
Predicting the Costs of Serverless Workflows
Simon Eismann

University of Würzburg

Würzburg, Germany

simon.eismann@uni-wuerzburg.de

Johannes Grohmann

University of Würzburg

Würzburg, Germany

johannes.grohmann@uni-

wuerzburg.de

Erwin van Eyk

Vrije Universiteit

Amsterdam, Netherlands

E.vanEyk@atlarge-research.com

Nikolas Herbst

University of Würzburg

Würzburg, Germany

nikolas.herbst@uni-wuerzburg.de

Samuel Kounev

University of Würzburg

Würzburg, Germany

samuel.kounev@uni-wuerzburg.de

ABSTRACT
Function-as-a-Service (FaaS) platforms enable users to run arbi-

trary functions without being concerned about operational issues,

while only paying for the consumed resources. Individual func-

tions are often composed into workflows for complex tasks. How-

ever, the pay-per-use model and nontransparent reporting by cloud

providers make it challenging to estimate the expected cost of a

workflow, which prevents informed business decisions. Existing

cost-estimation approaches assume a static response time for the

serverless functions, without taking input parameters into account.

In this paper, we propose amethodology for the cost prediction of

serverless workflows consisting of input-parameter sensitive func-

tion models and a monte-carlo simulation of an abstract workflow

model. Our approach enables workflow designers to predict, com-

pare, and optimize the expected costs and performance of a planned

workflow, which currently requires time-intensive experimenta-

tion. In our evaluation, we show that our approach can predict the

response time and output parameters of a function based on its

input parameters with an accuracy of 96.1%. In a case study with

two audio-processing workflows, our approach predicts the costs

of the two workflows with an accuracy of 96.2%.

CCS CONCEPTS
• Software and its engineering → Software performance; •
Computer systems organization→Cloud computing; •Com-
putingmethodologies→Modeling and simulation;Machine
learning.

KEYWORDS
Serverless, Workflows, Prediction, Cost, Performance

ACM Reference Format:
Simon Eismann, Johannes Grohmann, Erwin van Eyk, Nikolas Herbst,

and Samuel Kounev. 2020. Predicting the Costs of Serverless Workflows. In

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6991-6/20/04. . . $15.00

https://doi.org/10.1145/3358960.3379133

Proceedings of the 2020 ACM/SPEC International Conference on Performance
Engineering (ICPE ’20), April 20–24, 2020, Edmonton, AB, Canada. ACM, New

York, NY, USA, 12 pages. https://doi.org/10.1145/3358960.3379133

1 INTRODUCTION
Serverless computing is an emerging cloud computing paradigm,

where all operational concerns, such as deployment and resource

provisioning, are delegated to the cloud platform and costs are

calculated based on a pay-per-use basis [19, 28]. Function-as-a-

Service (FaaS) platforms, such as AWS Lambda, Google Cloud Func-

tions, or Azure Functions enable the serverless execution of state-

less, ephemeral compute functions [25, 33]. To implement complex

business functionality, individual functions can be composed into

serverless workflows using e.g. AWS Step Functions, Google Cloud

Composer, or Azure Durable Functions [37].

Currently, all major cloud providers use the same cost model

for serverless functions, where the cost of a function execution

depends on: i) the response time of a function rounded up to the

nearest 100 ms, ii) the memory allocated to the function and iii) a

static charge for every invocation [2]. While many organizations

report significant cost savings by switching from traditional host-

ing options to serverless solutions [2, 4, 26], an inhibiting factor

for the adoption of serverless solutions in practice is the difficulty

of estimating the expected costs of serverless functions and work-

flows [2, 6, 38]. A reason for this is that, in contrast to traditional

hosting options, the cost of a function depends directly on its in-

put parameters—since the response time distribution of a function

depends on its input parameters. For example, the time required

to resize an image depends on its original size. Therefore, the cost

of resizing an image depends on its original size as well. This is

exacerbated in workflows, where function outputs are often propa-

gated to succeeding functions. Hence, the cost and response time of

functions contained within a workflow can be erratic, which makes

predicting the cost for the overall serverless workflow challenging.

Existing approaches for the cost estimation of serverless func-

tions and workflows require the user to estimate the function re-

sponse time with a single mean value [13, 18]. This is often inaccu-

rate due to the erratic response time of functions within a workflow.

The response time of a function or workflow can be measured using

micro-benchmarks [6]. However, measuring cost is cumbersome

as cost/usage statistics for serverless functions are usually delayed

by 4-48 hours and aggregated either per hour or per day. Queuing

SESSION 7: Performance Techniques ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

265

https://doi.org/10.1145/3358960.3379133
https://doi.org/10.1145/3358960.3379133
https://www.acm.org/publications/policies/artifact-review-badging#reusable
https://www.acm.org/publications/policies/artifact-review-badging#available

Workflow Prediction Engine

f
f

f
f

Workflow Model

build
workflow

model

3

simulate
workflow

model

4

Monitoring Data
Repository

Function Model
Repository

Model
Trainer

f f f f

f f f f

Serverless
Functions

Monitoring
Data

Monitoring
Data

Function
Model

Monte-Carlo
Simulator

Workflow
Designer

fetch
function
modelsupload

workflow
structure

2

return cost
estimate

Continuous Model Learning

5

1

Workflow Cost Prediction

Figure 1: Overview of the proposed approach for the cost prediction of serverless workflows.

theory-based models can predict the impact of input parameters

on the performance of traditional systems [1, 10, 16], but are inap-

plicable for serverless solutions as they require knowledge about

the underlying resource landscape and deployment.

In this paper, we propose a methodology for the cost prediction

of serverless workflows. First, we apply machine learning to predict

the response time and output parameter distributions for individual

serverless functions. Standard regression techniques, such as SVR,

MARS, or random forest, can only be used to predict the mean

response time of a function. However, accurate cost estimations

require the prediction of response time distributions, because cloud

providers round the billed execution time up to the nearest 100 ms.

Therefore, we show how Mixture Density Networks (MDNs) can

be used to accurately predict the response time and output parame-

ter distributions of serverless functions. These individual function

models are composed to a workflow model that describes the pa-

rameter relationships within the workflow. Finally, a Monte-Carlo

simulation traverses the workflow model and samples distributions

from the individual functions models to derive cost predictions for

serverless workflows. In our case study, the proposed approach

predicts the response time distribution and the distribution of the

output parameters of five representative Google Cloud Functions

with a mean accuracy of 96.1%. For two workflows composed of

these functions, our approach achieves a mean workflow cost pre-

diction accuracy of 96.2%.

The approach presented in this paper provides accurate cost pre-

dictions for previously unobserved serverless workflows. Using our

approach, solution architects can make informed decisions when

choosing between a serverless workflow and a traditionally hosted

workflow by providing concrete numbers for the costs of the server-

less workflow. Based on our cost predictions, workflow designers

can compare alternatives without time-intensive experimentation.

Additionally, our approach represents a first step towards fully au-

tomated workflow optimization using multi-objective optimization

techniques, analogously to existing tools for traditional software

systems [3, 35].

2 APPROACH
In this paper, we propose an approach to predict the costs of server-

less workflow executions. Section 2.1 gives an overview of the

approach, whereas Section 2.2 goes into detail on predicting the

distributions of the response time and output parameters of a server-

less function. Section 2.3 describes how the proposed Monte-Carlo

simulation uses the predictions for individual functions to estimate

the average cost per execution of a serverless workflow.

2.1 Overview
The proposed approach shown in Figure 1 can be separated into two

phases, the continuous model learning process and the workflow

cost prediction process.

