
Modeling of Request Cloning in Cloud Server Systems using
Processor Sharing

Tommi Nylander

tommi.nylander@control.lth.se

Lund University

Johan Ruuskanen

johan.ruuskanen@control.lth.se

Lund University

Karl-Erik Årzén

karlerik@control.lth.se

Lund University

Martina Maggio

martina.maggio@control.lth.se

Lund University

ABSTRACT
The interest for studying server systems subject to cloned requests

has recently increased. In this paper we present a model that al-

lows us to equivalently represent a system of servers with cloned

requests, as a single server. The model is very general, and we

show that no assumptions on either inter-arrival or service time

distributions are required, allowing for, e.g., both heterogeneity

and dependencies. Further, we show that the model holds for any

queuing discipline. However, we focus our attention on Processor

Sharing, as the discipline has not been studied before in this context.

The key requirement that enables us to use the single server

G/G/1 model is that the request clones have to receive synchro-
nized service. We show examples of server systems fulfilling this

requirement. We also use our G/G/1 model to co-design traditional

load-balancing algorithms together with cloning strategies, provid-

ing well-performing and provably stable designs.

Finally, we also relax the synchronized service requirement and

study the effects of non-perfect synchronization. We derive bounds

for how common imperfections that occur in practice, such as

arrival and cancellation delays, affect the accuracy of our model.

We empirically demonstrate that the bounds are tight for small

imperfections, and that our co-design method for the popular Join-

Shortest-Queue (JSQ) policy can be used even under relaxed syn-

chronization assumptions with small loss in accuracy.

CCS CONCEPTS
• Computer systems organization → Cloud computing; Re-
dundancy; Reliability.

KEYWORDS
Cloning, Cloud Computing, Datacenters

ACM Reference Format:
Tommi Nylander, Johan Ruuskanen, Karl-Erik Årzén, and Martina Maggio.

2020. Modeling of Request Cloning in Cloud Server Systems using Processor

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6991-6/20/04. . . $15.00

https://doi.org/10.1145/3358960.3379128

Sharing. In Proceedings of the 2020 ACM/SPEC International Conference on
Performance Engineering (ICPE ’20), April 20–24, 2020, Edmonton, AB, Canada.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3358960.3379128

1 INTRODUCTION
In cloud computing, cloning is used as a way of speeding up the

generation of responses to requests. In this setting, the technique

is also known as the generation of redundant requests. The basic
idea is that, instead of sending requests to only one server, the

requests are cloned and sent to multiple servers simultaneously.

The response to the request is the result of the server that first

completes the processing required to handle the request. When

this happens, the pending requests (i.e., the clones that are being

processed in the other servers) are cancelled.

Cloning can yield significant improvements to the performance

of data centers, as shown in [1]. The motivation for cloning comes

from the desire to reduce the mean and tail response times of appli-

cations running in the cloud. Hosted virtual machines or containers

are allocated on shared resources. This means that their behavior

is sometimes unpredictable, and the computation times of similar

requests can vary among different instances [5]. Cloning can thus

be viewed as an intuitive way to increase the predictability of cloud

applications, by relying on multiple simultaneous copies of a user

request. This is the reason why there has recently been an upsurge

in the interest for modeling the behaviour of cloud applications

subject to cloning.

Existing Results. Cloning is a particular case of the (n,k) fork-
join model, where a request is split into n sub-tasks that are dis-

tributed to servers. The request completes when at least k ≤ n
of those task are completed. Cloning implies that the n sub-tasks

are identical and k = 1. Approximate analysis and latency bounds

have been extensively studied for the general (n,k) fork-join sys-

tems [13, 21, 23], but unfortunately no exact analysis exists when

n ≥ 3. This is, however, not the case for cloning. The first exact

analysis of cloning was performed by Gardner et al. [9]. They mod-

eled servers using M/M/1 queues, i.e., queues where the arrivals

follow a Poisson process and job service times have an exponential

distribution. Other notable contributions concerning cloning with

exponential distributions include [3, 10, 20]. Qiu et al. [20] compares

the use of multiple queues (in a distributed servers setting) to a

central queue. Gardner et al. [10] derived results on the largest mar-

ginal improvement that can be obtained using the Redundancy-d
cloning policy, that clones each request to exactly d servers. Ayesta

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

24

https://doi.org/10.1145/3358960.3379128
https://doi.org/10.1145/3358960.3379128
https://www.acm.org/publications/policies/artifact-review-badging#reusable
https://www.acm.org/publications/policies/artifact-review-badging#available

et al. [3] improved the analysis of Redundancy-d, including different
alternatives for handling the request cancellation.

Subsequently, researchers started investigating cloning with spe-

cific probability distributions for inter-arrival times and service

times, identifying the characteristics of the stochastic (inter-arrival

and service time) processes that make cloning beneficial [22]. Joshi

et al. [12, 14, 15] extended the results obtained with the M/M/1

model to an M/G/1 model, i.e., queues where the arrivals are still de-

termined by a Poisson process, but job service times have a general

distribution. However, an underlying assumption for the extension

was that all service time distributions are independent and identi-

cally distributed (i.i.d.), which rules out heterogeneity. This showed

that cloning is beneficial if the tail distribution of the service time

is log-convex and disruptive if log-concave.

Contribution. In this paper we relax the assumptions made in

earlier research contributions. We require no assumptions on ei-

ther inter-arrival or service time distributions, effectively handling

heterogeneity. We present a model that is valid with any queuing

discipline, however, in this paper we focus on the Processor Sharing

(PS) discipline [17]. In fact, to the best of our knowledge, PS has

not been studied before in conjunction with request cloning.

The main contributions of this paper are the following:

• We show that the existing equivalentM/G/1model for cloned

systems under i.i.d assumptions can be generalized to allow

for any inter-arrival or service time distributions, i.e., not

requiring the i.i.d assumption. Our G/G/1 model thus allows

for both heterogeneous and dependent service time distri-

butions under any queuing discipline, as long as the server

system guarantees synchronized service to all request clones.

