
Out of Band Performance Monitoring of Server Workloads
Leveraging RESTful API to monitor compute resource utilization and performance related metrics for

server performance analysis.

Scott Faasse
 Server Power and Performance

 Hewlett Packard Enterprise
Houston, TX USA

 scott.faasse@hpe.com

James Bucek
 Performance Engineering

 Hewlett Packard Enterprise
 Houston, TX USA

james.bucek@hpe.com

David Schmidt
 Performance Engineering

Hewlett Packard Enterprise
 Houston, TX USA

d.schmidt@hpe.com

ABSTRACT
Performance monitoring is a useful tool to leverage when
additional insight is needed or warranted when evaluating the
performance results of a compute solution or benchmark. More
often it seems, the use of performance monitoring is an
afterthought and is utilized only when unexpected results are
encountered. Given that most methods for implementing
performance monitoring require running additional applications
or kernel code in parallel with the application or benchmark itself,
it is understandable that there may be a bias against or a
reluctance to leverage performance monitoring capabilities
throughout the performance evaluation period as well as
extending its use into a production environment.

In our paper, we’ll introduce a performance monitoring
architecture that leverages an out of band (OOB) approach for
measuring key server resource performance metrics. We will
demonstrate that this approach has zero impact to the
performance of the workload running on the server itself and is
suitable for use in a production environment. Although the out of
band approach inherently has limits to the amount of
information that can be gathered for performance analysis, we
will demonstrate the usefulness of the information that is
available today in debugging performance related issues.

CCS CONCEPTS
• General and reference → Measurement, Performance

KEYWORDS
Benchmarking; RESTful API; Performance Monitoring; Out of
Band; Performance Analysis; Servers

ACM Reference format:

Scott Faasse, James Bucek, and David Schmidt. 2019. Out of Band
Performance Monitoring of Server Workloads: Leveraging RESTful API to
monitor compute resource utilization and performance related metrics for
server performance analysis. In Proceedings of ACM/SPEC Int. Conference
on Performance Engineering (ICPE’20), April 20 – 24, 2020, Edmonton,
Canada. ACM, New York, NY, USA, 8 pages.
http://dx.doi.org/10.1145/3358960.3375795

1 Introduction
Resource monitoring is not a new concept in the performance
analysis and benchmarking community. The concepts behind
monitoring hardware resource utilization and software
interaction is well documented and beyond the scope of this
paper. Until recently however, most approaches to performance
monitoring have been accomplished by leveraging tools that have
been written to run as applications or kernel modules designed for
a given operating system and hardware architecture. Examples
include top, sar, and turbostat on Linux based OSes as well as
perfmon and Intel® VTune on Microsoft based OSes, to name just
a few. These popular tools must be run in parallel with the
benchmark/workload and analysis. These tools, while useful, also
come with their own performance tax. Since they are executed
within the same environment, the tools unavoidably use the same
compute resources (CPU time, memory bandwidth, etc) as the
workloads being analyzed. This arrangement has the potential to
skew the performance results (usually negatively) and as a result,
are often not employed in production, limiting their use as a first
approach to performance analysis.

Over the past several years, server hardware vendors have been
gradually including basic performance monitoring capabilities for
their out of band management solutions. As far back as the mid to
late 2000s, HP Servers began offering methods for their customers
to access basic CPU utilization and average frequency. Although
it offered out of band access to CPU metrics, the information was
gathered using host side methodologies and was not completely
non-intrusive with applications running on the server itself.

More recently, with the release of servers supporting Intel Xeon
Scalable Processors in 2017, several server vendors began offering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
ICPE '20, April 20–24, 2020, Edmonton, AB, Canada.
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6991-6/20/04...$15.00.
DOI: http://dx.doi.org/10.1145/3358960.3375795

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

4

a more robust approach to out of band performance monitoring
that included expanded metrics that provided at least CPU
utilization, I/O Utilization, and Memory Bus utilization metrics.
These metrics are not only delivered out band through the base
server management controller, but they are also measured outside
the scope of the processor’s execution pipeline, meaning that they
are nearly 100% non-interfering.