During the continuous model learning process, the existing

Serverless Functions are monitored. For any functions that

are not already deployed in production, micro-benchmarks can be

used to generate monitoring data [6]. The resulting monitoring data

is stored in a Monitoring Data Repository (e.g., Prometheus, In-

fluxDB or a managed monitoring solution from the cloud provider).

Periodically, the Model Trainer is triggered to train models that

describe the response time and output parameter distributions of

the serverless functions based on their input parameters, which

is discussed in detail in Section 2.2. As the Model Trainer could
make use of GPU-based acceleration during the model learning,

it could be deployed in a distributed data analytics cluster with

GPU acceleration, such as a Spark or Hadoop cluster. The resulting

SESSION 7: Performance Techniques ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

266

Text2
Speech

Text Audio

TextLength
(250)

ResponseTime

FileSize

Figure 2: Formultiple text segments of length 250, a distribu-
tion of response times and output file sizes can be observed
for a function that transcribes text into speech.

models are then stored in the Function Model Repository, which
due to the infrequent access pattern can be a cloud data storage,

such as Amazon S3, Google Cloud Storage, or Azure Storage.

The workflow cost prediction process is triggered when a work-

flow designer uploads the workflow that he/she wants to evalu-

ate. Next, the Workflow Prediction Engine fetches the models

for all functions contained in the workflow from the Function
Model Repository. These function models are then composed into

a Workflow Model based on the structure uploaded by theworkflow
designer. To derive cost predictions from the Workflow Model, the
Monte-Carlo Simulator simulates the Workflow Model. Finally,
the derived cost estimates are returned to the workflow designer.

The Workflow Prediction Engine could be implemented as a

serverless function, as it has an infrequent, potentially bursty access

pattern and model inference rarely relies on GPU acceleration [43],

which is currently not supported for serverless functions [24].

In the following Sections 2.2 and 2.3, we describe the prediction

of function response time and output parameter distributions and

our approach to derive cost estimates for serverless workflows

based on the individual function models.

2.2 Function response time and output
parameter distribution prediction

We train an individual model for the response time and for each

output parameter of a serverless function based on monitoring data

from the Monitoring Data Repository. This monitoring data

contains the response time and parameterization for each request to

the serverless function. Most machine learning techniques require

numeric input, while the parameters of a function call are not

necessary numeric values. Examples of non-numeric values include

strings, lists, binary data, etc. In this paper, we do not address

the task of creating numeric features based on this data, as there is

extensive prior work targeting the automated extraction of numeric

features based on function input parameters [22, 31].

For the repeated execution of a serverless function with iden-

tical input parameter characteristics, a distribution of response

times and output parameters can be observed. To illustrate this, we

implemented and evaluated a function called Text2Speech, which

Figure 3: Comparison between billed response time and
mean response time of normal distribution.

transcribes text segments to speech, as shown in Figure 2. Tran-

scribing multiple text segments with a length of 250 characters,

we observe a distribution of the response time due to variation

in the performance and saturation of the hardware executing the

function. Additionally, we also observe varying values for the size

of the resulting audio file. However, both the response time and

the resulting file size are closely correlated to the length of the

transcribed text segment.

Predicting the distribution of the response time of a serverless

function is important to estimate the resulting costs. Predicting

only the expected mean response time can lead to inaccurate cost

predictions, as all major FaaS providers round the billed response

time up to the nearest 100 ms. Figure 3 shows this for a simulated

serverless function with a normally distributed response time with

a mean of 180 ms and a standard deviation of 60 ms. If we would

solely use the mean response time of 180 ms and round to the

nearest 100 ms, we would predict that an execution of this function

is billed for 200 ms on average. However, looking at the actual

probabilities of being billed 100 ms (9.12%), 200 ms (53.93%), 300 ms

(34.67%) and 400 ms (2.28%), results in a mean billed time of 230.11

ms. Therefore, accurate cost estimations for serverless functions

and workflows require predicting the response time distribution

instead of only the mean response time.

Common regression techniques, such as SVR, MARS, or random

forest can only be used to predict the mean response time of a

serverless function. Therefore, we propose the usage of so-called

mixture density networks (MDNs) [9]. Bishop et al. propose the idea

to use a dense neural network to parameterize a gaussian mixture

model. A mixture model describes the probability density function

of a random variable as a linear combination ofm gaussian kernels:

p(y |x) =
m∑
i=1

αi (x) ∗ ϕi (y |x) (1)

with αi as the mixing factor (

∑m
i=1 αi (x) = 1) and ϕi (y |x) as a

gaussian kernel with mean µi and standard deviation σi . Provided
with a large enough number of kernels, a gaussian mixture dis-

tribution can approximate any probability distribution with an

arbitrary accuracy [20]. Simply put, a gaussian mixture distribution

SESSION 7: Performance Techniques ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

267

H1

H2

H3

H4
...

H1

H2

H3

H4
...

X1

X2
...

Input
Layer

μ1
...

σ1
...

α1
...

L2
 =

 0
.1

L2
 =

 0
.1

Dense
Layer

Dense
Layer

Regularization Regularization
Output Layer

Softmax
Activation

Linear
Activation

Softplus
Activation

Figure 4: Mixture density network architecture for the prediction of response time and output parameter distributions of
serverless functions with α as mixing coefficients, µ as kernel means and σ as kernel standard deviations.

is the weighted average ofm normal distributions. Parameterizing

a gaussian mixture distribution requires the weights, means and

standard deviations of them normal distributions. In a mixture den-

sity network, these parameters are estimated using a dense neural

network. As the weights, means and standard deviations are not

contained within the training data set, traditional loss functions

for regression, such as Mean Squared Error (MSE), Mean Squared

Logarithmic Error (MSLE) or Mean Absolute Error (MAE) cannot

be applied. Instead, most mixture density networks use the negative

log-likelihood function as a loss function, which is defined as:

ℓ(x) = −loд(p(y |x)) (2)

For each sample in a training batch, the logarithm of its occur-

rence likelihood is calculated and then negated, as neural network

optimizers aim to minimize the loss function.

Figure 4 shows the network layout we propose to use for the pre-

diction of the response time and output parameter distributions of

serverless functions. It consists of an input layer, two dense hidden

layers, two regularizations and an output layer that aggregates over

the three layers describing the mixing coefficients αi , the means µi
and the standard deviations σi of the gaussian kernels. The input

layer contains a neuron for each input parameter, so the overall

network has rather few input neurons. The output layer has a total

ofm ∗ 3 neurons, but our evaluation showed that the prediction

of the response time and output parameter distributions requires

usually less than five kernels. Therefore, the total number of out-

put neurons remains usually below fifteen. With limited input and

output neurons, the dense layers require only a comparatively low

number of neurons (200 were sufficient during our case study).

Some input parameters have a large range of values, such as the

file size. For such input parameters it is possible to only have a sin-

gle observation for a specific input parameter value. Additionally,

the response time for serverless functions is prone to outliers due

to function cold starts [7]. If such an outlier is the only sample for

its input parameter value, the neural network will overfit by param-

eterizing the mixture distribution for this specific input parameter

value much larger than for adjacent input parameter values. In

order to prevent this type of overfitting, we apply L2 regularization

after each dense layer. A L2 regularization (also known as ridge

regularization or Tikhonov regularization) adjusts the cost function

for the gradient descent learning by adding the squared Euclidean

norm of the corresponding layers weight matrix [15]. Therefore, the

L2 regularization penalizes model complexity. In our use case, this

is a desirable property as we assume that the relationship between

an input parameter and the observed response time distribution is

roughly continuous.