We explore the assumptions that the computing infrastruc-

ture needs to fulfill for this to be true.

• For such server systems, we analyze and compute the optimal

cloning factor, with respect to the average response times

of the server system, for any service time distribution under

any load – i.e., the cloning factor that allows us to obtain the

lowest possible average latency.

• We analyze more complex server systems, consisting of mul-

tiple clusters, and provide a co-design method for joint syn-

thesis of cloning strategy and load-balancing technique. To

the best of our knowledge, we present the first provably

stable co-designed load-balancing and cloning strategy for

the PS discipline.

• We relax the synchronized service assumption and derive

bounds for how practical imperfections, such as arrival and

cancellation delays, affect the accuracy of our model.

To validate our theoretical findings from a practical standpoint, we

built a discrete event simulator with support for request cloning.

Our experimental results show that we are able to accurately predict

the behaviour of server systems subject to cloning. We empirically

demonstrate the benefits of co-designing the cloning factor and load-

balancing policy, and that the synchronized service assumption can

be relaxed for the popular Join-Shortest-Queue (JSQ) policy with

small loss in accuracy. Using simulations, we also show that our

theoretical bounds can, especially for low arrival and cancellation

delays, be used to predict the effect of practical imperfections on

our model.

s1
F1

s2

. . .

sn-1

sn
Fn

sync

Fmin

Farr

Figure 1: Synchronized service system.

The remainder of the paper is organized as follows. Section 2

presents our model and Section 3 two examples of results that can

be obtained. Section 4 shows applications of the model to capture

commonly-used data center structures. Section 5 relaxes the syn-

chronized service assumption and shows how this affects our model.

Section 6 shows our experimental evaluation. Section 7 presents

related research and Section 8 concludes the paper.

2 SYNCHRONIZED MODEL
This section formally describes cloning, and presents the server

system that is the subject of this study. Figure 1 shows a setup ex-

ample, where n synchronized servers accept requests. An incoming

stream of requests is received and each of them is cloned to the n
servers. In the most common type of cloning, Cancel-on-Complete

cloning, the response to the client is produced by the server that

completes the request in the minimum amount of time (s2 in Fig-

ure 1, denoted by thick arrows). The request processing in the other

servers is then immediately canceled. In the rest of the paper, we

describe the statistical distribution of a random variable Xi using
its Cumulative Distribution Function (CDF) and denote the CDF

with Fi (x) = P(Xi ≤ x). Coherent with this notation, in Figure 1

the CDFs of s1 and sn are respectively indicated with F1 and Fn , the
CDF of the request inter-arrival times is indicated with Farr, and
the CDF of the minimum service time is marked with Fmin.

We first define the Cancel-on-Complete cloning approach that

we use throughout the paper. Then we discuss synchronized service

and the assumptions needed for our theoretical analysis. Finally,

we present the main results obtained with our model. Our model

holds for any queuing discipline, but we focus our analysis and

modeling on the PS discipline due to the lack of prior literature

results that properly model this discipline and its closeness to real

servers implementations.

Definition 1. (Cancel-on-Complete cloning – CoC cloning)
We define Cancel-on-Complete (CoC) cloning as the act of creating
n copies of an original request ro , denoted with rc

1:n . More precisely,
rc
1:n indicates the vector of n cloned requests. We refer to the i-th
request in the vector using the notation rci . We use a similar notation
to indicate servers, where s1:n is the vector of servers and si indicates
the i-th server. The n requests are simultaneously sent to n servers,
s1:n , on which they eventually enter service. In time, one of the n
servers first terminates the computation needed to serve ro . When this

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

25

happens, the response that is produced is forwarded to the client and
all remaining n − 1 clones are immediately canceled.

Another possible cloning approach isCancel-on-Start (CoS), where
all remaining clones get canceled when the first request clone starts
its service. However, CoS does not apply to the PS discipline as all

clones rc
1:n always enter service immediately. As a result, we only

consider the CoC approach. For the remainder of this paper, we

simply use the word cloning to refer to CoC cloning.

We need perfect cancellation to describe the concept of synchro-
nized service that forms the basis for enabling our G/G/1 model.

Assumption 1. (Perfect cancellation)We assume perfect can-
cellation, i.e. that cancellation of requests takes zero time.

Definition 2. (Synchronized service) The rc
1:n request clones

(sent to servers s1:n) receive synchronized service if the clones rc
1:n

both enter and leave service simultaneously, i.e., they are dispatched
to the servers simultaneously and they are removed from the servers
simultaneously at completion of the first clone, implying CoC cloning.
This implies the following conditions for the cloning of all original
requests ro :

(1) Clones rc
1:n have to be sent simultaneously to all servers s1:n .

(2) The service in the n − 1 clones that did not produce a complete
response has to be terminated using perfect cancellation, as
soon as the fastest server completes the response generation for
its clone.

Note that synchronized service does not imply immediate ser-
vice. Request clones rc

1:n do not have to enter service immediately,

and can queue at the servers s1:n . Synchronized service only re-

quires that requests enter (and leave) service simultaneously. In
other words, the synchronized service concept is compatible with

any queuing discipline as long as the chosen queuing discipline is

the same across all servers s1:n . For PS, synchronized service im-

plies that all clones rc
1:n of the same original request ro experience

identical processor shares.
The basic setup in Figure 1, with s1:n servers that receive clones,

can be the basic block for more complex structures where – for

example – a load balancer can be placed in front of multiple of these

blocks, each containing a different number of servers, creating a

possibly heterogeneous hierarchy. For the remainder of this section,

we discuss the basic theoretical concepts using a single block with

n servers s1:n , as shown in Figure 1. The extension to more complex

structures is described in Section 4.

To derive our results, we use the following Theorem, developed

in the field of statistics.

