
A Sampling-Based Tool for Scaling Graph Datasets
Ahmed Musaafir, Alexandru Uta

Vrije Universiteit Amsterdam

{a.a.m.musaafir,a.uta}@vu.nl

Henk Dreuning, Ana-Lucia Varbanescu

University of Amsterdam

{h.h.h.dreuning,a.l.varbanescu}@uva.nl

ABSTRACT
Graph processing has become a topic of interest in many domains.

However, we still observe a lack of representative datasets for in-

depth performance and scalability analysis. Neither data collections,

nor graph generators provide enough diversity and control for thor-

ough analysis. To address this problem, we propose a heuristic
method for scaling existing graphs. Our approach, based on sampling
and interconnection, can provide a scaled “version” of a given graph.

Moreover, we provide analytical models to predict the topological

properties of the scaled graphs (such as the diameter, degree distri-

bution, density, or the clustering coefficient), and further enable the

user to tweak these properties. Property control is achieved through

a portfolio of graph interconnection methods (e.g., star, ring, chain,

fully connected) applied for combining the graph samples.

We further implement our method as an open-source tool which

can be used to quickly provide families of datasets for in-depth

benchmarking of graph processing algorithms. Our empirical eval-

uation demonstrates our tool provides scaled graphs of a wide range

of sizes, whose properties match well with model predictions and/or

user requirements.

Finally, we also illustrate, through a case-study, how scaled

graphs can be used for in-depth performance analysis of graph

processing algorithms.

KEYWORDS
graph datasets scaling, heuristic methods, graph sampling, graph

scaling tool

ACM Reference Format:
AhmedMusaafir, Alexandru Uta andHenkDreuning, Ana-Lucia Varbanescu.

2020. A Sampling-Based Tool for Scaling Graph Datasets. In Proceedings of
the 2020 ACM/SPEC International Conference on Performance Engineering
(ICPE ’20), April 20–24, 2020, Edmonton, AB, Canada. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3358960.3379144

1 INTRODUCTION
Graphs are popular due to their inherent simplicity in describing

entities and interconnections. Thus, graph processing has become

a topic of interest in many domains, such as information retrieval,

biology, social networks, logistics, and infrastructure networks in

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6991-6/20/04. . . $15.00

https://doi.org/10.1145/3358960.3379144

Parameter controllabilityLow

High

G
ra

ph
 d

iv
er

si
ty

• Datagen

• Graph500

• GScaler

• PaRMAT (R-MAT)

• Musketeer,
ReCoN

• This work

High

Figure 1: Depiction of our work along existing graph genera-
tors/scaling tools. Our work provides more controllability and out-
puts a wide range of (families of) diverse graphs than existing ones.
The positions were determined by the features of each tool (de-
scribed in Section 2).

real or virtual worlds. The rapid increase in data sizes and analy-

ses complexity qualifies graph processing as a big-data challenge.

Therefore, a lot of research effort is invested in devising efficient

algorithms for graph processing in all these domains.

Benchmarking [12] shows that graph processing performance

depends onmany variables, such as platform, algorithm, dataset, and
even the underlying hardware [28]. Thus, for the same graph pro-

cessing platform and algorithm, variations in the dataset result in

variations in performance, implying that both the platform and algo-

rithm (implementations) are sensitive to graph properties like size

and order, degree distribution, diameter, or clustering coefficient.

The nature of these dependencies remains unknown: no generic

models exist to capture these correlations. Thus, to empirically as-

sess which graph properties impact an algorithm’s performance the

most, designers need many carefully crafted datasets which meet

specific requirements. In most benchmarking methodologies or

performance engineering for graph processing systems [6, 7, 9, 12],

the issue of representative datasets is only marginally covered.

Furthermore, in contrast to the many different existing platforms

that can be used for graph processing, there is little option for

dataset generation. We emphasize that there is need for:

(1) Generating datasets of scale in a fast manner.
(2) Generating diverse datasets that could help uncover perfor-

mance properties of graph processing systems.
(3) Achieving fine-grained parameter control over graph datasets.

Most researchers use existing data collections [14, 16] or existing

synthetic graph generators [5, 18] to obtain some datasets. Data col-
lections provide only a few types of graphs. Generators are designed

for specific types of networks, and tuned for specific graph proper-

ties, lacking generality. Neither option provides enough diversity

and/or control to fulfill the requirements of thorough evaluation.

In this work, we tackle the need for more and better datasets for
graph analytics benchmarking by generating families of graphs,

SESSION 7: Performance Techniques ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

289

https://doi.org/10.1145/3358960.3379144
https://doi.org/10.1145/3358960.3379144

where a given graph G is used as seed to build similar graphs of

different sizes. To do so, we propose a heuristic method, based on

graph sampling, where siblings of G with user-defined properties

are obtained by controlled combinations of (multiple) samples ofG .
We provide an open-source prototype implementation of this

method as a tool for graph scaling1. With this tool, users (i.e., algo-

rithm and systems designers) can scale-down an existing graph that

may be too large for a given system, or scale-up an existing graph

that is too small for scalability analysis
2
[22].

We validated our method by using our tool with various parame-

ter configurations on a set of eight graphs. Our results demonstrate

the feasibility of our approach for scaling graphs both up and down:

for both operations, we do obtain families of similar graphs with

user-controllable properties that can diversify the output graph.

Our tool provides more controllability and graph diversity than

existing graph generators or scalers (Fig 1). Furthermore, our tool is

fast and runs efficiently on both single- and multi-node computing

systems, thus avoiding scale limitations due to shear graph size.

We highlight the contributions of this work as follows:

(1) We propose a novel, sampling-based solution for param-

eterized, controllable scaling of graphs. By using existing

sampling algorithms, our tool enables scaled graphs to pre-

serve local and topological properties as guaranteed by the

chosen sampling algorithm.

(2) We devise a set of models to predict the properties of scaled

graphs and, based on these models, we provide a set of in-

tuitive guidelines for configuring the parameters to control

some of the scaled graph properties.

(3) We implement an open-source, easy-to-use prototype tool,

which is fast in generating diverse families of graphs based
on scaling existing graphs. The graphs we generate can be

up to arbitrary large numbers of vertices/edges. Our tool

works on both single- and multi-node systems, effectively

accommodating graphs of any size.

2 MOTIVATION AND RELATED WORK
Many studies have demonstrated that graph processing perfor-

mance varies significantly (i.e., orders of magnitude) depending (in

non-trivial ways) on platform, algorithm, and dataset [8, 12, 29]. In

turn, this means users must carefully select the processing algo-

rithm and platform to be used for their specific problem.

2.1 Motivation: the case for families of graphs
Ideally, we should model the performance of a graph processing

algorithm on a given platform as a function of algorithm and graph

properties (e.g., size, order, or diameter): such models would provide

a reasonable ranking of different algorithms, and thus allow users

to select the most promising ones. However, such models do not
(yet) exist: their development has been so far prohibited by the large
number of parameters and their diversity.

An alternative way to determine correlations between graph

properties and graph processing performance (leading, eventually,

to building models to capture them) is an empirical approach: given

1
Tool repository: https://github.com/amusaafir/graph-scaling

2
Along this paper, we use “scale-up” and “expanding”, as well as “scale-down” and

“shrinking” as pairs of equivalent terms.

an algorithm A and a platform P , provide controlled variations of
the input datasets,Gi , and measure performance. By correlating the

measured performance with the graph variation, the performance

impact of different properties on algorithms can be quantified.