The dense layers use the widespread rectified linear unit (relu)

activation function [32]. The output layer for the mixing coeffi-

cients uses the softmax activation function to guarantee that the

mixing coefficients sum up to one. As no restrictions apply for the

means of the linear kernels, the corresponding output layer uses

a linear activation function. For the prediction of response time

distributions, it could be restricted to positive values. However,

there might be edge cases in which the distribution of an output

parameter might contain negative values. As a standard deviation is

restricted to values greater than or equal to zero, the corresponding

output layer should also be restricted accordingly as otherwise the

negative loss likelihood can no longer be calculated. Bishop et al.

originally proposed the usage of an exponential activation func-

tion [9]. However, this is reported to potentially lead to numerical

instability [11]. As alternatives, we tested the softplus activation

function [21] and an exponential linear unit (elu) activation func-

tion [14] with an offset of 1. The convex nature of the softplus

activation function enabled the network to fit linear kernels with a

small standard deviation, whereas the elu + 1 activation function

consistently skewed towards kernels with large standard deviations.

Linear kernels with a small standard deviation are useful in mixture

density networks to explain subpopulations. Therefore, we choose

the softplus activation function for the standard deviation output

layer. Finally, the three output layers are concatenated to form a

single output layer.

2.3 Workflow cost prediction
In Section 2.2, we propose the usage of mixture density networks

to predict the response time and output parameter distribution of

individual serverless function for a concrete input parameter value.

SESSION 7: Performance Techniques ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

268

WorkflowModel
name:	String

Node
name:	String
rtModel:	MDNModel

ConnectionEdge
outputModel:	MDNModel

InputEdge

1..*

input
AbstractEdge

name:	String
distribution:	Distribution

0..*

source
1

Figure 5: Meta-model for the workflow model.

Algorithm 1 Workflow Model Traversal

1: function estimateCosts(workflowModel)

2: for edge in workflowModel.nodes.input do
3: SOLVE(edge)

4: end for
5:

6: workflowCost = 0

7: for node in workflowModel.nodes do
8: rDist = SIMULATE(node.rtModel, node.input)

9: functionCost = ESTIMATECOST(rDist)

10: workflowCost += functionCost

11: end for
12:

13: return workflowCost

14: end function
15:

16: function solve(edge)

17: if edge.distribution != NULL then
18: return
19: end if
20:

21: inputDists = edge.source.input

22: for dependency in inputDists do
23: SOLVE(dependency)

24: end for
25:

26: edge.distribution=SIMULATE(edge.model, inputDists)

27: end function

However, in a serverless workflow the input parameters of each

function are a distribution instead of a concrete value, because they

are the output of previous functions. We propose to run a Monte-

Carlo simulation [41] on a model of the workflow to empirically

determine the response time and output parameter distribution for

a given distribution of input parameters.

As shown in Figure 5, the proposed workflow model is an ex-

tended, directed acyclic graph (DAG), a common formalism tomodel

workflows [40]. As a simplification, we assume that control and data

flow are identical. Each WorkflowModel consists of a number of

Nodes. A Node represents a single execution of a serverless function
and should be named after the function it represents. Every Node
contains a number of AbstractEdges, which represent the input

parameters to the function and also should be named accordingly.

Each edge describes the name of a parameter and its corresponding

Algorithm 2 Monte-Carlo Simulation

1: function simulate(MDNModel, paramDists)

2: numSamples = 5000

3: resultDistList = new List()

4: for i = 1; i ≤ numSamples; i++ do
5: params = new List()

6: for param in paramDists do
7: sample = param.drawSample()

8: params.add(sample)

9: end for
10: dist = MDNModel.predict(params)

11: resultDistList.add(dist)

12: end for
13:

14: return new MixtureDistribution(resultDistList)

15: end function

distribution. There are two sub-classes of AbstractEdge, namely

InputEdge and ConnectionEdge. An InputEdge represents an in-

put to the workflow and characterizes the distribution of an input

parameter to the first Nodes in the workflow. On the contrary,

ConnectionEdges serve both as input parameters to nodes and out-

put parameter fromnodes. They characterize the output distribution

of a return parameter of a node, which is usually an input parame-

ter to another Node in the workflow. Therefore, ConnectionEdges
contain an MDNModel that can predict the Distribution of the out-
put parameter the ConnectionEdge represents, based on the input

parameters of the corresponding Node. ConnectionEdges addition-
ally reference the Node of which the output parameter originated

from. Similarly, each Node contains a MDNModel that can be used to

estimate the response time distribution of the serverless function

represented by the Node based on its input parameters. Since all

edges always describe input parameters of nodes, it is possible to

add output parameters that do not impact the cost of the workflow

execution.

Algorithm 1 requires a WorkflowModel as an input and provides

an estimation of the costs for executing this workflow. First, at line

2-4 of Algorithm 1, all input distributions are solved by iterating

over all input edges of all nodes of the workflow and recursively

solving them. The SOLVE function described at line 16-27 returns at

line 18, if a given edge already has a distribution. This is the case

for InputEdges for example, as they are already parameterized as

input. However, if the distribution of an edge is unknown, the dis-

tribution of the edge can be estimated by applying the Monte-Carlo

SESSION 7: Performance Techniques ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

269

Algorithm 3 Cost Estimation

1: function estimateCost(respDist)

2: numSamples = 5000

3: sumCosts = 0

4: for i = 1; i ≤ numSamples; i++ do
5: sample = respDist.drawSample()

6: billedIntervals = CEIL(sample/BILLINGINTERVAL)

7: sumCosts += billedIntervals * CPUCOST

8: sumCosts += billedIntervals * MEMORYCOST

9: sumCosts += EXECUTIONCOST

10: end for
11:

12: return sumCosts/numSamples

13: end function

simulation on the given MDN model of the edge and the distribu-

tions of its input parameters. However, as the input parameters

might also be unknown, all dependent edges are first solved by

recursively calling SOLVE on them. This recursion is guaranteed to

be finite, as DAGs are not allowed to contain circles and all input

edges are already parameterized.

After the recursion ends at line 5 of Algorithm 1, all input distri-

butions to all nodes in the given workflowmodel are known. Hence,

lines 6-11 iterate over all nodes in the workflow engine, and sums

up the estimated cost for each predicted response time distribution.

Finally, the total costs can be returned at line 13.

Algorithm 2 details how the Monte-Carlo simulation derives the

distribution of response times or output parameters of a serverless

function based on the distribution of its input parameters. It uses

the mixture density networks described in Section 2.2, that predict

the expected distribution for concrete input parameter values. In

lines 5-9 of Algorithm 2, the algorithm draws a sample from the

probability distribution of each input parameter. Next, at lines 10-11,

the mixture density model is used to predict the expected distribu-

tion for this set of input parameters and the resulting distribution

is added to a list. The more samples are used in a Monte-Carlo

simulation, the more precise the resulting estimation becomes, at

the cost of increased computation time. As rare events are not ex-

pected in our use case, 5,000 samples likely provide a sufficient

prediction accuracy. The resulting list of probability distributions is

then composed to a mixture distribution with equal weights, which

can be seen as the average over the individual distributions.