Theorem 1. (Cumulative Distribution Function of theMin-
imum) Given a set of n random variables {X1, . . . ,Xn } with any
CDF, and denoting with Fi (x) the CDF of Xi ; the CDF of the random
variable Xmin, where Xmin = min{X1, . . . ,Xn } is given by

Fmin(x) = (−1)0
n∑
i=1

Fi (x)+

(−1)1
∑
i<j

Fi, j (x ,x)+

(−1)2
∑

i<j<k
Fi, j,k (x ,x ,x) + . . . +

(−1)n−1 Fi, j, ...,n (x , · · · ,x),

(1)

where Fi, j (x ,x) is the joint CDF of random variables Xi and X j . If Xi
and X j are independent, i.e. if Fi, j (x ,x) = Fi (x)Fj (x), Equation (1)

reduces to

Fmin(x) = 1 −

n∏
i=1

{1 − Fi (x)} . (2)

Proof. This fact is well-known in statistics. The proof uses the

inclusion-exclusion principle. A more detailed explanation can be

found (for example) in [19, Proof of Corollary 2.70]. □

Theorem 1 is utilized in the following theorem, which is the

main result presented in this section.

Theorem 2. (The Equivalent G/G/1 Model) Assume cloning to
a set of n servers using the same queuing discipline with service time
distributions F1:n (x) with x ≥ 0, that guarantee synchronized service.
For all original requests ro arriving with inter-arrival distribution
Farr (y) with y ≥ 0, the service time of the single request clone that
completes service can be equivalently modeled using the distribution
of the minimum value Fmin(x), determined according to Theorem 1.
The server system with cloned requests then behaves equivalently to
a G/G/1 server with inter-arrival distribution Farr and service time
distribution Fmin.

Proof. Each server si can be considered as a general and het-

erogeneous G/G/1 queue with inter-arrival distribution Farr (y)
and service time distribution Fi (x). Assume that there exists some

G/G/k server model with some inter-arrival distribution F
(s)
arr

(y)

and service time distribution F (s) (x), that governs the response

time of requests over the entire system. Synchronized service guar-

antees that all request clones rc
1:n of an original request ro enter all

servers simultaneously, and that the servers are kept in the same

state. Thus the n servers can be seen as a single server of the same

queuing discipline with F
(s)
arr

(y) = Farr (y). This further implies that

the shortest completion time for rc
1:n corresponds to the shortest

service time for rc
1:n , giving F (s) (x) = Fmin(x). Finally, the min-

imum of n draws from F1:n (x) distributions is equivalent to one

draw from Fmin(x), thus k = 1. □

Theorem 2 allows us to properly model and analyze the service

time for server systems with cloned requests.

Remark 1. Theorem 2 does not require any assumptions on prop-
erties of either the inter-arrival distribution Farr or the service time
distributions F1:n . Furthermore, the theorem holds for any queuing
discipline.

Compared to previous research effort, the theorem extends the

state of the art, in terms of the assumptions needed for its validity.

In fact, previous research required to specify properties of either

the inter-arrival distribution or the service time distributions. On

the contrary, removing the need for these assumptions makes the

theorem very general. Using Theorem 2, we define an equivalent

G/G/1 model and by that can incorporate in our models both hetero-

geneity and dependencies across servers. Modeling dependencies

across servers allows us to take into account things like the effect

of database queries, that are the same no matter which machine is

executing the query. We do, however, have to assume synchronized

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

26

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

Service time (s)

C
D
F Fexp

F
weibull

Funi
Fmin

Figure 2: The service time CDFs for the Example with Het-
erogeneous Servers presented in Section 3.2.

service which implies assumptions that might be unrealistic in prac-

tical implementations, such as perfect cancellations of clones. In

Section 5, we study how our model is affected when the synchro-

nized service assumption is relaxed.

3 EXAMPLES
In this section, we present two examples of how to use the model

described in the previous section. In both examples, we assume

synchronized service with n servers under PS.

3.1 Independent Exponential Distributions
The first example describes n heterogeneous servers s1:n whose ser-

vice times behave according to the same distribution with different

parameters. Specifically, we present results obtained with exponen-

tially distributed inter-arrival times y with mean 1/λ. Servers have
exponentially distributed service times x with means 1/µi . Here,
we assume that the service time distributions are independent. This

is the most common assumption made in all past research and the

aim of this example is to verify that we can analytically obtain

results covering the most commonly studied case. For example,

using queuing theory, Gardner et al. [9] derived results about the

distribution of service time of this setup and the FCFS queuing

discipline. Here, we show that the same result also applies to any

other queuing discipline. The described setup implies

Farr (y) = 1 − e−λy ,
Fi (x) = 1 − e−µix ,

(3)

with x ≥ 0,y ≥ 0. Using Theorem 2, we canmodel the synchronized

service system composed of n servers as a single equivalent server
having service time distribution Fmin(x) as

Fmin(x) = 1−

n∏
i=1

{1 − Fi (x)} = 1−

n∏
i=1

e−µix = 1− e
−

n∑
i=1

µix
. (4)

The equivalent single server distribution Fmin(x) is thus also ex-

ponential, with rate µtot =
∑n
i=1 µi . This means that the n server

synchronized service system with cloned requests is equivalent to
an M/M/1 server with arrival rate λ and service rate µtot. As antici-
pated, the expression derived in Equation (4) is the same presented

in [9] for the FCFS queuing discipline. However, Theorem 2 allows

us to be more general and to show that the same result also holds for

any queuing discipline, such as PS, assuming synchronized service.

0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

Response time (s)

E
m
p
i
r
i
c
a
l
C
D
F

Three Servers with Cloning

Equivalent Single Server

Figure 3: Empirical response time CDFs for the Example
with Heterogeneous Servers presented in Section 3.2. Data
retrieved through 20 repeated simulations of 10

6 requests
each. The 95% confidence intervals lie within the lines.

3.2 Independent Heterogeneous Distributions
In the second example we want to show how to apply the results

of Theorem 2 for the case of a synchronized service with n servers

having independent and heterogeneous distributions, i.e., where the

distribution type changes for each of the servers. We will present a

practical example with n = 3, assuming that the inter-arrival times

y are uniformly distributed between 0 s and 4 s,

Farr (y) =

{
y/4 if 0 ≤ y ≤ 4.0

1.0 if y > 4.0
. (5)

The service time distributions for s1:3 are respectively an exponen-

tial, a Weibull, and a uniform distribution, with x ≥ 0 and the

following parameters.