For example, Figure 2 illustrates the results of such an experi-

ment: we measured the throughput of BFS graph traversal, in edges

traversed per second, running on 18 datasets: 10 correlated datasets
(colored black) and 8 uncorrelated datasets (colored gray). All re-

sults are presented in the increased order of the graph sizes. The

uncorrelated datasets are obtained from existing data repositories,

while the correlated datasets are a family of Graph500 graphs of

scale 12 to 21 (i.e., graphs have the same structure, and graphs of

consecutive scales are roughly doubling in size).

The results for the uncorrelated datasets do not indicate any

performance trends: the observed performance is not directly cor-

related to the size of these graphs (i.e., larger graphs do not neces-

sarily perform worse than smaller graphs - see Com-livejournal and
12month1), because other graph structural properties also impact

performance. However, the correlated datasets results demonstrate

that performance can actually correlate with the properties of the

graph, iff the graphs form a family for which multiple properties

can be controlled. This experiment can be seen as a first step to-

wards a sensitivity analysis.

gra
ph
50
0-1
2

fac
eb
oo
k

gra
ph
50
0-1
3

Wi
ki-
vo
te

P2
p-g
nu
tel
la3
1

em
ail-
en
ron

gra
ph
50
0-1
4

gra
ph
50
0-1
5

gra
ph
50
0-1
6

gra
ph
50
0-1
7

we
b-s
tan
for
d

gra
ph
50
0-1
8

wik
i-ta
lk

gra
ph
50
0-1
9

gra
ph
50
0-2
0

12
mo
nth
1

gra
ph
50
0-2
1

Co
m-
live

jou
rna
l

0

1

2

3

ET
PS

1e8

Figure 2: A performance comparison of a BFS traversal in terms
of the number of edges traversed per second (ETPS) on different
datasets ordered by graph size, from small to large. We distin-
guish between uncorrelated datasets (colored gray), and correlated
datasets (colored black).

We augment this simple example in Section 7, by presenting a

detailed analysis of two case-studies - i.e., BFS and PageRank - of

empirical analyses which use families of scaled graphs to further

increase our understanding of the impact graph properties have on

graph processing performance.

2.2 Related work: obtaining graph families
While a sensitivity-analysis approach can be promising for under-

standing the interplay between performance and graph properties,

setting up such experiments remains challenging: we lack mech-

anisms for fine-grain control over the properties of diverse (gen-
erated) input graphs. The Graph500 graphs are generated to be

of controlled size and have similar properties (e.g., diameter and

average degree). However, the diversity of graphs that generators

can provide is very limited. Moreover, for real graphs, such families

SESSION 7: Performance Techniques ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

290

are not available. Our approach tackles these limitations: we pro-

pose a sampling-based method to generate families around real-life

graphs.

For example, the Graph500 generator uses the Kronecker model

to generate a graph; R-MAT [5] and Datagen [7] are other popular

examples of graph generators. In the Kronecker graph generative

model, a graph is generated recursively using the Kronecker prod-

uct. Each multiplication exponentially increases the size of the

graph. The Kronecker graph generative model makes a given net-

work denser over time, while the diameter shrinks [17]. R-MAT

provides a solution to quickly generate realistic graphs following the
power-law degree distribution by operating on the graph’s adjacency

matrix. R-MAT’smodel can generate directed, undirected, and bipar-

tite graphs [21]. PaRMAT [13] can be used to generate large R-MAT

graphs and provides controllability over certain properties (e.g., di-

rected/undirected, loops). LDBC Datagen [25] is a synthetic graph

data generation tool for the LDBC Social Network Benchmark [7].

Datagen graphs mimic real-world social media graphs in terms of

degree distribution, following a discretized power law distribution.

Datagen produces evolving, time-correlated graphs, modeling vari-

ous types of connections between entities (e.g., friendship, message

posting). It also includes several different degree distributions.

All generators, like R-MAT, Kronecker, or Datagen focus on

generating graphs from scratch. Instead, our approach scales an

existing graph, preserving some of its potentially unique properties;

using multiple scale factors, one can obtain a family of correlated

graphs.

Scaling methods can produce more diverse graphs than tools

that generate graphs from scratch, because they allow users to

provide an arbitrary input graph. For example, GScaler [31] creates

a larger graph by decomposing an initial graph into small pieces

that are subsequently scaled, based on the indegree/outdegree cor-

relation of nodes and edges. GScaler aims to preserve properties

of the original graph, but, in contrast to our approach, it does not

provide any control over them. Furthermore, it lacks support in

preserving undirected graphs. Musketeer [10] is a newer graph

generation method, which takes an original graph as input, along

with parameters (such as node growth rate and node edit rate), and

aims to reproduce all of its features [21] by applying coarsening and

uncoarsening operations to obtain the desired scale of the graph.

While this algorithm shows promising results, it is noted by the au-

thors that the existing implementation is not fast enough for large

networks. ReCoN [26] is the follow-up algorithm of Musketeer,

aiming to preserve its qualities while improving its performance.

ReCoN scales a graph by creating disjoint copies of it up until the

preferred size, and then applying some randomization on the edges

inside and between the communities of the graph. This randomiza-

tion step of the edges should make the copies become connected

with each other, leading to a scaled output graph. Both Musketeer

and ReCoN have somewhat similar goals with our expansion idea,

but use different methods; moreover, there is little user control on

the expanded graph properties. Instead, our approach is more flex-

ible and enables the generation of larger families of graphs, with

more diverse siblings.

In summary, our work proposes an heuristic method for building

graph families, with controlled properties, starting from a given,

real-life network. Our method provides several ways to control

Table 1: Graph property preservation quality per sampling algo-
rithm, represented as likelihood from low (−−) to high (++).

R
an

do
m

N
od

e

R
an

do
m

Ed
ge

T
IE
S

R
an

do
m

W
al
k

Fo
re
st

Fi
re

Scale (fraction based on) V E V V /E V /E
Degree distribution + + ++ + +

Diameter + + − + +

Connectivity −− − − −− −

Avg. Clustering Coefficient (C.C.) + − ++ + +

Avg. Shortest Path Length (S.P.L.) + − ++ + ++

graph properties, and thus it can diversify the generated families.

We further embed this method into a graph scaling tool, which pro-

vides users with a constructive, parameterized approach to generate

graph families, and models to understand the graph properties of

the scaled datasets. We depict our work along the existing tools

based on the diversity of graphs and the parameter controllabil-

ity in Figure 1. Our solution is superior to related work in both

dimensions, by design.

3 SAMPLING METHODS
In this section we briefly discuss graph sampling, which is at the

core of our heuristic method, and explain the selection process for

a suitable graph sampling algorithm.

Graph sampling is the process of selecting a sub-graph G ′ =

(V ′, E ′) of graph G = (V , E), where V ′ ⊆ V and E ′ ⊆ E. There
are many methods and algorithms aiming to obtain a reduced,

representative sample from an original graph [11].

To be suitable for our method, which combines samples of the

seed graph to generate siblings, a sampling algorithm must preserve
as many properties as possible from the original graph. We have

analyzed five of the most popular sampling algorithms and their

claims for graph property preservation [1, 2, 4, 11, 15, 19, 30]. The

results of the analysis are shown in Table 1; they indicate that Total

Induced Edge Sampling (TIES) [1] has the highest likelihood to

preserve most local and topological properties of the original graph.