Algorithm 3 shows the adapted Monte-Carlo simulation used

to predict the average cost for a function estimation based on its

response time distribution. First, 5,000 samples are drawn from the

response time distribution of the serverless function. In line 6, the

algorithm calculates the number of billed intervals by dividing the

response time sample by the size for the billing interval and round-

ing up. The number of billed intervals is then used for calculating

the cost for the CPU time and the memory time, by multiplying

them at lines 7 and 8 of Algorithm 3. Some cloud providers do not

split the costs of CPU time and memory time; in this case lines 7

and 8 can be concatenated and replaced by just one multiplication

with the charged amount per interval. Additionally, each sample is

charged a constant blanket fee per execution, a.k.a. the invocation

cost for each function execution. After calculating all samples, the

costs for each sample are summed up and divided by the num-

ber of samples to determine the average execution cost at line

12. The static variables BILLINGINTERVAL, CPUCOST, MEMORYCOST
and EXECUTIONCOST depend on the pricing of the selected cloud

provider and can be parameterized accordingly.

3 CASE STUDY
We design our case study in order to answer the following three

research questions:

• RQ1: Are mixture density networks capable of accurately

predicting the distribution of the response time and the out-

put parameters of a serverless function?

• RQ2: Can the proposed algorithm and the underlying ma-

chine learning models for the individual functions accurately

predict the costs of a previously unobserved workflow?

• RQ3:What is the required time for training and workflow

prediction? Is the overhead feasible for a production envi-

ronment?

Based on these research questions, we implemented the following

five audio utility functions on Google Cloud Functions using Python

with the following input and output parameters:

Text2Speech Transcribes text files into audio files, a functionality

that is commonly used to increase accessibility, to automate phone

banking or in smart home assistants like Alexa or Google Assistant.

It uses the google text-to-speech Python library gTTS (v2.0.3), which
returns an MP3 file.

Parameters:
• [Input] TextLength: Length of the text that needs to be tran-

scribed, measured in number of characters.

• [Output] FileSize: Size of the resulting MP3 file in bytes.

ProfanityDet Detects racial slurs, sexually explicit language and

general expletives in a text segment. The implementation is based

on the Python library profanity (v1.1.0), which implements a

blacklist-based filter.

Parameters:
• [Input] TextLength: Length of the text in which the profani-

ties are detected, measured in number of characters.

• [Output] ProfanityCount: Number of detected profanities

alongside their location in the text.

Conversion Converts an MP3 file to a WAV file. This conversion

tends to increase the file size, but many applications require raw

WAV files as input. The conversion is performed using the Python

library pydub (v0.23.1), a wrapper for the ffmpeg library, which is

available in all Google Cloud function instances.

Parameters:
• [Input] FileSize: Size of the MP3 file that is converted.

• [Output] FileSize: Size of the resulting WAV file in bytes.

Censor Censors segments of a WAV file, based on a list of time

segments that should be censored. For the censoring, all samples

within the segments that are censored are muted using the pydub
(v0.23.1) library.

SESSION 7: Performance Techniques ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

270

300 400 500 600 700 800 900
Text length [characters]

0

500

1000

1500

2000

2500

3000

R
es

p
on

se
ti

m
e

[m
s]

MDN Kernel 1 Mean

MDN Kernel 1 SD

Training Data

MDN Kernel 2 Mean

MDN Kernel 2 SD

Figure 6: MDN model for the response time of the
text2speech function.

Parameters:
• [Input] FileSize: Size of the file that is censored in bytes.

• [Input] ProfanityCount: Number of detected profanities.

• [Output] FileSize: Size of the censored audio file in bytes.

Compression Compresses a WAV audio file by reducing the sam-

pling rate and sample width. On an initial set of audio files, the

compression achieves compression rates of about 60-90%.

Parameters:
• [Input] FileSize: Size of the audio file prior to compression,

measured in bytes.

• [Output] FileSize: Size of the audio file after compression,

measured in bytes.

We deploy each function to Google Cloud Functions with 512 MB

memory, the Python 3.7 runtime and a timeout of 60 seconds. The

code for the functions is available online
1
. In the following, we first

investigate the capability of the proposed mixture density networks

to accurately predict the distribution of a functions response time

and its output parameters. Next, we apply our cost-prediction algo-

rithm to two distinct workflows composed of these functions and

compare the cost predictions to the actual observed costs.

3.1 Response time and output parameter
distribution predictions

As described in Section 2.2, the mixture density networks can

be trained on monitoring data collected during function opera-

tion or using micro-benchmarks. In this case study, we use micro-

benchmarks to create the data set for the training of the mixture

density networks as these functions are currently not deployed

in production. The workload for each function consists of 50 re-

quests/second with varying input parameters. The monitoring data

for the first three minutes of a measurement is discarded as a warm-

up phase. The next ten minutes are used as training data for the

mixture density network models. For the evaluation in this paper,

we additionally collect the monitoring data of the following 50

minutes as our validation data set. This larger validation data set is

1
https://github.com/SimonEismann/FunctionsAndWorkflows

0.000

0.001

0.002

0.003

0.004

0.005
Text length = 300

Empirical Distribution Predicted Distribution

0.000

0.001

0.002

0.003

0.004

P
ro

ba
bi

lit
y

D
en

si
ty

Text length = 600

500 1000 1500 2000 2500
Response time [ms]

0.000

0.001

0.002

0.003

0.004 Text length = 900

Figure 7: Comparison of measured response time distribu-
tion in the validation data set and predicted response time
distribution for three different text lengths.

only required for the evaluation presented in this paper and is not

necessary to apply our approach in practice. For the experiments

presented in this paper, we parameterize the network as following.

We use the Adam optimizer [30] with a learning rate of 0.001. We

train for 500 epochs with a batch size of 32 and to prevent overfit-

ting an early stopping criterion terminates the training process if

the negative log-likelihood does not decrease by more than 0.001

for 10 epochs [42]. Additionally, we apply model check-pointing

to save the best model achieved during training as the model ac-

curacy decreased at times during the training process. In order

to determine the appropriate number of kernels for the gaussian

mixture model, we apply basic hyper-parameter optimization based

on the observed negative log-likelihood during model training to

select between 1, 2, 3, 4 or 5 kernels. The collected monitoring data,

the implementation of the proposed approach and the evaluation

scripts are available online as a CodeOcean capsule to enable 1-click

reproduction of our results
2
.

As an example for the resulting models, Figure 6 shows how

the mixture density networks fit the training data for the response

time of the Text2Speech function. The input parameter TextLength

varies from roughly 300 to 900 characters and the resulting re-

sponse time ranges from roughly 400 ms up to 3000 ms. There

is a clear correlation between the length of the transcribed text

and the response time of the Text2Speech function. However, for

each input text length, a broad range of response times is observed.

The mixture density network describes this distribution using two

normal distributed kernels. The green normal distribution (MDN

Kernel 2) is used to fit the bulk of occurring response times and the

orange normal distribution (MDN Kernel 1) is used to describe the

scattered lower response times. Note that these two distributions

are not weighted equally, instead, the green kernel has a larger

weight than the orange kernel.