One such server provider, HPE, offers the ability for their users to
gather performance monitoring data from their servers leveraging
an open standard set of APIs [1]. In this paper, we will utilize this
capability to explore the following:

1) Obtain OOB performance telemetry by leveraging open
standard APIs

2) Demonstrate “do no harm” (DNH) testing for compute
intensive workloads

3) Demonstrate DNH testing for power efficiency
workloads

4) Provide example performance analysis results from
looking at various benchmark workload examples.

2 Accessing Performance Monitoring Data
Accessing performance monitoring data out of band, on a server,
requires management access to the server’s base management
controller (BMC.) The BMC is responsible for accessing server
component (CPU, Memory, Fans, I/O devices) sensor telemetry if
and when it is made available by the component vendor. When
telemetry does exist, the BMC can optionally provide that data to
customers through various closed or open interfaces.

Since the BMC executes separately from the host (CPU, Memory,
I/O, Operating System), requests to the BMC should not interfere
with workloads running on the host – specifically when requests
come via the external network. We will test/prove this theory in
Section 4.

2.1 Redfish (RESTful API)
The DTMF forum (an industry member working group) publishes
several open standard interfaces for managing information
technologies. The Redfish [2] specification provides an open
standard interface for interacting with a server’s BMC via simple
HTTP style communication (RESTful API). The specification
outlines the methods for interacting with BIOS configuration,
plug-in devices configuration, basic server features, as well as
server telemetry.

We will leverage the telemetry services functionality that is
defined in the Redfish specification and is implemented on the
latest server offerings provided by HPE. The telemetry provided
by HPE ProLiant and Synergy servers [3] support access to the
following performance related sensors (metrics) in 10 minute, 1
hour, 24 hour, and 1 week reports:

1. CPU Utilization
2. Memory Bus Utilization
3. I/O Bus Utilization
4. CPU Interconnect Utilization
5. Average CPU frequency
6. Average CPU power
7. Processor Jitter (frequency changes)

2.2 Alternative methods.
Beyond the Redfish interface, there exist other methods to access
OOB performance data. Several server vendors, including HPE,
also provide a graphical user interface via a web page (Web GUI)
hosted by the BMC itself. These interfaces typically provide
current performance status as well as the ability to view
performance graphs over selected time frames. While these
interfaces simply provide another access mechanism to the data,
leveraging the interface typically doesn’t scale well as it requires
human interaction (i.e. not scriptable.)

Redfish and the RESTful API is not the only server programmable
interface to obtain management data. The Intelligent Platform
Management Interface (IPMI) [8] also provides a
hardware/software management architecture that could be used
to achieve similar results. This specification however lacks clear
standard definitions for reporting performance metrics.
Implementations that leverage IPMI for telemetry are likely to be
OEM specific and vary between vendors.

Regardless of which programming interface is used, it is
important to distinguish the hardware interface that will be
leveraged. For instance, with Redfish, you can access the data from
the host side or out of band. While the data is still collected by the
BMC via out of band mechanisms, there are allowances for the
tools to run on the server host itself. It should be obvious that
when accessing data from a host side tool, some of the advantages
will be lost. Specifically the host side performance penalty when
comparing to existing OS level tools that gather similar data. For
our research, we will focus on using a remote connection (i.e.
network – TCP/IP) to collect performance data.

3 Experimental Setup
To demonstrate the usefulness of leveraging the OOB
performance monitoring, we will look at a setup in Figure [1],
where a client running on hardware separate from the server
under test, will request telemetry data from a server that supports
reporting performance telemetry via the Redfish interface. The
client setup can be as simple or as complex as the solution dictates
(monitoring a single server or scaled out to monitoring 1000s of
servers). The data is stored on the remote client and reports can
be generated for a particular server over a given time-frame.

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

5

Figure 1. Experimental setup for gathering server performance
data

Our DNH testing leveraged a Windows based client with Python
3.4 installed, with the requests library installed in order to leverage
the HTTP nature of RESTful API accesses. The client was set up
to attempt to create a denial of service type of test. Thousands of
back to back requests (occurring every X {timeframe}) for
telemetry were initiated to ensure that the server’s host side
performance wasn’t negatively impacted.