We note that property preservation for each sampling algorithm

is not guaranteed, but more or less likely, as indicated by + or −,

respectively; the original graph topology and size, as well as the

sample size, can also affect the analysis.

All the sampling algorithms listed in Table 1 have been imple-

mented in our prototype tool. Given the superiority of TIES, all the

experiments in this paper (§6) are using this sampling algorithm.

TIES consists of two steps: (1) edge-based node sampling and

(2) induction [1, 3]. During step (1), a random set of edges from

the original graph G are selected, along with their end-vertices,

until the desired fraction of vertices is reached. So far, TIES is

similar to Random Edge Sampling. However, in order to counter

the sparseness of the Random Edge Sampling algorithm, step (2)

adds all other edges that exist between the vertices selected in step

(1).

SESSION 7: Performance Techniques ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

291

Furthermore, we must emphasize that the scale of the sampled

graph depends on either the fraction of desired vertices or edges.

For example, when using TIES or Random Node, the desired scale

is based on the number of vertices. For Edge Sampling, this is

typically (although not strictly enforced by) the fraction of edges.

Topological-based sampling algorithms like RandomWalk or Forest

Fire can use either vertices or edges. In our case-studies (§7), we

have used the number of edges when using Forest Fire as sampling

algorithm.

4 SAMPLING-BASED GRAPH SCALING
In this section we introduce our heuristic, sampling-based method

for graph scaling. We further detail the method and its parameters,

and analyse the impact of its parameters on the properties of the

scaled graphs.

4.1 Overview of the method
Intuitively, a scaled version of a graph G is a larger or smaller

graph, similar to G, where certain topological and local properties

are preserved. Thus, the main challenge when scaling graphs is

to provide a method that defines and/or controls similarity and

property preservation between the original and the scaled graphs.

For example, when doubling a graph, no domain-agnostic definition

exists for how the diameter of the new graph should compare to

that of the original graph. Instead, our method enables users to

control the scaling according to problem-specific requirements. In

other words, we allow the users to decide whether the diameter

should double or stay (roughly) the same.

The core idea of our method is to build a scaled graph G ′
by in-

terconnecting several samples of the original graph, G. By varying

the type and size of these samples, and the way they are intercon-

nected, we provide a large family of similar graphs with controlled

properties. Inside this family, similarity is ensured by only using rep-
resentative samples of the original graph as building blocks, while

property preservation is controlled by the supported interconnection
templates.

We note that this approach fundamentally differentiates our

method from graph-evolution methods: our goal is not to gen-

erate a later version of the same graph, but to provide several,

smaller/larger versions of the same graph, which could have fol-

lowed different evolution paths. Moreover, we do not concern our-

selves with the feasibility of the scaled graphs for the domain of

origin (i.e., when doubling a road network, our method does not

enforce the result to also be a road network). Such feasibility prop-

erties can be further enforced by filtering the generated graphs

according to the rules of the domain, in the rare cases when these

are available.

4.2 The method and its parameters
The easiest method for scaling-down graphs is simply sampling

the original graph to the desired size, thus ensuring G ′
has the

properties guaranteed by the sampling algorithm.

Scaling-up, on the other hand, requires the generation of new

vertices and edges for the larger graph. In our method, we add

edges and vertices by combining several (partial) graph replicas, i.e.,

samples of the original graphG of sizes (0.0−1.0]. Figure 3 illustrates

G

G2

GS

G1 G3

Figure 3: Using graph copies.

Gs1

Gs3

Gs7

Gs6Gs8

Gs0

Gs2 Gs4

Gs5

Figure 4: Using sampling.

our approach for graph scaling with an example. In this case, we

want to expand graph G 4.5 times (this includes the original graph

itself). First, we generate three full replicas ofG , denotedGi , i = 1..3.

We link each Gi to the original graph by adding one edge. Next,

we generate a partial replica of G, half its size, by sampling. The

sample Gs , with Es ⊂ E and Vs ⊂ V , is finally linked back to the

original graph in a similar fashion. The result Ge =< Ee ,Ve > can

be seen as a superset of G, i.e., Ee ⊇ E and Ve ⊇ V . Note further
that we expect |Ve | ≈ |V | × s and |Ee | ≈ |E | × s + ⌈(s − 1)⌉.

4.2.1 Generalized scaling. Instead of interconnecting full copies

of the graph, we can also use samples. For example, to expand the

graph s = 4.5 times, we can use n = 9 samples, each representing

0.5 of the original graph (see Figure 4). If our sampling algorithm

is random (as in the case of TIES), we can generate a different sam-

pled graph, Gsi , i = 0..8, for each sampling operation we conduct.

As a result, the graph is more diverse, but the entire operation is

significantly more compute-intensive: we expect a 9x slowdown

because we need to run the sampling algorithm nine times. Note

that for this particular variation, there is no guarantee that every

node from the input graph G exists in the final result, depending

on the used sampling algorithm.

Of course, the generalization can continue further: the samples

need not be equal and the same strategy can be applied for scaling-

down graphs, too. Thus, we formalize our generalized graph scaling

as follows.

Definition 1. Given a graph G =< E,V > and a scaling factor
s > 0, the scaled version of G , noted G ′ =< E ′,V ′ > is defined as the
interconnection of n > 0 samples of G, denoted Gsi =< Esi ,Vsi >,
with 0 < si ≤ 1 the sampling factor of each sample, such that
s =

∑n−1
i=0 si . Thus, E ′ =

⋃n−1
i=0 Esi ∪C , whereC is the set of connecting

edges between the samples (C = {∀c = (u,v)|u ∈ Vsi ,v ∈ Vsj , i , j})

and V ′ =
⋃n−1
i=0 Vsi .

To control the properties of the scaled graphs, two classes of

parameters are provided: sampling parameters (e.g., the sampling

algorithm, sample sizes, and number of samples to use), and inter-
connection parameters (e.g., interconnection topology, density, and

bridge-vertex selection). All these parameters impact the properties

of the scaled graph, G ′
. In the following paragraphs, we describe

these parameters in more detail and analyze their impact on the

properties ofG ′
; in Section 6 we will empirically assess their impact

on the properties of G ′
.

4.2.2 Sampling parameters. The sampling algorithm plays an im-

portant role in our scaling approach: the properties it preserves are

SESSION 7: Performance Techniques ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

292

key to understanding and controlling the properties of the scaled

graph.We support 5 algorithms, and the selection is currently left to

the user based on hints similar to those in Table 1; a semi-automated

selection is envisioned for a next version of our tool. As expected,

the number of samples, their sizes, and the choice between homo-

geneous and non-homogeneous samples are also parameters of

interest for the properties of G ′
. For example, in the previous case

where the scaling factor is 4.5, we can use 9 samples of 50%, or

5 samples of 90%, or, furthermore, 5 samples of 70% plus the full

graph. As expected, larger samples better preserve the properties of

the original graph [15]. In the tool, we warn against using samples

lower than 0.4.

4.2.3 Interconnection topologies. The sampled graphs can be inter-

connected using a variety of topologies. The current implementa-

tion supports various network topologies, such as star, ring, chain

and fully-connected (Figure 5). The topology can be also defined

by the user. The interconnection topology will impact some of the

properties of the resulting graph. For example, the diameter of Ge
will be smaller for a star interconnection than for a chain intercon-

nection. A similar behavior is expected for the average path length

property.

Figure 5: Examples of topology structure.