Figure 7 shows how the predicted distributions (in red) compare

to the observed empirical distributions from the validation data set

for text lengths of 300, 600 and 900. To derive the empirical distri-

butions we apply a gaussian kernel density estimation [12] with

2
https://doi.org/10.24433/CO.6374129.v2

SESSION 7: Performance Techniques ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

271

https://github.com/SimonEismann/FunctionsAndWorkflows
https://doi.org/10.24433/CO.6374129.v2

Function Parameter 1 kernel 2 kernels 3 kernels 4 kernels 5 kernels

Text2Speech Response time 5.3% 4.2% 4.1% 6.4% 4.5%
Text2Speech FileSize 0.6% 0.3% 1.1% 0.4% 0.6%

Conversion Response time 13.2% 38.3% 3.4% 3.3% 3.3%
Conversion FileSize 0.9% 1.2% 7.8% 9.0% 16.4%

Compression Response time 13.1% 4.3% 5.2% 4.4% 3.6%
Compression FileSize 0.2% 1.7% 0.4% 0.2% 3.5%

ProfanityDet Response time 38.7% 32.9% 12.8% 9.4% 4.6%
ProfanityDet ProfanityCount 14.5% 69.0% 12.8% 12.3% 14.0%

Censor Response time 9.5% 10.1% 8.5% 8.2% 9.1%

Censor FileSize 1.0% 0.6% 0.7% 1.5% 7.9%

Table 1: Relative Wasserstein distance [%] between validation dataset and predictions of MDNs with 1-5 kernels. Kernel count
selected by hyperparameter optimization highlighted in bold.

a bandwidth of 0.4. The predicted distributions capture both the

mean of the empirical distribution and the shape of the distribution

well. The shape of the predicted distributions is slightly left heavy

compared to a normal distribution due to the addition of the second

kernel.

Next, we investigate the impact of the number of kernels used

in the mixture density network. Table 1 shows the prediction er-

ror of mixture density networks with one to five kernels for the

response time and output parameter distributions of the five func-

tions. As a measure for the similarity of two distributions, we use

the Wasserstein metric [5] defined for two distributions u and v as:

l(u,v) =

∫ ∞

−∞

|U −V | (3)

with U and V as the cumulative distribution function of u and v ,
respectively. Generally speaking, the Wasserstein metric quantifies

how far a sample from a set of samples drawn from u has to be

moved on average in order to transform the set of samples drawn

from u to a set of samples drawn from v . As the absolute values of
the Wasserstein metric are difficult to interpret, we calculate the

relative Wasserstein metric by dividing the absolute Wasserstein

metric by the mean of the empirical distribution as proposed in [34].

This relative Wasserstein metric enables us to quantify the predic-

tion accuracy for a single input value. As a mixture density network

predicts a different distribution for each input value, we calculate

the weighted average over all values of the input distribution with

the number of empirical samples as a weight.

Table 1 shows the weighted average of the relative Wasserstein

metric of mixture density networks with one to five kernels for

the response time and output parameter distributions of the five

functions and the kernel number selected by the hyper-parameter

optimization. Generally, it seems that response time distributions

are harder to predict than output parameter distributions. This

is intuitive, as the output parameter of a function for a certain

input is often constant, i.e., transcribing a text segment multiple

times results in the same audio file each time, but the response

time varies between executions. An outlier in this regard is the

output parameter ProfanityCount of the function ProfanityDet,

which has a higher error compared to the other parameters. This

does not necessarily indicate a bad model fit as the target parameter

ProfanityCount is an integer value of less than ten in most cases.

The relative wasserstein metric assigns high percentage errors for

even small deviations between integer distributions with a small

range of values that also includes zero.

Regarding the kernel count, these results show that there is no

kernel count that is ideal for every function. While three to five ker-

nels seem to generally produce accurate performance predictions,

the prediction error for the FileSize parameter of the conversion

function with five kernels is 16.4%, while using two kernels re-

sults in a prediction error of 1.2%. This shows that selecting an

individual number of kernels for each function is necessary. The

hyper-parameter optimization based on the observed negative log-

likelihood during model training reliably selects a kernel count

that provides accurate predictions. In four out of ten scenarios, the

hyper-parameter optimization does not select the ideal number

of kernels, but the prediction accuracy of the selected kernels is

always within one percentage point of the ideal kernel count.

Across all functions, response time and parameter distributions,

themixture density networkmodels selected by the hyper-parameter

optimization achieve a prediction error of 3.9% and therefore a

prediction accuracy of 96.1%. This shows that mixture density

networks are capable of accurately predicting the distribution of

the response time and the output parameters of a serverless func-

tion (RQ1).

3.2 Workflow cost predictions
For the evaluation of our workflow cost prediction algorithm, we

consider the following scenario: A workflow designer is looking to

build a workflow that turns short text segments into speech and cen-

sors any profanities within the text segment. For this task, he comes

up with the two different workflows shown in Figure 8. In both

workflows, the input text is first passed to the Text2Speech function

and then converted to a WAV file using the Conversion function.

In parallel, the text is also passed to the ProfanityDet function in

order to identify any profanities within the text. In WorkflowA ,

SESSION 7: Performance Techniques ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

272

Text2
Speech Conversion

Censor

Profanity
Det

Compress

Text Audio

TextLength

TextLength

FileSize FileSize

DetProfanities

FileSize FileSize

(a) WorkflowA.

Text2
Speech Conversion

Censor

Profanity
Det

Compress

Text Audio

TextLength

TextLength

FileSize FileSize

DetProfanities

FileSize

FileSize

(b) WorkflowB.

Figure 8: The two alternatives for the transcription and censoring workflow. The blue arrows indicate parameters passed to a
function from a previous function.

Workflow Metric Invocations CPU Time Memory Time Total

WorkflowA Measured cost [cent] 2.00 * 10
-6

8.60 * 10
-5

1.40 * 10
-5 1.02 * 10-4

WorkflowA Predicted cost [cent] 1.79 * 10
-6

9.08 * 10
-5

1.35 * 10
-5 1.06 * 10-4

WorkflowA Relative prediction error 10.3% 5.5% 3.4% 4.0%
WorkflowB Measured cost [cent] 2.00 * 10

-6
3.80 * 10

-5
6.00 * 10

-6 4.60 * 10-5

WorkflowB Predicted cost [cent] 1.79 * 10
-6

3.70 * 10
-5

5.52 * 10
-6 4.43 * 10-5

WorkflowB Relative prediction error 10.3% 2.6% 8.0% 3.6%

Table 2: Comparison between measured and predicted cost for a single workflow execution for both workflows in EUR.

any identified profanities are censored first using the Censor func-

tion and afterwards the audio file is compressed. In WorkflowB,

the audio file is compressed prior to the censoring. While it is a

reasonable assumption that WorkflowB might be cheaper, manu-

ally quantifying the cost difference is currently challenging for a

workflow designer.

We apply the algorithm proposed in Section 2.3 in combination

with the mixture density network models with two kernels from

Section 3.1. To measure the actual execution cost of both workflow

alternatives, we implement both workflows using Google Cloud

Composer (a managed Apache Airflow service). The implementa-

tion of the workflows is available online
3
. At the time of writing, the

billing reporting for Google Cloud Functions is quite coarse-grained.

An example of the most detailed reporting currently possible: On

June 7th, 2019 you paid 43.7$ for 4,370,000 GHz-seconds CPU time

of Cloud Functions, 30.5$ for 12,200,000 GB-seconds memory time

of Cloud Functions and 5.5$ for 13,750,000 invocations of Cloud

Functions. The smallest time frame for cost reports is a full day

3
https://github.com/SimonEismann/FunctionsAndWorkflows

and there is no capability to report costs for a specific function or

function execution. Additionally, no costs are reported until the

free tier of 2 million invocations, 400,000 GB-seconds memory time

and 200,000 GHz-seconds CPU time are used up.