F1 = Fexp (x) = 1 − e−0.480x

F2 = F
weibull

(x) = 1 − e−0.125x
3

F3 = Funi (x) =

0 if 0 ≤ x < 0.5
(x − 0.5)/3.5 if 0.5 ≤ x ≤ 3.5

1 if x > 3.5

(6)

We choose these three distributions as they are typically used to

model service times. Furthermore, the three distributions have dif-

ferent mean service times (relaxing the assumption of homogeneity,

usually made in the literature).

Using Theorem 2, we can compute the equivalent single server

service time distribution Fmin(x) as follows.

Fmin(x) = 1 − (1 − F1) (1 − F2) (1 − F3)
= 1 −

{
1 − Fexp (x)

}
{1 − F

weibull
(x)} {1 − Funi (x)}

The resulting equivalent model is a G/G/1 model with inter-arrival

distribution Farr and service time distribution Fmin. Figure 2 shows

the service time distributions F1, F2, and F3, together with Fmin(x).
To demonstrate that the G/G/1 model is in fact equivalent to

the cloned server system, we ran 20 simulations with 10
6
requests

each, using the simulator described in Section 6. Figure 3 shows the

empirical response time CDFs for this example when we simulate

both the three servers with cloning case and the equivalent single

server case, using the PS discipline. The two response time CDFs are

identical, demonstrating the equivalence between the two models.

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

27

4 APPLICATIONS
Here, we use the equivalent G/G/1 model derived in Theorem 2

to analyze different systems under the PS discipline that fulfil the

synchronized service criterion. The G/G/1 model is compliant with

any inter-arrival process Farr and service time distributions F1:n ,
but in order to simplify the analysis, here we restrict ourselves to

Poisson arrivals. For the service time distributions, we use the S&Z

model, described in Section 4.1.

4.1 S&Z - A Service Time Model
Theorem 2 supports dependencies across service time distributions

represented by joint CDFs. However, determining and analyzing

these joint distributions is in general difficult. Gardner et al. [8]

propose a model decoupling the task size of the original request ro ,
denoted with Zo

, from the server slowdowns affecting clones rc
1:n ,

which we indicate with Sc
1:n . In our paper, we use the multiplicative

version, expressing the service time X c
1:n for clones rc

1:n as

X c
1:n = Zo · Sc

1:n . (7)

The idea behind this concept is to model the dependencies across

servers s1:n that serve clones rc
1:n of the same original request ro .

As these clones have identical task sizes, it is natural to include the

shared task size Zo
in the service time model for clones rc

1:n .

The service time model in Equation (7) simplifies our analysis of

dependent clones, as the server slowdowns S1:n can be viewed as

independent across servers and original requests ro . This allows us
to use the simpler expression discussed in Theorem 1 – Equation (2)

– when calculating the distribution of the minimum server slow-

down Smin for each original request ro . The complete minimum

service time Xmin for each ro is defined as

Xmin = Zo · Smin. (8)

As shown in Equation (8), Xmin belongs to a product distribution.

Calculating this complete distribution is difficult, but its first mo-

ment can be determined according to:

E[Xmin] = E[Zo] · E[Smin]. (9)

Exploiting the independence for S1:n , we can use Equation (2) to

determine the CDF of its minimum distribution FS
min

as

FS
min
= 1 −

n∏
i=1

{
1 − FSi

}
, (10)

assuming FSi known for all Si . Using FS
min

, it is straightforward

to determine the first moment of Smin. We can then calculate the

first moment of Xmin using Equation (9), assuming a known task

size distribution Zo
. This procedure is used in this section when

required by expressions for determining, e.g., response times.

The task sizes Zo
are modeled using a two-phase hyperexpo-

nential distribution with balanced means, using E[Zo] = 1/4.7 and

squared coefficient of variation C2

Z o = 2. For the server slowdowns

Si , we use the empirical Dolly distribution, with probability density

function defined in Table 1 for the Dolly(1,12) case. First published

in [1], and later on used in e.g. [8], the Dolly distribution is based

on empirical data on server slowdowns from traces collected from

Microsoft Bing’s Dryad and Facebook’s Hadoop clusters.

In Section 4.2, we derive the results for homogeneous servers, i.e.

with server slowdowns Si from the same Dolly(1,12) distribution.

4.2 Server Systems
Here, we present two server systems that both fulfill the synchro-

nized service criterion. We investigate, using known expressions in

queuing theory, how the cloning factor cf ∈ Z+ (i.e., the number

of clones for each request) affects performance and stability.

4.2.1 Clone-to-All. The simplest server system enabling synchro-

nized service is where each request ro is cloned and clones rc
1:n are

sent to all n servers, i.e. with cloning factor cf = n. This system is

shown in Figure 1. Using the equivalent G/G/1 model presented in

Section 2, we can represent the distribution Fmin of service times

Xmin of this system according to the expression in Theorem 2.

This enables us to calculate the mean response times E[T] of the
cloned server system. We use the fact that the mean response time

E[TM/G/1/PS] for the PS queuing discipline only depends on the

first moment of the service time distribution G. For our server
system under PS, we can thus determine E[TM/G/1/PS] as

E[TM/G/1/PS] =
E[Xmin]

1 − λ E[Xmin]
. (11)

For stability, Equation (11) requires the utilization ρ of the cloned

server system to be less than 1, thus we get

ρ = λ E[Xmin] < 1. (12)

Equations (11)–(12) allow us to exactly determine stability, utiliza-

tion and mean response time of the Clone-to-All server system

for any cloning factor cf , any arrival rate λ and any service time

distribution Fmin from which we know the first moment.

Using service times X distributed according to the S&Z model

with homogeneous server slowdowns, we can analytically retrieve

the first moment of its equivalent service time distribution Xmin as

described in Section 4.1. By exhaustive search over λ and cf , we can
use Equation (11) to find the optimal cloning factors c

opt

f and the

corresponding optimal mean response times E[T]opt, that minimize

the mean response times of the server system.