4.2.4 Selecting bridge-vertices. We define the generated edges that

interconnect the samples as bridge-edges (or, shorter, bridges), and
the vertices they connect (i.e., the source and destination of a bridge-

edge) as bridge-vertices. The selection of bridge-vertices can be done
by the user. In our current implementation and experiments, we

use either random or high-degree bridge-vertices.

4.2.5 Multi-edge interconnections. When interconnecting samples

with single bridges, both the average degree and the density of the

expanded graph are, with high probability, lower than those of the

original graph. To alleviate this problem, we can enable multiple

bridges between the Ge components. This imposes additional pa-

rameter tuning, as we need to decide how many bridges and how to

select the bridge-vertices, and, at the same time, enable additional

control over the properties of the expanded graph.

4.3 Parameters and Property-prediction
models

All parameters described in the previous section (the sampling

combinations and the interconnection topology, density, and bridge

selection) have an impact on the quality of the scaled graph.

They are also inputs for our graph scaling tool, where a user must

select parameters’ values depending on the required properties

for G ′
. The correlation between the parameters’ values and the

resulting graph properties is not trivial. Thus, we have devised

analytical property-prediction models to capture these correlations

and, therefore, help users make informed choices. A small subset

of these models, built for a chain topology with different scaling

parameters, is shown in Table 2. The complete set of property-

prediction models, for all supported topologies, is provided and

constantly updated in the public repository of our tool [22].

For each model, several user guidelines for parameter tuning

have been extracted
3
. For example, based on the models presented

in Table 2, a guideline can be: “Scale-up: to scale-up the diameter, too,
choose a chain topology with a single random bridge” or “Scale-up:
to preserve density, choose a chain topology with multiple bridges.”.
Currently, users need to follow these guidelines to search for the

right parameters’ values. Unfortunately, defining a complete set of

such rules is currently impossible because not all scenarios and/or

user requirements are known. In turn, this means that users might

require several iterations until generating the right family of graphs.

We introduce the notion of an auto-tuner, that helps users find the

right parameters to hit a specific graph property in the next section.

5 GRAPH SCALING TOOL
In this section we describe our graph scaling tool and its current

implementation.

5.1 User interaction
Wehave designed a tool that implements both up- and down-scaling,

using our methodology. This tool allows users to experiment with

different combinations of parameters and quickly assess the results.

For scaling-down, the user must specify an input graph G and

the desired shrinking factor as a fraction of the original graph G.
Based on this input, the tool will output the scaled-down graph G ′

,

as well as a brief analysis of its properties.

For scaling-up, the user must specify an input graph G and a

scaling factor that indicates how much larger G ′
should be, in

terms of numbers of vertices or edges (depending on the selected

sampling algorithm). Furthermore, the sampling, topology, bridges,

and multi-edge interconnections parameters must also be specified.

Using our property-prediction models (see Table 2 for examples),

a prediction of the G ′
properties is immediately provided, for the

user to assess whether the result would be acceptable.

3
The full list of models is presented and updated in our repository [23].

SESSION 7: Performance Techniques ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

293

Table 2: Quantifying the impact of different parameters choices for constructing Ge using the chain topology. Note that the values obtained
by using these models are upper-bound (e.g., for the diameter property, it is the maximum diameter that can be obtained). Models marked
with * have been determined empirically.

Bridge Vertices Random Random High degree High degree

Bridges 1 b 1 b

|Ve |
∑n
1
|Vsi |

∑n
1
|Vsi |

∑n
1
|Vsi |

∑n
1
|Vsi |

|Ee |
∑n
1
|Esi | + (n − 1)

∑n
1
|Esi | + (n − 1) × b

∑n
1
|Esi | + (n − 1)

∑n
1
|Esi | + (n − 1) × b

#Components n ×Gsi n ×Gsi * n ×Gsi n ×Gsi *

Diameter
∑n
1
maxD(Si)+(n−1)

∑n
1
maxD(Si)+(n−1)

∑n
1
maxD(Si)+(n−1)

∑n
1
maxD(Si)+(n−1)

Avg. C.C. Similar Decreases* Similar* Decreases*

Avg. S.P.L. ≈ (n − 1) ×AvдP(Si) Decreases with b ≈ (n − 1) ×AvдP(Si)* Decreases with b*

Avg. degree Similar Increases with b Similar* Increases with b*

Density Decreases Increases with b Decreases Increases with b

5.2 Auto-tuner
Using our models, we provide an user-in-the-loop auto-tuner that

iteratively searches for a graph with a certain (user) preferred prop-

erty value. In the current implementation of the tool, we specifically

provide this mechanism to control the diameter of the scaled-up

graph. The auto-tuner uses a binary search tree, where the (maxi-

mum) values of the diameter are initially calculated based on the

models of the topology and are subsequently inserted into the tree.

The values of the diameter for each topology can be decreased by

adding more/different interconnections. A larger diameter value

can be obtained by using a different topology or by using smaller

sample sizes (in case, for example, the chain topology was not able

to reach the desired diameter). For N iterations, the auto-tuner

adjusts the scale-up parameters accordingly based on the existing

parameters and values in the tree, and analyses the value of the

diameter from the output graph. The parameters (and the resulting

graph) that lead to a diameter best matching the request are pro-

vided to the user, who can also decide whether the search continues

or not.

A main challenge that comes into play is when combining mul-

tiple preferred property values where the correlation between the

properties is not directly observable through the models. For ex-

ample, hitting a preferred diameter whilst also satisfying a specific

clustering coefficient value is a challenge that still needs to be

addressed.

5.3 Implementation
Scaling a graph has two stages: sampling and combining. In case of

scaling-down, for robustness, our current prototype tool defaults to

sampling, and skips combination. For scaling-up, both phases are

required, with the sampling dominating the overall execution time

of the scaling operation (e.g., the complexity of TIES isO(|V |+ |E |)).
Our tool is available as a single node version, able to processes

graphs as large as the local system’s memory allows it. Moreover,

where GPUs are available, acceleration (up to 70×) in the induction

phase is provided. Finally, for large graphs, we employ distributed

sampling, based on our own MPI-based prototype, available in the

repository. This distributed version uses local sampling, and has a

deterministic policy (i.e., duplicate removal) to mitigate potential

conflicts between local samples
4
.

6 EXPERIMENTAL EVALUATION
In this section, we present our experimental setup and analyze a

subset of our results
5
. The goal of all the experiments is to show the

capabilities and limitations of our method. Therefore, we measure

the quality of scaling up and down on nine different graph datasets

(shown in Table 3) obtained from the SNAP [20], KONECT [14] and

NetworkRepository [24] archives. Our main findings are:

(1) Scaled-down graphs, based on sampling using TIES, respect

the property preservation guarantees provided by the origi-

nal algorithm. We specifically address degree distribution,

diameter, average clustering coefficient and average shortest

path length distribution. Additional properties, like the num-

ber of connected components (connectivity), vary per graph

(Section 6.1). An in-depth statistical analysis (facilitated by

our tool) is required to determine more systematic rules.

(2) Scaled-up graphs, using TIES sampling and our interconnec-

tion rules, comply by our models for the properties guar-

anteed by TIES. The degree distribution, diameter, average

clustering coefficient, and average shortest path length dis-

tribution all comply (Section 6.2). In contrast, for properties

that are not guaranteed by TIES, scaled-up graphs do not

show uniform behavior.

(3) Our tool is fast and scales well across multiple compute

nodes for the sampling phase (Section 6.3).