For scale-out testing, we leveraged a server running Linux, with
Python 3.7, and a structured database to store telemetry for dozens
of managed servers in a lab that is setup to mimic a datacenter-
like environment. The managed servers were running a variety of
benchmarks including SPEC CPU® 2017, SPECjbb®2015,
SPECvirt_sc® 2013, etc. Given that these servers are used for
publication of benchmark results for HPE, this is considered a
“production” level environment where any impact to solution
performance would have a negative impact to our business.
Equally important in benchmark results analysis, the information
gleaned from the performance reports would potentially be
considered important and business critical.

It is important to note that for 10 minute monitoring reports, the
data is averaged at 20 second intervals. For 1 hour, 24 hour, and 1
week reports, the data is averaged at 20 second, 5 minute, and 30
minute averages respectively. For DNH testing, we requested
reports from the test server for all 4 intervals. For scale out testing,
only 24 hour data was captured to evaluate the usefulness of
leveraging the longer 5 minute averages for the metrics.

4 Evaluation and Analysis
We break down our evaluation into two categories: DNH
measurement verification, and workload profile characterization.
For both categories, the target server’s configuration was
unchanged during the measurements, except where noted.

4.1 Do No Harm Verification
For the first DNH test, SPEC CPU 2017 was run on a 2-processor
HPE ProLiant DL380 Gen10 server running SLES 15 SP1. A single
iteration of SPECrate®2017_int_base and
SPECrate®2017_fp_base were run and an estimated overall metric
was calculated from the results. A second measurement was then
started. While the second run was executing, 7000 consecutive
queries were made to the RESTful API to collect performance
monitoring data. An estimated result was calculated from the
second measurement’s results. Table [1] shows the SPEC CPU
2017 metric estimates for each test. The results shown in the table
are pulled from an actual SPEC CPU 2017 run. They are labeled as
metrics since they show more detail than the standard FDR and
are not published results.

SPEC CPU 2017 metrics
Server under
no external
monitoring

Server under
high external
monitoring

SPECrate2017_int_base
(est.)

299.33 300.40

SPECrate2017_fp_base
(est.)

255.20 255.54

Table 1. Do no harm validation results using SPEC CPU 2017 as
workload

The performance difference between the unmonitored and
monitored measurements was less than 0.5%. This difference is
well within the run-to-run variation of the benchmark.

The second DNH test was run using the SPECpower_ssj2008
benchmark. In this test case, both server power and workload
performance are captured. A 2-processor HPE ProLiant DL380
Gen10 server running Windows Server 2012 R2 Datacenter was
used for the test. As with the first test, an initial measurement was
made by running the benchmark with no external monitoring of
the server. A second measurement was performed while 1000
consecutive queries were made to the RESTful API. Table [2]
shows the results for both measurements.

SPECpower_ssj2008
metrics

Server under
no external
monitoring

Server under
high external
monitoring

SPECpower_ssj2008 result
(overall ssj_ops/watt)

11,022 11,052

Server power at 100% load
(W)

465 465

ssj_ops at 100% load 5,304,235 5,307,336
Server power at idle (W) 55.9 55.9

Table 2. Do no harm validation results using SPECpower_ssj2008
as workload

Table [2] shows that the difference in power and performance
between the unmonitored and monitored measurements was less
than 0.5%, within the run-to-run variation of the benchmark.

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

6

Both of the DNH test cases demonstrate that the impact of
accessing the OOB performance monitoring data is negligible to
the system performance. Additionally, the SPECpower_ssj2008
test case shows the effect of OOB performance monitoring to the
system power is likewise negligible.

4.2 SPEC CPU 2017 run analysis
In this section we will show OOB performance measurements
gathered while running the SPECrate2017 benchmark suites. The
benchmarks were run on the same 2-processor server running
SLES15 SP1 as was used in the DNH tests. The SPEC CPU 2017
benchmark harness was configured on the server as was the
compiler needed to create the benchmark suites’ workload
binaries. SPECrate2017_int_base was run first, which required the
compilation of the workload binaries. Immediately following the
benchmark’s completion, SPECrate2017_fp_base was run; its
workload binaries were also compiled at the start of the
measurement. Finally, both the integer and floating point suites
were then immediately run again. For all 4 measurements, a single
execution of each base workload module was performed. Figures
[2] and [3] show the plotted data gathered from the OOB
performance monitor during the runs. Figure [2] shows the
utilization statistics and Figure [3] shows the processor
characteristics. Note that the vertical axis for Figure [3] is
logarithmic in order to clearly see all plots.