Figure 4 shows an example with exact theoretical results for PS,

assuming service times distributed according to the S&Z model

described in Section 4.1. The dashed red lines show the optimal

cloning factors c
opt

f , whereas the blue lines show the corresponding

optimal mean response times E[T]opt. The comparison between

cloning factors is performed such that the arrival rate per server

is preserved, i.e. if a new server is added λ is scaled accordingly.

As expected, higher cloning factors are more beneficial for lower

system loads since the clones utilize servers that otherwise would

be in idle. A less expected result is that cf = 2 is not optimal

Table 1: The empirical Dolly(1,12) distribution from [1], used to model server slowdowns S .

S 1 2 3 4 5 6 7 8 9 10 11 12

Prob. 0.230 0.140 0.090 0.030 0.080 0.100 0.040 0.140 0.120 0.021 0.007 0.002

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

28

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

10

E[
T
]
(
s
)

Arrival rate / server (1/s)

C
l
o
n
i
n
g
f
a
c
t
o
r
c f E[T]opt

c
opt

f

Figure 4: Clone-to-All: Optimal cloning factors together
with the corresponding optimal mean response times. Data
retrieved from theoretical analysis using Poisson arrivals
and S&Z distributed service times.

for any λ for this example. For high system loads, the service time

dependencies introduced in the S&Z model, limit the use of cloning

and for λ > 0.6s−1 per server, no cloning (c
opt

f = 1) is optimal.

4.2.2 Clone-to-Clusters. The natural extension to only consider

cloning to all n servers in the system is to allow for cloning to

subsets of servers, as proposed in [15]. To simplify the analysis, we

partition the set ofn servers intom subsets of equal sizes, containing

d servers each, i.e., such thatm · d = n. We denote these subsets as

clusters. If an original request ro is sent to a cluster it gets replicated
to all d servers in the cluster. The clusters enable synchronized

service for all request clones rc
1:d , which means that each cluster

can be equivalently represented as a G/G/1 model using Theorem 2.

This cloning strategy allows us to combine an arbitrary load-

balancing strategy ℓ that decides to what cluster the original request

ro should be sent, together with the choice of cloning factor cf =
d . Figure 5 shows the complete system, that includes the load-

balancing strategy ℓ andm clusters.

The choice of the cloning factor cf depends on the load-balancing
strategy ℓ, and we will now show that there is an advantage in con-

ducting a joint design of the two. Given a load-balancing strategy ℓ,

the cloning factor cf = d to be used in each cluster should be chosen

such that the mean response time E[T] for the complete server sys-

tem is minimized. Varying the value of the cloning factor cf allows

us to design and determine the statistical properties of the behavior

of them clusters (using n available servers), by using the equivalent

G/G/1 modeling from Theorem 2 to each cluster separately. Using

methods like exhaustive search, it is thus possible to determine the

cloning factor cf and them clusters that minimize E[T] under ℓ.
An important prerequisite for a successful co-design is that there

exists a good enough (possibly approximate) expression for E[T]
(or some other metric) when using the load-balancing strategy ℓ. If

ℓ has a well-defined stability criterion, we can co-design a system

with a provably stable cloning factor cf . Here we consider two very
common strategies, Random and Join-Shortest-Queue (JSQ).

The Random strategy distributes the original requests uniformly

to the servers in the cluster, thus preserving the Poisson proper-

ties of the arrival rate λ towards the server system. Each cluster

then receives the Poisson arrival rate λ/m. The exact analysis pre-

sented in Section 4.2.1 is directly applicable to the random load-

balancing strategy, when deciding the optimal cf = d . We denote

Farr
LBℓ

F 1
min

F 2
min

. . .
Fm
min

Figure 5: Clone-to-Clusters server system. Each rectangle
represents a cluster of d servers that guarantees synchro-
nized service to all clones rc

1:d .

this complete co-design as cluster-Redundancy-d (c-R-d), with d
representing the cloning factor of each cluster.

The JSQ load balancer always selects the cluster with the shortest

queue and sends the cloned requests to that cluster. To co-design the

cloning factor with the JSQ strategy, we need to use approximations

as no exact results exist for E[T]. As we model our servers using

the PS discipline, we utilize the approximation presented in [11].

Exploiting the near-insensitivity towards variability in service time

distributions for JSQ under PS, it gives a very good approximation

(error within 2-3%) for E[T], given Poisson arrivals,m clusters and

the first moment of the service time distribution. This approxima-

tion is thus compatible with the S&Z model. Utilizing this approxi-

mation for E[T] thus allows us to find the optimal cloning factor

c
opt

f , assuming that the approximations are accurate enough. We

denote the complete co-design as cluster-Join-Shortest-Queue-d

(c-JSQ-d), where d represents the cloning factor of each cluster.

4.2.3 Theoretical Co-design Example. To exemplify the co-design

procedures of choosing the optimal c
opt

f , described in Section 4.2.2,

we study the following example. Assume n = 12 servers, i.e. the

cluster sizes d = 1, 2, 3, 4, 6 and 12 are available. We use Poisson

arrivals and homogeneous service times distributed according to

the S&Z model, and analyze the optimal cloning factors for each co-

design using the exhaustive search method. We consider the queu-

ing discipline PS, and investigate co-designs c-Redundancy-d and

c-Join-Shortest-Queue-d. The theoretical results for five selected

arrival rates are available in Table 2. In this particular example,

the optimal cloning factors c
opt

f are equal for both co-designs for

λ = 0.30s−1 and λ = 0.70s−1, whereas they are different for the

other three arrival rates. As the co-design procedure implies opti-

mization criteria that depend on ℓ, c
opt

f will in general also depend

on ℓ. However, as the example shows, two different co-designs can

of course also find the same c
opt

f under certain conditions.