(4) Parameter setting for our tool can be cumbersome for a

novice user. While our models are accurate in terms of

choices, there are cases when they are not precise enough to

narrow down parameters to specific values. In these cases,

some (auto-)tuning is necessary. The current auto-tuner for

the diameter obtains a graph that matches the preferred

diameter of the user after a number of iterations.

In the following paragraphs, we present and analyze in more de-

tail a subset of our experimental results. We include detailed results

only for Com-Orkut for graph down-scaling, and for Facebook for

4
More details on the implementation and effects of this policy are available in the

repository.

5
Results for all datasets are provided in the repository of the tool [22].

SESSION 7: Performance Techniques ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

294

0 100 200 300 400 500 600 700 800

0

50

100

150

200

250

Node degree

C
ou

n
t

Original
Ge Star
Ge Chain
Ge Ring

Ge Fully C.

Figure 6: Degree distribution of the ex-
panded Facebook graphs (Ge random) using
different topologies.

0 100 200 300 400 500 600 700 800

0

0.2

0.4

0.6

0.8

Node degree

A
ve

ra
ge

cl
u
st

er
in

g
co

effi
ci

en
t

Original
Ge Star
Ge Chain
Ge Ring

Ge Fully C.

Figure 7: Average clustering coefficient dis-
tribution of the expanded Facebook graph
(Ge random). Note that a small number
of high degree nodes exist (shown by the
straight lines).

0 5 10 15 20 25 30

0

1

2

3

·107

Number of hops

N
u
m
b
er

of
sh
or
te
st

p
at
h
s

Original
Ge Star
Ge Chain
Ge Ring

Ge Fully C.

Figure 8: Shortest path length distribution
of the expanded Facebook graph using dif-
ferent topologies with a single interconnec-
tion and random bridge selection (Ge ran-
dom).

Table 3: List of the graph datasets used for scaling-up and scaling-
down experiments. Datasetsmarkedwith * are also used in the case-
studies (7).

Dataset Nodes Edges Results in
Undirected

Com-Orkut 3,072,441 117,185,083 §6.1

Com-LiveJournal* 3,997,962 34,681,189 Repository, 7

12Month1* 872,622 22,501,700 7

Enron-email 36,692 183,831 Repository

Facebook 4,039 88,234 §6.2,6.3

Directed

Wiki-talk 2,394,385 4,659,565 Repository

Web-Stanford 281,903 1,992,636 Repository

Gnutella 62,586 147,892 Repository

Wiki-vote 7,115 100,762 Repository

Table 4: Properties of the Com-Orkut graph along different samples.
*Obtained from a subset of starting test nodes.

G Gs 0.8 Gs 0.5 Gs 0.3
Nodes 3,072,441 2,457,952 1,536,220 921,733

Edges 117,185,083 108,686,099 73,626,482 42,194,208

Avg. deg 76.28 88.44 95.85 91.55

Diameter* 9 9 10 8

Density 2.48e-05 3.59e-05 6.24e-05 9.93e-05

#Components 1 7 17 36

Connected Yes No No No

Avg. C.C. 0.16 0.15 0.15 0.14

Avg. S.P.L.* 4.19 4.05 3.97 3.95

Runtime (s) - 71.01 66.00 61.96

up-scaling. The results for all the graphs in Table 3 are available

online [22].

6.1 Down-scaling graphs
Using our tool and TIES as sampling algorithm, we have shrunk

all datasets using 3 factors: 0.3, 0.5, and 0.8. Table 4 provides an

overview of the properties of the scaled-down Com-Orkut graphs.

Our scaling-down results across all datasets demonstrate similar

property preservation as observed by the authors of TIES, and

reflect the qualities of TIES as shown in Table 1.

However, the number of connected components shows erratic

behavior for different graphs and sample sizes. As this is a property

for which TIES offers no guarantees, further analysis is required

to understand whether behavioral patterns can be observed and

further used for predicting sample properties.

6.2 Up-scaling graphs
This section presents our graph expansion analysis, using the Face-
book dataset. All the models we use to guide our expectations

(similar to those presented in Table 2) and more dataset-specific

results are described in our online repository [22].

6.2.1 Topology, bridges, and multi-edge interconnections. Using our
tool, each dataset has been expanded 3 times using a sample size

of 0.5 (resulting in 6 different samples), along different topologies,

multi-edge interconnections and bridge-vertices selection. Table

5 shows the results of the expansion of the Facebook graph using

these different types of parameters. Note that the first row rep-

resents the properties of the original graph G. The second row

contains an example of a single sampled versionGs using a sample

size of 0.5.

We observe that the expanded graphs closely match our models,

with the exception of the connected components property, as this is
not being preserved by the sampling algorithm in general. Further-

more, the average clustering coefficient drops significantly across all

topologies as we add more interconnections. An interesting obser-

vation is that the use of high-degree bridge selection reduces this

drop in comparison to random bridge selection.

By observing the distributions of properties from several expan-

sions, we note that:

(1) The degree distribution (Figure 6) of the expanded graphs have

similar degree numbers, but a larger amount, because the dif-

ferent samples are connected using a single interconnection,

thus allowing multiple nodes of the same degree to exist; at the

same time, local node degrees are less affected and the average

degree of the graph itself remains similar to a single sample.

This behavior also holds for other datasets [22].

SESSION 7: Performance Techniques ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

295

Table 5: Properties of the Facebook graph obtained from various expansions using different topologies (3 times expansion using a sample size
of 0.5.)

To
po

lo
gy

B
ri
dg

e

#I
nt
er
co

n.

N
od

es

Ed
ge

s

A
vg

.d
eg

D
ia
m
et
er

D
en

si
ty

#C
om

po
ne

nt
s

C
on

ne
ct
e d

A
vg

.C
.C
.

A
vg

. S
.P
.L
.

FacebookG - - - 4,039 88,234 43.69 8 1.10e-2 1 Yes 0.62 3.69

Gs (0.5) - - - 2,020 57,602 57.03 7 2.82e-2 2 No 0.63 3.55

Ge (random) Star Random 1 12,117 339,497 56.04 19 4.62e-3 7 No 0.63 9.26

Ge (random, denser) Star Random 45,000 12,114 559,798 92.42 6 7.62e-3 2 No 0.31 2.65

Ge (high-degree) Star High-degree 1 12,115 341,636 56.40 20 4.65e-3 7 No 0.64 9.19

Ge (high-degree, denser) Star High-degree 45,000 12,115 560,168 92.48 6 7.63e-3 10 No 0.46 2.92

Ge (random) Chain Random 1 12,114 340,091 56.15 31 4.63e-3 9 No 0.63 11.79

Ge (random, denser) Chain Random 45,000 12,115 561,560 92.70 7 7.65e-3 1 Yes 0.27 2.99

Ge (high-degree) Chain High-degree 1 12,114 340,588 56.23 33 4.64e-3 7 No 0.64 11.85

Ge (high-degree, denser) Chain High-degree 45,000 12,117 561,841 92.74 10 7.65e-3 9 No 0.44 3.46

Ge (random) Ring Random 1 12,117 339,013 55.96 24 4.61e-3 7 No 0.64 9.91

Ge (random, denser) Ring Random 45,000 12,114 605,007 99.89 6 8.24e-3 1 Yes 0.23 2.68

Ge (high-degree) Ring High-degree 1 12,114 340,040 56.14 23 4.63e-3 6 No 0.64 9.50

Ge (high-degree, denser) Ring High-degree 45,000 12,115 604,145 99.74 8 8.23e-3 8 No 0.42 3.06

Ge (random) Fully C. Random 1 12,114 339,777 56.09 15 4.63e-3 7 No 0.63 6.35

Ge (random, denser) Fully C. Random 45,000 12,115 1,637,128 270.26 4 2.23e-2 1 Yes 0.09 2.15

Ge (high-degree) Fully C. High-degree 1 12,115 341,080 56.30 15 4.64e-3 10 No 0.63 6.15

Ge (high-degree, denser) Fully C. High-degree 45,000 12,114 1,631,950 269.43 10 2.22e-2 8 No 0.37 2.64

(2) The average clustering coefficient distribution for theGe random
expansion (Figure 7) is close to the original graph, because of

the use of a single interconnection. However, the distribution

of Ge high-degree, denser expansions does not resemble the

original graph any longer and becomes lower as we add more

interconnections. A similar behavior of this property can be

observed for other datasets [22].