The first SPECrate2017_int_base run started at 20:15:19 and
completed at 22:00:26. The first SPECrate_fp_base run started
immediately afterward and completed at 02:58:11. The second sets
of runs completed at 04:25:51 and 08:22:55, respectively.

The periods of lower CPU utilization coincide with the
compilation phases for the first executions of the
SPECrate2017_{int,fp}_base suites. The difference in the run
profile of the benchmarks run with un-compiled and precompiled
executables is highlighted in Figure [4], which shows the side-by-
side comparison of the CPU utilization during each run.

Examining the performance counter data reveals a number of
interesting insights into the benchmarks’ utilization patterns. It is
clear that neither benchmark heavily taxes the IO subsystem, as
its utilization rarely shows any significant usage. Likewise little
inter-socket IO traffic is seen, as represented by the CPU Int Con
utilization graph in Figure [2], This is indicative of highly NUMA-
aware workloads, in this case a well-tuned SPEC CPU 2017
configuration. Patterns can also be seen between the two sets of
benchmark runs. Similar peaks and dips can be seen at the same
point during each set of runs in the CPU, memory, and CPU
interconnect utilizations, as well as the Jitter Count and CPU0
Power consumption. These peaks and valleys represent the
differences in resource utilization of the individual workload
modules within the benchmark suites. Correlating the usage
patterns to the specific workload modules can provide insight into
the modules’ bottlenecks and provide guidance to optimization
efforts. Some of the counters seen in Figures [2] – [5] could be
obtained from other methods such as in band performance
monitoring software within an operating system. Other metrics,
such as Jitter Count, are less easily obtained through alternative
methods and may require tools that impact the performance being
measured.

Figure 2. Out of band utilization performance counters

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

7

Figure 3. Out of band CPU performance counters

Figure 4. CPU utilization comparison of SPECrate2017 measurements using precompiled workload executables vs. compiling at runtime

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

8

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

9

4.3 Processor Jitter on SPECjbb2015
For the final test case we utilized the SPECjbb2015 benchmark to
demonstrate the effects of setting a BIOS option that eliminates
computation jitter due to processor frequency transitions. A BIOS
option on newer HPE servers called Processor Jitter Control [4].
The option can be set to find the maximum processor frequency
achievable where no frequency variance occurs due to power or
thermal constraints. The top frequency for the processor is set to
this value. In this test, a SPECjbb2015 Multi-JVM benchmark was

run while the Jitter Control was enabled and then a second run
was executed with the Jitter Control disabled. The results are
shown in Figure [5]. As can be seen, there are no Jitter counts
during the first SPECjbb2015 run, where Jitter Control was
enabled. The second run show considerable jitter counts
throughout the run, with the value increasing as the processor
utilization increases.

Figure 5. Out-of-band performance counters for back-to-back SPECjbb2015 benchmark runs with different Jitter-smoothing options

5 Conclusions
The goal of our research was to assess the viability of leveraging
the out of band performance monitoring capabilities in a
production environment. The main conclusions that we wanted to
be able to draw were whether or not the access mechanisms would
have a negative impact to overall system performance (as they had
been in the past) as well as assess the usability of the data that
could be mined.

Based on our experience with running benchmarks in a
competitive environment, where the results will have a direct
impact on overall business success and market growth, we feel
that the experimental test environment adequately portrays a
“production” environment. Our do no harm testing included a
highly competitive compute benchmark where as little as 1%
impact to host side performance can mean the difference between

1st and 3rd place in market leadership. The results of the do no
harm testing with SPEC CPU 2017 demonstrated that out of band
performance monitoring that is available today do not interfere
with host side system performance. Since there isn’t an impact in
performance such as might be seen when running tools that run
on the host side, we consider this a major advantage to the out of
band approach. A user of this model would essentially get
performance data monitoring for “free”; meaning that there isn’t
a performance overhead expense to obtain it.