For λ = 0.70s−1 / server, c
opt

f is equal to 1 for both co-designs,

implying that no cloning is optimal. The fact that we can compare no

cloning (cf = 1) to cloning (cf > 1), using the same framework for

both results, is powerful as it stops us from recommending cloning

when it is not beneficial. Note that for c-JSQ-d the optimal cloning

factors are based upon evaluating approximations for E[T], and
their results are thus subject to the quality of the approximations.

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

29

Table 2: Theoretical analysis of the co-design example in Section 4.2.3, using Poisson arrivals and homogeneous service times
distributions according to the S&Z model.

λ = 0.30 / server (1/s) λ = 0.38 / server (1/s) λ = 0.52 / server (1/s) λ = 0.62 / server (1/s) λ = 0.70 / server (1/s)

coptf E[T]opt(s) coptf E[T]opt(s) coptf E[T]opt(s) coptf E[T]opt(s) coptf E[T]opt(s)

c-R-d 6 0.569 6 0.783 4 1.515 1 2.618 1 3.312

c-JSQ-d 6 0.404 4 0.482 3 0.692 2 0.955 1 1.112

5 NON-SYNCHRONIZED SERVICE
In this section we study the impact of relaxing the assumption

of synchronized service, implying that the clones of an original

request are no longer guaranteed to receive identical processor

shares. First, we consider the effects of non-perfect arrivals and

cancellations in the system. This is of high importance as it is

most likely impossible to design a perfectly synchronized service in

practice. Second, we relax the clone-to-cluster structure to allow for

a more general cloning co-design approach, for which we cannot

guarantee synchronized service.

In order to analyze our model in a non-synchronized context, the

following definitions are needed. Consider a single, specific original

request cloned over n servers. Let Xi be the stochastic variable (s.v.)
associated with the service time distribution for server si . Denote
with Ri the runtime of the cloned request on si , i.e., its time from

service start to departure. Define θ as a vector of n inverse average

processor shares for the clones during their runtime, i.e., θi ≥ 1

states how many requests are present at si in average during Ri .
Further, let N =

∑n
i=1 θi be the total average amount of requests in

the system during the runtimes of the clones of an original request.

The expected response time of the original request for a specific

N can then be written as a function of θ as

E[T |θ] = E[min({θ jX j }j=1:n)]. (13)

If one assumes that the service time distributions are homogeneous

the following interesting result can be obtained.

Theorem 3. The expected response time of an original request
cloned to n servers at a specific N is maximized when all elements in
θ are equal,

argmax

θ
E[T |θ] = θh , where θh = {N /n}j=1:n .

Proof. (13) can be rewritten using the Law of Total Expectation

n∑
k=1

E[min({θ jX j }j=1:n)|Xk ≤ ∀Xi] · P(Xk ≤ ∀Xi), (14)

as all Xi belong to the same distribution, P(Xk ≤ ∀Xi) = 1/n. Using

that the minimum over a set is bounded by all of its members gives

E[min({θ jX j }j=1:n)] ≤

n∑
k=1

θkE[Xk |Xk ≤ ∀Xi] 1
n

=
N

n
E[min({X j }j=1:n)] = E

[
min

({
θhj X j

}
j=1:n

)]
.

(15)

This proves the theorem. The homogeneous service time distribu-

tions yield E[Xk |Xk ≤ ∀Xi] = E[min({Xi }i=1:n)] for each k . □

Theorem 3 holds under any value of N . For synchronized service,

θ = θh at all times, but in the non-synchronized case this is not

true which makes Theorem 3 an important tool for comparison of

the two cases.

5.1 Arrival and Cancellation Delays
In real settings, it is highly unlikely that perfect synchronization

can be achieved. Instead, imperfections such as slightly different

starting times for clones or latency differences between cancelling

requests can occur. The imperfections can arise in two stages of the

request handling, at arrival and at cancellation, which we model

using the notion of arrival delays and cancellation delays.

Definition 3. Let the arrival delay ai ≥ 0 be a s.v. representing
the time difference between original request arrival and cloned re-
quest arrival on si . Further, let the cancellation delay ci ≥ 0 be a s.v.
representing the time difference between the first completed cloned
request on sk and the departure (cancellation) on si .

We will assume that the distributions of ai and ci are indepen-
dent and homogeneous, we further assume that the service time

distributions are homogeneous.

The presence of these imperfections becomes troublesome, as the

clone-to-all system can no longer be guaranteed to be synchronized.

No synchronization implies that the equivalent G/G/1model can not

be directly applied. It is, however, possible to derive a computable

upper bound on the response time of the non-synchronized service.

First, the following Lemma is stated.

Lemma 4. Let S1 and S2 be two, possibly non-synchronized, clone-
to-all systems with same number of servers n and arrival rate. If for
all N , E[T |N ,S1] ≤ E[T |N ,S2] and E[Ri |N ,S1] ≤ E[Ri |N ,S2],
then

E[T |S1] ≤ E[T |S2]. (16)

Proof. As E[Ri |N ,S1] ≤ E[Ri |N ,S2] is true for any N , then if

S1 and S2 are subject to the same arrival rate, the expected number

of requests present in the system must be smaller for S1 than S2

E[N |S1] ≤ E[N |S2]. (17)

Using the definition of the expected value, (17) can be written as∫
Np(N |S1)dN ≤

∫
Np(N |S2)dN . (18)

This inequality still holds if the function д(N) = N is replaced by

two functions that uphold the same inequality for all N , hence∫
E[T |N ,S1]p(N |S1)dN ≤

∫
E[T |N ,S2]p(N |S2)dN

→ E[T |S1] ≤ E[T |S2].
(19)

□

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

30

It is now possible to compute bounds on the effects of arrival and

cancellation delays on the expected response time, by lettingS1 be a

clone-to-all system affected by delays andS2 a synchronized system

such that S1 and S2 fulfill Lemma 4. Since S2 is synchronized,

the equivalent G/G/1 model can be directly applied to explicitly

compute a bound for S1. We proceed by first considering the two

delays separately.