(3) The fully connected topology in the average shortest path distri-
bution (Figure 8) has the highest number of shortest paths, while

other topologies have lower numbers of paths and more hops.

This corresponds to the point statistics numbers we provide in

our results (including Table 5).

6.2.2 Scaling factor and sample size.
In order to observe the impact of the scaling factor, we have ex-

panded the Facebook dataset up to ≈1.1 million edges and the Com-
Orkut dataset up to ≈1.5 billion edges using a factor of 6.5 and 10,

and a sample size of 0.5. These experiments result in 13 different

samples for the scaling factor of 6.5, and 20 different samples for the

scaling factor of 10. The properties for these different expansions

are provided in Table 6.

Furthermore, Table 7 shows the result of expanding the Facebook
dataset 4.5 times using a sample size of 0.5, thus resulting in a

number of 9 different samples, and a sample size of 0.9, which

results in a number of 5 different samples. Both expansions still

adhere to our models and expectations.

6.2.3 Controllability analysis.
Table 8 summarizes our empirical analysis of the controllability of

graph up-scaling. The analysis focuses on the correlation between

scaling parameters and resulting graph properties.

6.3 Performance
Finally, we have analyzed the execution time and scalability of

our tool. The execution of the tool is composed of I/O operations

(reading/writing graphs from disk), a sampling phase executed mul-

tiple times (as directed by the user), and a combining phase where

the bridge-vertices are selected and the new edges are introduced.

The most compute-intensive phase is the sampling one, which is

repeatedly invoked. We have included the total run-time in Table 4

for the different samples. Note that these performance numbers

depend on the (edge) size of the selected input graph.

For scaling-up, our tool outperforms most existing (distributed)

platforms whilst running on a single machine. For example, the total

execution time of our largest scale-up (Com-livejournal graph using

a scaling factor of 20 and sample size of 0.5) was under 50 minutes.

Existing tools on the other hand, when at all able to complete this

operation using the same target graph size, take several hours to

accomplish the task. The complete performance analysis results, as

well as a detailed description of the software and hardware setup,

are presented in our repository.

7 CASE-STUDIES
A prominent use-case for our graph scaling approach is detailed per-

formance analysis of different graph processing algorithms and/or

platforms (see Section 2; our goal is to extend and diversify the

graph families provided by generators like Graph500 [6] with fami-

lies seeded by real-life networks.

To demonstrate in detail how these scaled graph families can

and should be used for performance analysis, we conduct two case

SESSION 7: Performance Techniques ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

296

Table 6: Example of expanding the Facebook and Com-Orkut graph using a scaling factor of 6.5, and 10. *Obtained from 10,000 starting test
nodes..

To
po

lo
gy

B
ri
dg

e

#I
nt
er
co

n.

N
od

es

Ed
ge

s

A
vg

. d
eg

D
ia
m
et
er
*

D
en

si
ty

C
om

po
ne

nt
s

C
on

ne
ct
ed

A
vg

. C
.C
.

A
vg

.S
.P
.L
.*

Facebook (original)G - - - 4,039 88,234 43.69 8 1.10e-2 1 Yes 0.62 3.69

Gs (0.5) - - - 2,020 57,602 57.03 7 2.82e-2 2 No 0.63 3.55

Ge (6.5x, 0.5) Chain Random 1 26,252 736,666 56.12 55 2.13e-3 26 No 0.63 20.19

Ge (10x, 0.5) Chain Random 1 40,385 1,142,378 56.57 68 1.40e-3 25 No 0.63 23.10

Com-orkut (original) G - - - 3,072,441 117,185,083 76.28 9 2.48e-05 1 Yes 0.16 4.19

Gs (0.5) - - - 1,536,220 73,626,482 95.85 10 6.24e-05 17 No 0.15 3.97

Ge (6.5, 0.5) Star Random 1 19,970,861 957,116,088 95.85 22 4.79e-06 216 No 0.14 12.03

Ge (10x, 0.5) Star Random 1 30,724,401 1,472,465,199 95.84 21 3.11e-06 352 No 0.14 11.59

Ge (6.5x, 0.5) Chain Random 1 19,970,862 957,135,693 95.85 63 4.79e-06 243 No 0.14 23.97

Ge (10x, 0.5) Chain Random 1 30,724,401 1,472,597,664 95.85 95 3.11e-06 370 No 0.14 33.38

Ge (6.5x, 0.5) Ring Random 1 19,970,861 957,166,336 95.85 37 4.79e-06 215 No 0.14 17.96

Ge (10x, 0.5) Ring Random 1 30,724,406 1,472,502,728 95.85 54 3.11e-06 368 No 0.14 26.43

Ge (6.5x, 0.5) Fully C. Random 1 19,970,861 957,009,373 95.84 14 4.79e-06 214 No 0.14 7.63

Ge (10x, 0.5) Fully C. Random 1 30,724,404 1,472,491,564 95.85 15 3.11e-06 334 No 0.14 7.83

Table 7: Example of expanding the original Facebook graph 4.5
times using 9 different samples of size 0.5 (small sample) and an
expansion using 5 different samples of size 0.9 (large sample). *Ob-
tained from 13,000 starting test nodes.

G Gs (0.5) Ge (4.5, 0.5) Ge (4.5, 0.9)
Topology - - Star Star

Bridge - - Random Random

#Intercon. - - 1 1

Nodes 4,039 2,020 18,172 18,175

Edges 88,234 57,602 515,213 431,014

Avg. deg 43.69 57.03 56.70 47.42

Diameter* 8 7 20 20

Density 1.10e-2 2.82e-2 3.12e-3 2.60e-3

Components 1 2 12 2

Connected Yes No No No

Avg. C.C. 0.62 0.63 0.63 0.60

Avg. S.P.L.* 3.69 3.55 9.80 9.76

studies: we analyse how the properties of scaled-up graphs impact

the performance of two graph processing algorithms. Specifically,

we measure the processing time of Breadth-First Search (BFS) and

PageRank (PR) using GraphMat [27], a state-of-the-art platform

for distributed graph processing, on a family of scaled-up com-
livejournal and 12month1 graphs (listed in Table 3). This benchmark

has been conducted using the Graphalytics benchmark suite [12].

Each dataset and algorithm benchmark consists of three runs using

a single machine and 32 threads. Note that the processing time

is the actual algorithm running time and does not include any

platform-specific overhead or loading of the graph, as specified in

the Graphalytics benchmark suite.

