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1 INTRODUCTION
Nowadays model transformation techniques are a popular tech-
nique within Model-Driven Engineering (MDE). Model transforma-
tions enable the generation of new models, realizing changes on
individual models, and the synchronization between models. In the
model transformations there exist various transforming languages,
our focus is on Query View Transformation Operational (QVTo).

However, a system being developed with model transformations
can grow in size and can become complex. For example, in an auto-
motive domain, an AUTOSAR model of a large electronic control
unit (ECU) for modern cars has over 170.000 model elements. In
such cases, the execution of badly performing model transforma-
tions can take up to hours. Hence, performance is an important
quality attribute of model transformations, e.g., execution time,
memory usage. The existing technique[2] to identify and visualize
the root cause of low performing transformation rules are not ad-
dressed properly, meanwhile, performance optimization is limited
only to the transformation engine. Hence, model transformation
rules are considered to be fixed and unchangeable. Unfortunately,
transformation engineers have no insights about how long the
transformation takes place and also to predict the performance.

To the best of our knowledge, there exists no research which
makes analyzes of the transformation rules and presents to the
transformation engineers.

Therefore it is our vision to provide an approach towards perfor-
mance engineering of model transformation. Hence, this approach
will enable us to systematically monitor and visualize causes for
performance issues as well as predict the performance of model trans-
formations.

We will demonstrate and identify the root cause of low perform-
ing QVTo rules with the help of three different phases. Firstly, in
the monitoring framework, we measure the execution time of each
QVTo transformation rules. Secondly, the profiler will graphically
visualize the results. Finally, we will demonstrate to predict the over-
all execution time of QVTo transformations with the data stored in
the database.
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2 RELATEDWORK
We extensively focus on state of the art closely related to optimiza-
tion of the performance of model transformation engine.

A class of approaches [2] analyzes model transformations and
compute worst-case execution time upon optimal search order of
the story pattern elements. Also, another approache [7] of the Hen-
shin interpreter, considers models to execute the model transforma-
tions and thus address the bad smells which affects the performance
of model transformation.

Amstel [8] investigates the factors such as size and complexity
of the input models affecting the performance of model transfor-
mations. The author has compared different languages and sys-
tematically analyzed the influence of extracted metric value on
performance of model transformations.

Piers [5] provides a way to detect performance issues on a ATL
transformation by a detailed analysis of the execution. An execution
profile stores information about the execution time, the memory
used, etc of the model transformation.

Becker [1] made analysis performance and prediction, by gener-
ating prototypes frommodels, which in turn generate code skeleton
or require detailed models for the prototype.

Groner [3] provides possible visualization and refactoring meth-
ods to improve the performance of model transformation in a declar-
ative way.

Hence, these approaches show a significant performance im-
provement by refactoring the engine of the model transformations.
On the other hand lacks the measurements and refactoring of trans-
formation rules. Hence, in this paper, we provide an approach for
supporting transformation engineers in identifying the root causes.
Complementary helping engineers improve the transformation
rules by themselves, which leads to the performance gain.

3 PROPOSED APPROACH
In the proposed approach we will contribute towards improving
the performance of model transformation in an imperative way. Fig.
1 explains the three phases of our approach namelyMonitoring,
Profiling, and Prediction. To generate a large test set of input
instance models we use VIATRA solver [6]. Thus, the generated
instances are then transformed into the respected output model
with the help of QVTo rules and run by the QVTo engine. During
the execution we using the Kieker monitoring framework [9] to
gather all the necessary operational profiles [8] and place them in
the database. The data from the database are visualized to identify
the performance bottlenecks. In turn, the data from the database is
used to predict the performance before the actual transformations.

Monitoring WP1: To analyze the performance of transforma-
tions, engineers need to learn about the operational profile [8] of the
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Figure 1: Proposed Approach

model transformations. The operational profile includes resource
demands like execution times, rule evaluations, time spent in a
model I/O. To measure the operational profile, we will extend the
QVTo engine by injecting pointcuts of aspect-oriented program-
ming [4] to the rules, whenever the engine executes these rules,
Kieker monitoring API [9] is executed, to fetch operational profiles
and measure them. Once the operational profile is measured they
are stored in the database for further analysis and prediction.

ProfilingWP2: TheWP1 will provide the raw and too detailed
data about the operational profile of the model transformations.
The raw data contains the execution time of each transformation
rule, overall execution time. This detailed data will not directly
help the transformation engineer in understanding where exactly
lies the performance issues. Hence, this raw-data, in turn, needs
to be visualized to support the engineer in identifying the root
cause of badly performing transformation rules. Therefore, we are
designing the profiler which presents the analyzed raw-data to the
transformation engineer. A performance decline can be the result
of changes in the model transformation or by changes in the meta-
model or the operational profile. With the help of the developed
profiler, we can easily identify and rank a list of possible causes for
the performance decline by using monitoring data.

Prediction WP3: To support the engineer in predicting the
performance, we need to develop a prediction framework. The
developed framework will help to predict the performance change
of model transformations. To predict the performance of a model
without having a prior reference model or historic operational
profile data of previously transformed model is always a difficult
job and performance prediction of a model may not be accurate. To

generate the different instance reference model we need to scale
the input model either automatically or manually. However, scaling
manually is always error-prone and tedious job while we need to be
very specific about the dependencies of the scaling elements. Hence,
to overcome such a problem we are reusing the existing VIATRA
[6] tool to automatically generate the instances of the input model,
each instance is different. Then each instance model is transformed
to obtain an output model. Subsequently, the operational profile
(e.g., execution time and memory usage) of each instance model is
obtained and thus, data are stored in the database. Eventually, the
complete setup of generating instances, transforming the model
and measurements of the operational profile is run in a continuous
integration environment at a defined interval of time, which in
turn serves as the reference data and thus, helps in performance
prediction of transformations.

4 CONCLUSION
In this paper, we demonstrated an approach to identify the root
cause of low performing QVTo rules. We presented the three phases
of our approach namely monitoring, profiling, and prediction. In
the monitoring phase, we will systematically monitor all the op-
erational profile with the help of aspect- oriented pointcuts and
kieker framework. In the profiling phase, we visualize the moni-
tored operational profile of the monitoring phase and support the
transformation engineer to identify root cause of badly performing
transformation rules. With the use of VIATRA solver, we will au-
tomatically generate instances of input model and perform model
transformations to measure the operational profiles and store them
in database. This particular monitored data will be used for the
prediction purposes.
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