Theorem 5. (Arrival delays) LetS1 be a clone-to-all systemwith
arrival delay, and S2 an identical system but synchronized (without
delays). Let S1 and S2 be subjected to the same arrival rate. Then

E[T |S1] ≤ E[T |S2] + E[a]. (20)

Proof. Consider S1. For a specific N , the response time of an

original request and the runtime of its clones becomes

T |θ ,S1 = min{aj + θ jX j }j=1:n ,

Ri |θ ,S1 = max(min{aj + θ jX j }j=1:n − ai , 0).
(21)

Themaximum is introduced to prohibit negativeRi when the fastest
clone completes before arrival at si . The maximum can be dealt with

by introducing bi = min(ai ,min{aj + θ jX j }j=1:n). By definition,

bi ≤ ai and further,min{aj + θ jX j }j=1:n = min{bj + θ jX j }j=1:n as

θ jX j ≥ 0. The following upper bound can then be created

Ri |θ ,S1 ≤ max(min{bj + θ jX j }j=1:n − bi , 0)

= min{bj + θ jX j }j=1:n − bi .
(22)

The expected runtime is bounded as

E[Ri |θ ,S1] ≤ E
[
min{bj + θ jX j }j=1:n

]
− E [b] . (23)

Following the proof of Theorem 3, we can state that

E[min({bj + θ jX j }j=1:n)] ≤

n∑
k=1

(E[bk + θkXk |Xk ≤ ∀si]) 1
n

= E[b] + E[min{θhj X j }j=1:n],

(24)

which gives

E[Ri |θ ,S1] ≤ E[min{θhj X j }j=1:n] + E[b] − E[b]

= E[min{θhj X j }j=1:n] = E[Ri |θh ,S2].
(25)

Further, using Eq. (24) the response time for a request under a

specific N can be bounded as

E[T |θ ,S1] = E[min{aj + θ jX j }j=1:n]

≤ E[min{θhj X j }j=1:n] + E[a] = E[T |θh ,S2] + E[a].
(26)

As the two inequalities Eq. (25) and (26) hold for all θ ∈ {
∑
θi =

N , θi ≥ 1 ∀i}, the statements can be conditioned on N instead

without loosing the inequality property. Then using Lemma 4 the

original statement is proven. □

Note that for Theorem 5, E[a] does not affect the stability of S2.

Thus if S2 is stable, then so is S1 regardless of arrival delays.

Theorem 6. (Cancellation delays) Let S1 be a clone-to-all sys-
tem with cancellation delays, and S2 an identical system but synchro-
nized (without delays) and with service time Xi |S2 = Xi |S1 + E[c].
Let S1 and S2 be subject to the same arrival rate. Then

E[T |S1] ≤ E[T |S2]. (27)

Proof. Consider S1. For a specific N , the response time of an

original request and the runtime of its clones become

T |θ ,S1 = min{θ jX j }j=1:n ,

Ri |θ ,S1 = min{θ jX j }j=1:n +min(ci ,θiXi −min{θ jX j }j=1:n).

(28)

The runtime incorporates the chance that a cloned request com-

pletes aftermin{θ jX j }j=1:n but before ci has passed, thus the extra
minimum. Further, the response time for a specific N is unaffected

by the cancellation delay. As the response time is longer if the

service time is longer, it can be trivially stated that

E[T |θ ,S1] ≤ E[T |θh ,S2]. (29)

The runtime for each server is thus bounded by the cancellation

delay

Ri |θ ,S1 ≤ min{θ jX j }j=1:n + ci . (30)

The expected runtime for each server can thus be bounded as

E[Ri |θ ,S1] ≤ E[min{θ jX j }j=1:n + ci]

≤ E[min{θ j (X j + E[c])}j=1:n]

≤ E[Ri |θh ,S2],

(31)

using Theorem 3 in the last step. As the two inequalities Eq. (29)

and (31) hold for all θ ∈ {
∑
θi = N , θi ≥ 1 ∀i}, the statements can

be conditioned on N instead without losing the inequality property.

Then using Lemma 4 the original statement is proven. □

Note that for Theorem 6, for large E[c] the upper bound can

become infinite despite potential stability of S1. Thus the arrival

rate of the system has to be less than 1/(E[Xi] + E[c]) to guarantee

stability for both S1 and S2. The following Theorem shows that

the effect of both arrival and cancellation delays can be bounded

by the sum of the individual bounds.

Theorem 7. (Combined delays) Let S1 be a clone-to-all system
with both arrival and cancellation delays, and S2 an identical system
but without delays and thus synchronized and Xi |S2 = Xi |S1 + E[c].
Let both systems be subject to the same arrival rate. Then

E[T |S1] ≤ E[a] + E[T |S2]. (32)

Proof. Consider S1. For a specific N , the response time is still

unaffected by the cancellation delay and the runtime for each clone

becomes a clear combination of the two separate delay cases,

T |θ ,S1 = min{aj + θ jX j }j=1:n ,

Ri |θ ,S1 = max

(
min{aj + θ jX j }j=1:n − ai

+min(ci ,ai + θiXi −min{aj + θ jX j }j=1:n), 0
)
.

(33)

Following the proofs to Theorems 5 and 6 with the previous two

equations, it is easy to see that the two bounds are additive. □

The benefit of Theorems 5-7 is two fold. First, they show that

small imperfections are not detrimental when trying to imple-

ment synchronized service in practice. Further, the bounds are

computable given that the expected response time of the equiv-

alent G/G/1 model is computable, which gives a way of making

informed decisions in capacity planning of such systems. However,

the Theorems are only strictly valid if one assumes that ai , ci , Xi
are homogeneous and known, which is not the case for all systems.

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

31

5.2 Clone-to-Any
The co-design procedure denoted c-ℓ-d in Section 4.2.2, assuming

a clone-to-clusters structure, is of interest as it provides a way

to compute and quantify the performance of such systems. The

design itself is, however, not that intuitive as it is superfluous to

pre-partition the servers into clusters. In practice, a more natural

approach would instead be to allow the load-balancing strategy ℓ

to, for each original request, choose cf unique servers from s1:n to

clone to. We define this as the clone-to-any cloning strategy, and

denote co-designs under clone-to-any as a-ℓ-d for cloning factor

cf = d and load-balancing strategy ℓ.