Figure 9 shows the processing times of the scaled-up graph

family. All scale-ups use a sample size of 0.5 and random bridges for
interconnections. The exact performance numbers (including the

properties of each scaled-up graph) are available in our repository

[22]. Note that our case-studies use both TIES and Forest Fire as

sampling algorithms for the scaling operations. We selected TIES

because of its superiority in terms of property preservation. We

added Forest Fire to also allow an algorithm that preserves the

single component connectivity of the original input graph (which

may get disconnected when using TIES) and to ensure the root

BFS node is part of the sample (it is possible for TIES not to select

this node in its sampling passes). While Forest Fire does preserve

the single component connectivity of the original input graph, the

sampling quality in terms of property preservation is not as good

as TIES’, unless larger sample sizes are being used.

Another notable difference is that TIES hits the exact number of

vertices depending on the desired scaling size, while the edges are

typically oversampled, while in samples generated by Forest Fire,

the number of edges can be controlled through the scaling size, and

the number of vertices is typically slightly oversampled.

Furthermore, in order to merely observe the effects that the

topology and interconnections have on performance regardless of

the selected sampling algorithm (and sample size), we also conduct

benchmarks using full-sized copies (i.e., sample size equal to 1) of

the initial graph. Note that in this case, the topologies for scale 2

are all equivalent (one graph is simply connected to the other graph

across all topologies).

Based on the data presented in Figure 9, we make the following

observations:

(1) The scale-up parameters affect the performance of both

datasets in the same manner: the same performance trend

can be observed (per scale-up) between the two datasets.

(2) The processing time for all scale-ups is affected by the di-

ameter and average shortest path length significantly, and

follows the same pattern as shown in Figure 8. For example,

the chain topology increases the processing time of BFS the

SESSION 7: Performance Techniques ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

297

2 4
0
2
4
6
8

10
12
14
16
18

No
rm

al
ize

d
Ru

nt
im

e

original

com-lj

2 4
0
2
4
6
8

10
12
14
16
18

12month1

2 4
0
2
4
6
8

10
12

com-lj

2 4
0
2
4
6
8

10
12

12month1

2 4
0
2
4
6
8

10
12
14
16
18

No
rm

al
ize

d
Ru

nt
im

e

2 4
0
2
4
6
8

10
12
14
16
18

2 4
0
2
4
6
8

10
12

2 4
0
2
4
6
8

10
12

2 4 8
Scale

0
2
4
6
8

10
12
14
16
18

No
rm

al
ize

d
Ru

nt
im

e
All-1
All-20000

Star-1
Star-20000

Chain-1
Chain-20000

Ring-1
Ring-20000

Fully Connected-1
Fully Connected-20000

2 4 8
Scale

0
2
4
6
8

10
12
14
16
18

2 4 8
Scale

0
2
4
6
8

10
12

2 4 8
Scale

0
2
4
6
8

10
12

Breadth-first Search PageRank

Fo
re

st
 F

ire
TI

ES
Co

py

Figure 9: Normalized processing time of Breadth-First Search (BFS) and PageRank (PR) on scaled-up com-livejournal and 12month datasets,
using Forest Fire and TIES as sampling algorithm with different topologies and 1 - 20, 000 interconnections. All scale-ups use a sample size
of 0.5 and random interconnections. The last row shows the effects on performance when using full copies (sample size = 1.0) of the graph
rather than a sampling algorithm. Note that the scale for Forest Fire is based on the number of edges, while for TIES it is based on the number
of nodes. For full copies, this is both the number of vertices and edges.

most in comparison to a star topology (followed by the ring,

star, and fully connected topology) as the diameter and av-

erage shortest path lengths are the longest. In contrast, the

fully connected topology has, in all but one case, the lowest

processing time in comparison to the other topologies of

scale-ups using equivalent parameters, as these structural

properties are the smallest. The only exception is during the

x4 scale-up when using TIES as sampling algorithm with

20,000 interconnections.

(3) Adding more interconnections (thus reducing the diameter

and average path length) reduces the processing time of BFS.

In contrast to PR, adding more interconnections does not

reduce the processing time necessarily.

(4) For all scale-ups using TIES, the BFS processing time is higher

than when using Forest Fire (likely due to oversampling).

Furthermore, most of our results are robust and show no

unexpected behavior in terms of performance, despite the

chance of unexpected results when running BFS due to the

small deviance in the number of components per scale-up.

Unless the user has knowledge of the largest sub-graph and

which vertex belongs in there (along with other scale-ups),

we recommend using Forest Fire as sampling algorithmwhen

running BFS, as these concerns can be discarded.

(5) For BFS and PR, the fully connected topology with Forest

Fire as sampling algorithm and a single interconnection have

roughly linear scalability.

(6) Using full-sized copies of the graph (rather than samples) for

scale-ups shows that for BFS, the chain topologywith a single

interconnection has the largest processing time. This number

is larger than when using sampling algorithms. The fully

connected topology with a high number of interconnections

had the lowest processing time. For PR, the chain and fully

connected topologies with many interconnections have the

largest processing time. In contrast, the star topology with a

SESSION 7: Performance Techniques ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

298

Property Observation
Nodes Directly controllable through the scaling factor.

Edges
Roughly controllable through the scaling factor (in case of TIES additional edges are

added due to the total induction step; for an edge-based sampling method this can be

directly controlled).

Avg. degree Controllable through the sample size, amount of interconnections and topology. Degree

distribution is controllable through the scaling factor and amount of interconnections.

Diameter
Roughly controllable through the scaling factor, topology and interconnections. Note

that the diameter can get lower than the original graph when many interconnections are

added.

Graph density Controllable through interconnections.

Connectivity Not controllable since it is not being preserved by the sampling algorithm.

Avg. Clustering Coefficient Downwards controllable by adding multi-interconnections.

Avg. Shortest Path Length
Roughly controllable through the scaling factor, topology, interconnections and

bridge-vertices selection. Note that the average path length can get lower than the

number of the original graph when many interconnections are added.

Table 8: Summary of the controllability per property.

higher number of interconnections has a significantly lower

processing time.

In summary, our case-studies demonstrate (1) a useful degree of

control on the properties of scaled graphs, and (2) how different

properties-performance correlation hypotheses can be verified us-

ing our graph families. We are confident these case-studies provide

a first step towards an empirical approach (based on systematic

sensitivity analysis) to build performance models parameterized by

graph properties.

8 CONCLUSION
Graphs and graph processing belong to the very active field of

data science. With new analysis methods, datasets, and algorithms

emerging frequently, the community faces a benchmarking crisis:

the lack of representative datasets hinders in-depth performance

and scalability analysis for these new methods.

In this work, we have provided a pragmatic solution to this

challenge: a heuristic, sampling-based method for scaling existing

graphs. Our method starts with a seed graph and generates a family

of similar graphs, with properties controlled by user requirements.

We have implemented our method in an easy to use, flexible open-

source tool that addresses the needs of graph processing system

designers and developers. We have validated our tool on a set

of nine different graphs. Our in-depth empirical analysis shows

that generating diverse graphs, with predictable and controllable

properties is feasible. Moreover, our case-studies demonstrated that

these diverse graph families - only provided by our tool - can be

used for uncovering the behavior of graph processing platforms.

Our future work focuses on further improving user-interaction, by

enabling more control for experience users, and more automation

for novice users.

REFERENCES
[1] Nesreen Ahmed, Jennifer Neville, and Ramana Rao Kompella. 2011. Network

sampling via edge-based node selection with graph induction. (2011).