Based on these limitations, we use the following approach to

experimentally evaluate the costs of both workflows. First, we pur-

posefully use up the capacity of the free tier by executing arbi-

trary functions. Next, we reserve a day for each experiment where

no other functions are executed. During this day, we execute the

first workflow 5,000 times with text segments with a normally dis-

tributed length (µ = 500, σ = 50). At the start of the next day we

take the aggregated costs for the day and divide them by 5,000 in

order to get the average cost per workflow execution. We repeat

the same process for the second workflow.

Table 2 shows the measured costs per workflow execution, the

predicted costs using our approach and the resulting relative predic-

tion error. At first glance, the measured prices seem unrealistically

low. However, this is mostly due to the unfamiliar pricing scheme

of cost per execution. If we were to assume that a n1-standard-2

SESSION 7: Performance Techniques ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

273

https://github.com/SimonEismann/FunctionsAndWorkflows

Text2Speech Conversion Compression ProfanityDet Censor

Serverless function

0

5

10

15

20

25

T
ra

in
in

g
ti

m
e

[m
in

]

Figure 9: Training time for both models of each serverless
functions with hyper-parameter optimization.

VM (2 vCPU, 7.5GB memory) from Google Cloud (currently priced

at $0.0950 per hour) can handle 5 requests per second, this would

result in a cost of 5.3 · 10-6 per request. Consequently, costs of

1.02 · 10-4 and 4.60 · 10-5 to execute a workflow consisting of five

functions is cheap, but within reason.

Existing approaches that rely on cost estimations for serverless

functions and workflow simply round the mean observed function

response time up to the nearest 100ms [13, 18]. Applying this cost

estimation approach results in a cost estimate of 4.06 · 10-5 for both

workflows as it assumes that the function execution cost is inde-

pendent of its context. However, a single execution of WorkflowA

costs 1.02 · 10-4 ct, whereas an execution of WorkflowB costs only

about half as much even though both workflows provide the same

functionality. This results in a relative prediction error of 60.2% for

WorkflowA and 11.8% for WorkflowB using the naive cost estimate.

Our approach on the other hand accurately predicts this cost

difference between the two workflows. It predicts the charged costs

for invocations, CPU time and memory time with a prediction error

ranging from 2.6% to 10.3%. An interesting observation is that the

measured and predicted cost for the number of invocations differs.

As in the workflows from our case study, the number of function

invocations is static, our approach correctly predicts that 25,000

functions (5 executions per workflow * 5,000 workflow executions)

will be executed. The billed costs on Google Cloud are rounded

up to full cents, which causes this observed difference between

measured and predicted costs for function invocations. We are look-

ing to repeat the measurements with a larger number of workflow

executions to significantly decrease the measurement uncertainty

caused by the rounding of billed costs.

Overall, the costs for the execution ofWorkflowA andWorkflowB

are predicted with an error of 4.0% and 3.6% respectively, resulting

in a average cost prediction accuracy of 96.2%. This shows that
the proposed approach can accurately predict the expected costs of

previously unobserved workflows (RQ 2).

3.3 Overhead analysis
The proposed approach enables accurate cost predictions for server-

less workflows. In order to ensure that the proposed approach is

applicable in practice, we investigate the time required to train the

machine learning models for each function and the time required

for the Monte-Carlo simulation.

The following experiments were conducted using a Intel® Core™

i5-4690K CPU with 3.50 Ghz. We measure the time required to train

the MDN model for the response time distribution and the MDN

model for the output parameter for each function from our case

study with the hyper-parameter optimization to determine the ap-

propriate number of kernels, which requires training MDN models.

Figure 9 shows the result of repeating this measurement ten times

as a boxplot. The training process for each function which includes

training ten mixture density networks takes between 10 and 15

minutes, with the censor function as a small outlier with a median

training time of 20 minutes. This difference can be attributed to an

increased model complexity due to the additional input parame-

ter. In general, we consider these training times acceptable as the

training is performed offline and can be easily parallelized.

Additionally, we measure the time required to derive the cost

predictions for a workflow using the Monte-Carlo simulation. Pre-

dicting the costs of WorkflowA requires 16.34±0.30 (N=10) seconds,

whereas the predictions for WorkflowB require 14.20±0.03 (N=10)

seconds. A user looking to compare these two workflow alterna-

tives would need to wait about 30 seconds. Therefore, we consider

the time requirements of using our approach in production feasi-

ble (RQ3).

4 LIMITATIONS
While our approach provides accurate cost predictions for serverless

workflows in our case study, there still are limitations and threats

to the validity to be discussed.

First, serverless functions can be provisioned with different mem-

ory limits, which indirectly also changes the processing power al-

located to each function instance. Our approach currently does not

take this into consideration and assumes that if a function is used

in a workflow, its memory limit is not changed. While we consider

this assumption reasonable, our approach could be combined with

techniques that use transfer learning to determine the impact of

configuration parameters on performance [27].

Besides costs for CPU time, memory time and a flat execution

cost, cloud providers usually also charge for network egress, i.e.,

the amount of data leaving their data center or a regional zone.

Our approach currently does not consider this type of costs as the

specification of the workflow model does not contain any informa-

tion about when data leaves a regional zone or the data center of

the cloud provider. However, our approach is already capable of

estimating the size of the output data of a serverless function and

if the workflow model is extended accordingly, it should also be

possible to predict the egress costs. However, this still needs to be

validated in a further case study.

The approach proposed in this paper considers functions as black-

boxes which can only be monitored at the interface level. There-

fore, it does not explicitly model potential external calls within

the serverless functions. For external calls to other serverless solu-

tions such as serverless object storage (e.g., S3 Buckets or Google

Cloud Storage), serverless databases (e.g. AWS Aurora or Google

Cloud Datastore), serverless event management (e.g., AWS SNS or

SESSION 7: Performance Techniques ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

274

Google Cloud Pub/Sub) or serverless in-memory data storage (e.g.,

AWS Elasticache) should not impact the response time prediction

accuracy, as the load-independent response time of these calls is

correctly modeled within the mixture density network describing

the response time of the function issuing the external call. External

calls to non-serverless services can negatively impact the response

time prediction accuracy, as the load-dependent behavior of these

external calls is not captured by our approach. In practice, this

should be neglectable as synchronous external calls in serverless

functions are a major anti-pattern as they cause double-billing [8].

Lastly, our approach currently does not consider the costs for

the Google Cloud Composer cluster used to execute the workflow.

Google Cloud Composer charges for a set of VMs, whereas AWS

Step Functions and Azure Logic Apps charge per connector within

the workflow. For this pricing model, the static costs could be de-

rived from our workflow model similar to how the static costs per

execution are calculated. The Google Cloud Composer costs can-

not be directly translated to costs per execution. If we can reliably

estimate the number of workflows a cluster executes in a given

time interval, it would be possible to translate the static hourly

costs for the Google Cloud Composer cluster to a cost per workflow

execution.

5 RELATEDWORK
The existing publications related to this paper can be divided into

three groups: discussions about the costs of serverless computing,

cost prediction of serverless computing solutions and performance

distribution prediction approaches.

Discussions about the costs of serverless computing. In the work

of Adzic and Chatley [2], two industrial case studies of companies

migrating from traditional hosting options to serverless computing

are presented. The companies reported cost savings of 66% and 95%

respectively after switching to serverless computing. The authors

also discuss the non-constant response times of serverless functions

as a limitation of current serverless platforms. Eivy et al. claim that

while the costs of serverless computing seem simple on the surface,

they are surprisingly complicated in practice [17]. They discuss

the issue of rounding up the function execution times to 100 ms

and that response time estimates require deploying and testing the

function. They also compare a serverless solution to traditional

hosting in a case study with a large scale API, where the costs for

the serverless solution are almost trice the costs for the VM based

solution. Vazquez et al. conducted a study on the applicability of

serverless computing for data-intensive applications [39]. They

compare a solution based on AWS Lamba to using EC2 to process

data collected by the MARS Express orbiter from the European

Space Agency. In their case study, both solutions incur similar costs,

but the serverless solution is roughly twice as fast.

