ bottlenecks and provide guidance to optimization 
efforts. Some of the counters seen in Figures [2] – [5] could be 
obtained from other methods such as in band performance 
monitoring software within an operating system. Other metrics, 
such as Jitter Count, are less easily obtained through alternative 
methods and may require tools that impact the performance being 
measured. 

 
Figure 2. Out of band utilization performance counters 
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Figure 3. Out of band CPU performance counters 

 
Figure 4. CPU utilization comparison of SPECrate2017 measurements using precompiled workload executables vs. compiling at runtime 
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4.3 Processor Jitter on SPECjbb2015  
For the final test case we utilized the SPECjbb2015 benchmark to 
demonstrate the effects of setting a BIOS option that eliminates 
computation jitter due to processor frequency transitions. A BIOS 
option on newer HPE servers called Processor Jitter Control [4]. 
The option can be set to find the maximum processor frequency 
achievable where no frequency variance occurs due to power or 
thermal constraints. The top frequency for the processor is set to 
this value.  In this test, a SPECjbb2015 Multi-JVM benchmark was 

run while the Jitter Control was enabled and then a second run 
was executed with the Jitter Control disabled. The results are 
shown in Figure [5]. As can be seen, there are no Jitter counts 
during the first SPECjbb2015 run, where Jitter Control was 
enabled. The second run show considerable jitter counts 
throughout the run, with the value increasing as the processor 
utilization increases. 
 
 
 
 

 
Figure 5. Out-of-band performance counters for back-to-back SPECjbb2015 benchmark runs with different Jitter-smoothing options 
 

5 Conclusions 
The goal of our research was to assess the viability of leveraging 
the out of band performance monitoring capabilities in a 
production environment. The main conclusions that we wanted to 
be able to draw were whether or not the access mechanisms would 
have a negative impact to overall system performance (as they had 
been in the past) as well as assess the usability of the data that 
could be mined. 
 
Based on our experience with running benchmarks in a 
competitive environment, where the results will have a direct 
impact on overall business success and market growth, we feel 
that the experimental test environment adequately portrays a 
“production” environment. Our do no harm testing included a 
highly competitive compute benchmark where as little as 1% 
impact to host side performance can mean the difference between 

1st and 3rd place in market leadership. The results of the do no 
harm testing with SPEC CPU 2017 demonstrated that out of band 
performance monitoring that is available today do not interfere 
with host side system performance. Since there isn’t an impact in 
performance such as might be seen when running tools that run 
on the host side, we consider this a major advantage to the out of 
band approach. A user of this model would essentially get 
performance data monitoring for “free”; meaning that there isn’t 
a performance overhead expense to obtain it. 
 
When looking at the results of the do no harm testing for 
SPECpower_ssj2008, we also wanted to make sure we would not 
take a power efficiency hit. Given that the results show that OOB 
accesses to the data did not impact the power (or the performance) 
levels we are concluding that the OOB accesses to performance 
data as outlined in the paper, do not have a measureable impact 
to either system power or performance. This differs from 
traditional in band measurement, where we have observed 
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periodic sampling of performance data throws a system out of 
idle, and as a result, increases idle power. 
 
Lastly, we acknowledge that the quantity and quality of data from 
OOB accessible methods are not as richly featured as many of 
those available in band; however, we did perform investigations 
to verify that the data we do have access to can demonstrate value. 
Our two cited examples (compile times with SPEC CPU 2017 and 
jitter on SPECjbb2015) are just a few simple scenarios where the 
data provided can help performance minded engineers correlate 
performance issues back to system behavior. As an aside, the 
compile time issue was discovered during our initial analysis of 
the first run of data in the experimental setup. The long delay was 
not well understood initially and the ability to visualize the gaps, 
and correlate the time stamps back to the benchmark logs proved 
extremely useful into understanding what was being observed. 
We believe that there is value beyond what we demonstrated here, 
and additional research will continue. 
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