[2] Nesreen K Ahmed, Jennifer Neville, and Ramana Kompella. 2012. Network sam-

pling designs for relational classification. In Sixth International AAAI Conference

on Weblogs and Social Media.

[3] Mohammad Al Hasan. 2016. Methods and applications of network sampling. In

Optimization Challenges in Complex, Networked and Risky Systems. INFORMS,

115–139.

[4] Neli Blagus, Lovro Šubelj, and Marko Bajec. 2014. Assessing the effectiveness

of real-world network simplification. Physica A: Statistical Mechanics and its

Applications 413 (2014), 134–146.

[5] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A

recursive model for graph mining. In Proceedings of the 2004 SIAM International

Conference on Data Mining. SIAM, 442–446.

[6] The Graph 500 Steering Committee. 2010–2016. The Graph 500 List. http:

//www.graph500.org.

[7] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev,

Arnau Prat, Minh-Duc Pham, and Peter Boncz. 2015. The LDBC social network

benchmark: Interactive workload. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data. ACM, 619–630.

[8] Graphalytics.org. 2019. Graphalytics Global Competition. https://graphalytics.

org/competition.

[9] Yong Guo, Ana Lucia Varbanescu, Alexandru Iosup, Claudio Martella, and

Theodore L Willke. 2014. Benchmarking graph-processing platforms: a vision.

In Proceedings of the 5th ACM/SPEC international conference on Performance

engineering. ACM, 289–292.

[10] Alexander Gutfraind, Ilya Safro, and Lauren Ancel Meyers. 2015. Multiscale net-

work generation. In 2015 18th International Conference on Information Fusion

(Fusion). IEEE, 158–165.

[11] Pili Hu and Wing Cheong Lau. 2013. A survey and taxonomy of graph sampling.

arXiv preprint arXiv:1308.5865 (2013).

[12] Alexandru Iosup, Tim Hegeman, Wing Lung Ngai, Stijn Heldens, Arnau Prat-

Pérez, Thomas Manhardto, Hassan Chafio, Mihai Capotă, Narayanan Sundaram,

Michael Anderson, et al. 2016. LDBC Graphalytics: A benchmark for large-scale

graph analysis on parallel and distributed platforms. Proceedings of the VLDB

Endowment 9, 13 (2016), 1317–1328.

[13] Farzad Khorasani, Rajiv Gupta, and Laxmi N Bhuyan. 2015. Scalable simd-

efficient graph processing on gpus. In 2015 International Conference on Parallel

Architecture and Compilation (PACT). IEEE, 39–50.

[14] Jérôme Kunegis. 2013. KONECT: The Koblenz Network Collection. In

Proceedings of the 22nd International Conference on World Wide Web. ACM,

1343–1350.

[15] Sang Hoon Lee, Pan-Jun Kim, and Hawoong Jeong. 2006. Statistical properties

of sampled networks. Physical review E 73, 1 (2006), 016102.

[16] Jure Leskovec. 2006. Stanford Network Analysis Platform (SNAP). Stanford

University (2006).

[17] Jure Leskovec. 2008. Kronecker Graphs (presentation). (2008).

[18] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and

Zoubin Ghahramani. 2010. Kronecker graphs: An approach tomodeling networks.

Journal of Machine Learning Research 11, Feb (2010), 985–1042.

[19] Jure Leskovec and Christos Faloutsos. 2006. Sampling from large graphs. In

Proceedings of the 12th ACM SIGKDD international conference on Knowledge

discovery and data mining. ACM, 631–636.

SESSION 7: Performance Techniques ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

299

http://www.graph500.org
http://www.graph500.org
https://graphalytics.org/competition
https://graphalytics.org/competition

[20] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[21] Joshua Lothian, Sarah Powers, Blair D Sullivan, Matthew Baker, Jonathan Schrock,

and Stephen W Poole. 2013. Synthetic graph generation for data-intensive HPC

benchmarking: Background and framework. Oak Ridge National Laboratory,

Tech. Rep. ORNL/TM-2013/339 (2013).

[22] Ahmed Musaafir. 2019. Graph scaling tool (repository). https://github.com/

amusaafir/graph-scaling.

[23] Ahmed Musaafir and Ana Varbanescu. 2018. Graph scaling models. https:

//github.com/amusaafir/graph-scaling/blob/master/scaling-guidelines.pdf.

[24] Ryan Rossi and Nesreen Ahmed. 2015. The network data repository with inter-

active graph analytics and visualization. In Twenty-Ninth AAAI Conference on

Artificial Intelligence.

[25] Mirko Spasic, Milos Jovanovik, and Arnau Prat-Pérez. 2016. An RDF Dataset

Generator for the Social Network Benchmark with Real-World Coherence.. In

BLINK@ ISWC.

[26] Christian L Staudt, Michael Hamann, Ilya Safro, Alexander Gutfraind, and Hen-

ning Meyerhenke. 2016. Generating scaled replicas of real-world complex net-

works. In International Workshop on Complex Networks and their Applications.

Springer, 17–28.

[27] Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Patwary, Subramanya R

Dulloor, Michael J Anderson, Satya Gautam Vadlamudi, Dipankar Das, and

Pradeep Dubey. 2015. Graphmat: High performance graph analytics made pro-

ductive. Proceedings of the VLDB Endowment 8, 11 (2015), 1214–1225.

[28] Alexandru Uta, Ana Lucia Varbanescu, Ahmed Musaafir, Chris Lemaire, and

Alexandru Iosup. 2018. Exploring hpc and big data convergence: A graph pro-

cessing study on intel knights landing. In 2018 IEEE International Conference

on Cluster Computing (CLUSTER). IEEE, 66–77.

[29] Merijn Verstraaten, Ana Lucia Varbanescu, and Cees de Laat. 2018. Mix-and-

Match: A Model-driven Runtime Optimisation Strategy for BFS on GPUs. In

2018 IEEE/ACM 8th Workshop on Irregular Applications: Architectures and

Algorithms (IA3). IEEE, 53–60.

[30] Marija Vištica, Ani Grubišic, and Branko Žitko. 2016. Applying graph sampling

methods on student model initialization in intelligent tutoring systems. The

International Journal of Information and Learning Technology 33, 4 (2016), 202–

218.

[31] JW Zhang and YC Tay. 2016. GSCALER: Synthetically Scaling A Given Graph..

In EDBT, Vol. 16. 53–64.

SESSION 7: Performance Techniques ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

300

http://snap.stanford.edu/data
https://github.com/amusaafir/graph-scaling
https://github.com/amusaafir/graph-scaling
https://github.com/amusaafir/graph-scaling/blob/master/scaling-guidelines.pdf
https://github.com/amusaafir/graph-scaling/blob/master/scaling-guidelines.pdf

	Abstract
	1 Introduction
	2 Motivation and related work
	2.1 Motivation: the case for families of graphs
	2.2 Related work: obtaining graph families

	3 Sampling Methods
	4 Sampling-based Graph Scaling
	4.1 Overview of the method
	4.2 The method and its parameters
	4.3 Parameters and Property-prediction models

	5 Graph Scaling Tool
	5.1 User interaction
	5.2 Auto-tuner
	5.3 Implementation

	6 Experimental Evaluation
	6.1 Down-scaling graphs
	6.2 Up-scaling graphs
	6.3 Performance

	7 Case-studies
	8 Conclusion
	References