Performance distribution prediction. Khoshkbarforoushha et al.
apply mixture density networks to predict the distribution of CPU

time and execution time of Hive queries [29]. In this study, the

mixture density networks achieved similar accuracy to state-of-the-

art approaches concerning single point estimates and additionally

accurate descriptions of the expected metric distribution. Samani

et al. apply mixture density networks to predict the distribution of

service metrics based on infrastructure measurements. They report

that while the predictions were surprisingly accurate, it also took

considerable time to identify effective model parameterizations [36].

Cost prediction of serverless computing solutions. In the work of

Boza et al. [13], an approach using model-based simulations to

compare the costs of reserved VMs, on-demand VMs and serverless

functions is introduced. The authors propose to model serverless

functions asM(t)/M/∞ queues, which assumes constant function

response times and does not consider the impact of input parame-

ters. The authors further conducted a survey with 96 participants,

which revealed that many companies rely on reserved VMs to sim-

plify financial planning. Another approach to optimize the costs

of serverless workflows by deciding whether to fuse multiple func-

tions into a larger function and which memory limit should be

allocated to a serverless function is proposed in the work by El-

gmal [18]. This approach also relies on a constant value instead

of a distribution for the response time of the serverless function

and does not consider the impact of input parameters on the re-

sponse time of a serverless function. Gunasekaran et al. propose to

use serverless functions in combination with VM-based hosting to

enable SLO and cost-aware resource procurement [23]. To enable

the cost-aware decision making between VM-based hosting and

serverless functions, the authors also rely on cost-predictions for

the serverless functions. This approach also relies on a constant

value instead of a distribution for the response time of the serverless

function and does not consider the impact of input parameters on

the response time of a serverless function.

6 CONCLUSION
Serverless functions enable the execution of arbitrary functions,

paying for usage rather than for reserved computing resources.

To provide complex functionality, these serverless functions are

often assembled into workflows. However, estimating the costs

of these serverless workflow is challenging as the response time

and therefore the costs of a serverless function depend on its input

parameters, which are propagated from prior functions within the

workflow. Existing approaches for the cost estimation of serverless

functions and workflows do not take the influence of input param-

eters on the response time into account [13, 18]. In this paper, we

propose methodolgy to predict the costs of serverless workflows.

First, we apply mixture density networks to predict the distribution

of a function’s response time and its output parameters. The result-

ing models are then combined into a workflow model. Based on

this workflow model, a Monte-Carlo simulation derives cost esti-

mates for the workflow execution. The cost predictions provided by

our approach enable workflow designers to evaluate and compare

workflow alternatives, as well as optimize existing workflows. Our

approach represents a first step towards fully-automated workflow

optimization based on multi-objective optimization techniques. In

a case study with two audio-processing workflows, our approach is

able to predict the response time and output parameter distributions

of five serverless functions with an accuracy of 96.1% and the costs

of two workflow alternatives with an accuracy of 96.2%. As part

of our future work, we will investigate approaches to predict the

impact of different memory sizes on the performance of serverless

functions.

SESSION 7: Performance Techniques ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

275

ACKNOWLEDGEMENTS
This material is based upon work supported by Google Cloud. The

authors would like to thank the anonymous reviewers for their

valuable feedback and literature suggestions.

REFERENCES
[1] Vanessa Ackermann, Johannes Grohmann, Simon Eismann, and Samuel Kounev.

2018. Black-box Learning of Parametric Dependencies for Performance Models.

In Proceedings of 13th International Workshop on Models@run.time (MRT).
[2] Gojko Adzic and Robert Chatley. 2017. Serverless computing: economic and

architectural impact. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering. ACM, 884–889.

[3] Aldeida Aleti, Stefan Bjornander, Lars Grunske, and Indika Meedeniya. 2009.

ArcheOpterix: An Extendable Tool for Architecture Optimization of AADL Mod-

els. In Proceedings of the 2009 ICSE Workshop on Model-Based Methodologies for
Pervasive and Embedded Software (MOMPES ’09). IEEE Computer Society, 61–71.

[4] Amazon. 2018. Autodesk Goes Serverless in the AWS Cloud, Reduces Account-

Creation Time by 99%. https://aws.amazon.com/solutions/case-studies/autodesk-

serverless/. (2018). Accessed: 2019-05-28.

[5] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. 2008. Gradient flows: in metric
spaces and in the space of probability measures. Springer Science & Business

Media.

[6] Timon Back and Vasilios Andrikopoulos. 2018. Using a microbenchmark to

compare function as a service solutions. In European Conference on Service-
Oriented and Cloud Computing. Springer, 146–160.

[7] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche

Ishakian, NickMitchell, VinodMuthusamy, Rodric Rabbah, Aleksander Slominski,

et al. 2017. Serverless computing: Current trends and open problems. In Research
Advances in Cloud Computing. Springer, 1–20.

[8] Ioana Baldini, Perry Cheng, Stephen J. Fink, Nick Mitchell, VinodMuthusamy, Ro-

dric Rabbah, Philippe Suter, and Olivier Tardieu. 2017. The Serverless Trilemma:

Function Composition for Serverless Computing. In Proceedings of the 2017 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Onward! 2017). ACM, 89–103.

[9] Christopher M Bishop. 1994. Mixture density networks. Technical Report.
[10] Egor Bondarev, Peter de With, Michel Chaudron, and Johan Muskens. 2005. Mod-

elling of input-parameter dependency for performance predictions of component-

based embedded systems. In 31st EUROMICRO Conference on Software Engineering
and Advanced Applications. IEEE, 36–43.

[11] Oliver Borchers. 2015. A Hitchhiker’s Guide to Mixture Density Net-

works. https://towardsdatascience.com/a-hitchhikers-guide-to-mixture-density-

networks-76b435826cca. (2015). Accessed: 2019-05-28.

[12] Zdravko I Botev, Joseph F Grotowski, Dirk P Kroese, et al. 2010. Kernel density

estimation via diffusion. The annals of Statistics 38, 5 (2010), 2916–2957.
[13] Edwin F Boza, Cristina L Abad, Mónica Villavicencio, Stephany Quimba, and

Juan Antonio Plaza. 2017. Reserved, on demand or serverless: Model-based

simulations for cloud budget planning. In 2017 IEEE Second Ecuador Technical
Chapters Meeting (ETCM). IEEE, 1–6.

[14] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2015. Fast and

Accurate Deep Network Learning by Exponential Linear Units (ELUs). (2015).

arXiv:arXiv:1511.07289

[15] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. 2009. L 2 regular-

ization for learning kernels. In Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence. AUAI Press, 109–116.

[16] Simon Eismann, Jürgen Walter, Jóakim von Kistowski, and Samuel Kounev. 2018.

Modeling of parametric dependencies for performance prediction of component-

based software systems at run-time. In 2018 IEEE International Conference on
Software Architecture (ICSA). IEEE, 135–13509.

[17] Adam Eivy. 2017. Be wary of the economics of" Serverless" Cloud Computing.

IEEE Cloud Computing 4, 2 (2017), 6–12.