When looking at the results of the do no harm testing for
SPECpower_ssj2008, we also wanted to make sure we would not
take a power efficiency hit. Given that the results show that OOB
accesses to the data did not impact the power (or the performance)
levels we are concluding that the OOB accesses to performance
data as outlined in the paper, do not have a measureable impact
to either system power or performance. This differs from
traditional in band measurement, where we have observed

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

10

periodic sampling of performance data throws a system out of
idle, and as a result, increases idle power.

Lastly, we acknowledge that the quantity and quality of data from
OOB accessible methods are not as richly featured as many of
those available in band; however, we did perform investigations
to verify that the data we do have access to can demonstrate value.
Our two cited examples (compile times with SPEC CPU 2017 and
jitter on SPECjbb2015) are just a few simple scenarios where the
data provided can help performance minded engineers correlate
performance issues back to system behavior. As an aside, the
compile time issue was discovered during our initial analysis of
the first run of data in the experimental setup. The long delay was
not well understood initially and the ability to visualize the gaps,
and correlate the time stamps back to the benchmark logs proved
extremely useful into understanding what was being observed.
We believe that there is value beyond what we demonstrated here,
and additional research will continue.

6 Acknowledgment
The authors wish to acknowledge current and past members of the

SPECpower Committee, SPEC CPU Committee, and SPEC

Research Power Working Group who have contributed to the

design, development, testing, and overall success of SPEC CPU

2017. SPEC, SPECrate, SPECspeed, SPEC CPU, SPECpower, and

SPECjbb are registered trademarks of the Standard Performance

Evaluation Corporation. All rights reserved; see spec.org as of

12/12/2020.

REFERENCES

[1] Hewlett Packard Enterprise (2019). Restful Interface Tool 2.5.0 User
Guide,. https://hewlettpackard.github.io/python-redfish-
utility/#overview. .
[2] DMTF’s Redfish specification.
https://www.dmtf.org/standards/redfish
[3] Performance Monitoring on HPE servers
https://community.hpe.com/t5/Servers-The-Right-Compute/Server-
performance-monitoring-made-easy-with-HPE-iLO-5/ba-
p/7048920#.XZS6ADaWzA0
[4] UEFI System Utilities User Guide for HPE ProLiant Gen10 Servers
and HPE
Synergy:https://support.hpe.com/hpsc/doc/public/display?docId=emr_na
-a00016407ja_jp
[5] SPEC CPU 2017: www.spec.org/cpu2017
[6] SPECvirt_sc2013: www.spec.org/virt_sc2013
[7] SPECpower_ssj2008: www.spec.org/power_ssj2008
[8] SPECjbb2015: www.spec.org/jbb2015
[9] Intelligent Platform Management Interface
https://www.intel.com/content/www/us/en/products/docs/servers/ipmi/i
pmi-home.html

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

11

https://hewlettpackard.github.io/python-redfish-utility/#overview
https://hewlettpackard.github.io/python-redfish-utility/#overview
https://www.dmtf.org/standards/redfish
https://community.hpe.com/t5/Servers-The-Right-Compute/Server-performance-monitoring-made-easy-with-HPE-iLO-5/ba-p/7048920#.XZS6ADaWzA0
https://community.hpe.com/t5/Servers-The-Right-Compute/Server-performance-monitoring-made-easy-with-HPE-iLO-5/ba-p/7048920#.XZS6ADaWzA0
https://community.hpe.com/t5/Servers-The-Right-Compute/Server-performance-monitoring-made-easy-with-HPE-iLO-5/ba-p/7048920#.XZS6ADaWzA0
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-a00016407ja_jp
https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-a00016407ja_jp
http://www.spec.org/cpu2017
http://www.spec.org/virt_sc2013
http://www.spec.org/power_ssj2008
http://www.spec.org/jbb2015
https://www.intel.com/content/www/us/en/products/docs/servers/ipmi/ipmi-home.html
https://www.intel.com/content/www/us/en/products/docs/servers/ipmi/ipmi-home.html