[18] Tarek Elgamal. 2018. Costless: Optimizing cost of serverless computing through

function fusion and placement. In 2018 IEEE/ACM Symposium on Edge Computing
(SEC). IEEE, 300–312.

[19] Erwin Van Eyk, Lucian Toader, Sacheendra Talluri, Laurens Versluis, Alexandru

Uta, and Alexandru Iosup. 2018. Serverless is More: From PaaS to Present Cloud

Computing. IEEE Internet Computing 22, 5 (2018), 8–17.

[20] DN Geary. 1989. Mixture Models: Inference and Applications to Clustering. Vol. 152.
Royal Statistical Society. 126–127 pages.

[21] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier

neural networks. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics. PMLR, 315–323.

[22] Johannes Grohmann, Simon Eismann, Sven Elflein, Manar Mazkatli, Jóakim von

Kistowski, and Samuel Kounev. 2019. Detecting Parametric Dependencies for

Performance Models Using Feature Selection Techniques. In Proceedings of the
27th IEEE International Symposium on the Modelling, Analysis, and Simulation of

Computer and Telecommunication Systems (MASCOTS ’19). IEEE, 309–322.
[23] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Mahmut Taylan Kandemir,

Bhuvan Urgaonkar, George Kesidis, and Chita Das. 2019. Spock: Exploiting

serverless functions for slo and cost aware resource procurement in public cloud.

In 2019 IEEE 12th International Conference on Cloud Computing (CLOUD). IEEE,
199–208.

[24] Joseph M. Hellerstein, Jose Faleiro, Joseph E. Gonzalez, Johann Schleier-Smith,

Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2018. Serverless Com-

puting: One Step Forward, Two Steps Back. (2018). arXiv:arXiv:1812.03651

[25] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran Venkatara-

mani, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2016. Serverless

Computation with openLambda. In Proceedings of the 8th USENIX Conference on
Hot Topics in Cloud Computing (HotCloud’16). USENIX Association, 33–39.

[26] IBM. 2017. Serverless Architectures in Banking: OpenWhisk on IBM Bluemix at

Santander. https://developer.ibm.com/code/videos/tech-talk-replay-build-faster-

banking-apps-ibm-cloud-functions/. (2017). Accessed: 2019-05-28.

[27] Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Christian Kästner, Akshay

Patel, and Yuvraj Agarwal. 2017. Transfer learning for performance modeling

of configurable systems: An exploratory analysis. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering. IEEE,
497–508.

[28] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag

Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Yad-

wadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion Stoica, and David A. Patterson.

2019. Cloud Programming Simplified: A Berkeley View on Serverless Computing.

(2019). arXiv:arXiv:1902.03383

[29] Alireza Khoshkbarforoushha and Rajiv Ranjan. 2016. Resource and performance

distribution prediction for large scale analytics queries. In Proceedings of the 7th
ACM/SPEC on International Conference on Performance Engineering. ACM, 49–54.

[30] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-

mization. (2014). arXiv:arXiv:1412.6980

[31] Klaus Krogmann, Michael Kuperberg, and Ralf Reussner. 2010. Using genetic

search for reverse engineering of parametric behavior models for performance

prediction. IEEE Transactions on Software Engineering 36, 6 (2010), 865–877.

[32] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436.

[33] Theo Lynn, Pierangelo Rosati, Arnaud Lejeune, and Vincent Emeakaroha. 2017.

A preliminary review of enterprise serverless cloud computing (function-as-a-

service) platforms. In 2017 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom). IEEE, 162–169.

[34] Szymon Majewski, Michal Aleksander Ciach, Michal Startek, Wanda Niemyska,

Blazej Miasojedow, and Anna Gambin. 2018. The Wasserstein Distance as a

Dissimilarity Measure for Mass Spectra with Application to Spectral Deconvolu-

tion. In 18th International Workshop on Algorithms in Bioinformatics (WABI 2018)
(Leibniz International Proceedings in Informatics (LIPIcs)), Laxmi Parida and Esko

Ukkonen (Eds.), Vol. 113. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

25:1–25:21.

[35] Anne Martens, Heiko Koziolek, Steffen Becker, and Ralf Reussner. 2010. Automat-

ically Improve Software Architecture Models for Performance, Reliability, and

Cost Using Evolutionary Algorithms. In Proceedings of the First JointWOSP/SIPEW
International Conference on Performance Engineering (WOSP/SIPEW ’10). ACM,

105–116.

[36] Forough Shahab Samani and Rolf Stadler. 2018. Predicting distributions of service

metrics using neural networks. In 2018 14th International Conference on Network
and Service Management (CNSM). IEEE, 45–53.

[37] Erwin van Eyk, Johannes Grohmann, Simon Eismann, André Bauer, Laurens

Versluis, Lucian Toader, Norbert Schmitt, Nikolas Herbst, Cristina L. Abad, and

Alexandru Iosup. [n. d.]. The SPEC-RG Reference Architecture for FaaS: From

Microservices and Containers to Serverless Platforms. IEEE Internet Computing
([n. d.]). https://doi.org/10.1109/MIC.2019.2952061

[38] Erwin Van Eyk, Alexandru Iosup, Cristina L Abad, Johannes Grohmann, and

Simon Eismann. 2018. A SPEC RG cloud group’s vision on the performance

challenges of FaaS cloud architectures. In Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering. ACM, 21–24.

[39] Jose Luis Vazquez-Poletti, Ignacio Martín Llorente, Konrad Hinsen, and Matthew

Turk. 2018. Serverless computing: from planet mars to the cloud. Computing in
Science & Engineering 20, 6 (2018), 73–79.

[40] Laurens Versluis, Erwin Van Eyk, and Alexandru Iosup. 2018. An Analysis of

Workflow Formalisms for Workflows with Complex Non-Functional Require-

ments. In Companion of the 2018 ACM/SPEC International Conference on Perfor-
mance Engineering. ACM, 107–112.

[41] David Vose. 2008. Risk analysis: a quantitative guide. John Wiley & Sons.

[42] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. 2007. On early stopping in

gradient descent learning. Constructive Approximation 26, 2 (2007), 289–315.

[43] Qingchen Zhang, Laurence T Yang, Zhikui Chen, and Peng Li. 2018. A survey on

deep learning for big data. Information Fusion 42 (2018), 146–157.

SESSION 7: Performance Techniques ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

276

https://aws.amazon.com/solutions/case-studies/autodesk-serverless/
https://aws.amazon.com/solutions/case-studies/autodesk-serverless/
https://towardsdatascience.com/a-hitchhikers-guide-to-mixture-density-networks-76b435826cca
https://towardsdatascience.com/a-hitchhikers-guide-to-mixture-density-networks-76b435826cca
http://arxiv.org/abs/arXiv:1511.07289
http://arxiv.org/abs/arXiv:1812.03651
https://developer.ibm.com/code/videos/tech-talk-replay-build-faster-banking-apps-ibm-cloud-functions/
https://developer.ibm.com/code/videos/tech-talk-replay-build-faster-banking-apps-ibm-cloud-functions/
http://arxiv.org/abs/arXiv:1902.03383
http://arxiv.org/abs/arXiv:1412.6980
https://doi.org/10.1109/MIC.2019.2952061

	Abstract
	1 Introduction
	2 Approach
	2.1 Overview
	2.2 Function response time and output parameter distribution prediction
	2.3 Workflow cost prediction

	3 Case study
	3.1 Response time and output parameter distribution predictions
	3.2 Workflow cost predictions
	3.3 Overhead analysis

	4 Limitations
	5 Related Work
	6 Conclusion
	References