For a-ℓ-d co-designs, synchronized service is no longer guaran-

teed which implies that the equivalent G/G/1 model is not directly

applicable. A measure that quantifies this non-perfect synchro-

nization is the clone error ϵ , defined for clones rc
1:d to an original

request ro as ϵ = D[pc
1:d]/E[p

c
1:d], with D the standard deviation

and pc
1:d the processor shares for rc

1:d . For E[ϵ] > 0, the system is

non-synchronized, for E[ϵ] = 0 it is synchronized and for small

E[ϵ] we have near-synchronization.
It is intuitive to believe that c-ℓ-d could be used to form an

adequate approximation of a-ℓ-d. In fact, the less utilization ρ a

system under a-ℓ-d is subject to, themore similar to c-ℓ-d it becomes.

This is formalized in the following theorem.

Theorem 8. Consider the two server systems S1 and S2, where
S1 uses a-ℓ-d and S2 c-ℓ-d but otherwise are identical.

Then as ρ → 0, E[T |S1] → E[T |S2]. (34)

Proof. The smaller the utilization, the larger the probability

that all clones rc
1:d to an original request ro execute alone on their

servers. As ρ → 0 then processor shares pci → 1 for all rci . If p
c
i = 1

for all rci , then E[ϵ] = 0 and the clones are synchronized. □

As small E[ϵ] implies near-synchronization, it is using c-ℓ-d

possible to derive an accurate approximation for the mean response

time of a-ℓ-d under low loads, for any ℓ and cf . For more general

system loads ρ, the similarity between a-ℓ-d and c-ℓ-d depends on

the choice of ℓ. In particular, if ℓ is good at keeping pi similar for

all clones to the same original request, a-ℓ-d will behave close to

synchronized as E[ϵ] will be small. In Section 6, the load-balancing

strategies random and JSQ, with clone-to-any co-designs denoted

a-R-d and a-JSQ-d, are compared to their c-ℓ-d counterparts.

6 EVALUATION
In this section, we demonstrate and evaluate the examples and

claims stated in the two previous sections, using our own discrete-

event simulator
1
. We refrained from using existing simulators like

CloudSim [4], because our evaluation requires us to simulate the

cloud application-level behavior and not only the infrastructure be-

havior. For this reason, we took inspiration from the brownout [16]

simulator
2
andmodified it to remove the adaptation layer and added

cloning functionality. In the simulator we include the options to

define: (i) the inter-arrival time distribution Farr(x), (ii) the service
time distributions F1:n (x) for our n servers, (iii) the cloning factor

cf , (iv) the load balancing strategy and (v) arrival and cancellation

1
https://github.com/tomminylander/cloning-simulator

2
https://github.com/cloud-control/brownout-simulator

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

10

E[
T
]
(
s
)

Arrival rate / server (1/s)

C
l
o
n
i
n
g
f
a
c
t
o
r
c f

E[T]opt (theory)
E[T]opt (sim)

c
opt

f (theory)

c
opt

f (sim)

Figure 6: Clone-to-All: Comparison of theoretical values
with 95% confidence intervals for the simulation results.

delays. The arrival and service time distributions can be heteroge-

neous and we allow the user to set them based on empirical CDF

data. All simulations in this section are run using the PS discipline.

Our artifacts are available at Zenodo
3
. They consist of our simu-

lator code complete with the scripts that we ran for our simulations.

Furthermore, the artifacts provide more details on the simulator

architecture, and instructions on how to reproduce our results.

6.1 Server Systems
All experiments in this subsection are evaluated over 20 indepen-

dent simulations per scenario with unique random seeds, each

with 10
6
incoming requests from Poisson arrivals. The service time

distribution is the S&Z model as described in Section 4.1.

6.1.1 Clone-to-All. The clone-to-all system in Section 4.2.1, for

which the G/G/1 model yields an exact analysis for c
opt

f and E[T]opt,
was simulated with a sweep over the arrival rates. The 95% confi-

dence intervals for the results of the simulations are shown together

with the theoretical values in Figure 6. As can clearly be seen, the

simulated c
opt

f and E[T]opt follow their theoretical values closely.

6.1.2 Theoretical Co-designs. We further evaluate the co-designs

presented in Section 4.2.3 using the simulator. The results are shown

as 95% confidence intervals in Figure 7, plotted together with the

theoretical values for both co-designs c-R-d and c-JSQ-d. For the

optimal clone factor c
opt

f , the simulated and theoretical valuesmatch

perfectly. The same applies for the matching of E[T], at least for
c-R-d where the theoretical values are obtained via exact analysis.

In fact, the simulated c-JSQ-d mean response times are slightly

(1-3%) off compared to the theoretical values. The reason is that the

JSQ values are based on (highly accurate) approximations. As our

co-designs succeed in finding all optimal cloning factors c
opt

f , the

simulations suggest that the co-designs performwell even when the

accuracies of the involved approximations of E[T] are not perfect.

6.2 Non-Synchronized Service
In order to perform a general evaluation, all experiments in this sub-

section are evaluated over 1000 randomized scenarios with unique

random seeds, each with 10
6
incoming requests from Poisson ar-

rivals.We use the following service time distributions: (i) S&Zmodel

3
https://doi.org/10.5281/zenodo.3635905

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

32

0.3 0.38 0.52 0.62 0.7

1

2

3

4

6

C
l
o
n
e
f
a
c
t
o
r
c f

0.3 0.38 0.52 0.62 0.7
0

1

2

3

Arrival rate λ / server (1/s)

E[
T
]
(
s
)

c-JSQ-d (sim) theory

c-R-d (sim) theory

Figure 7: Co-designs: Comparison of theoretical values with
95% confidence intervals for the simulation results. The leg-
end applies to both figures.

from Section 4.1, (ii) Exponential (µ = 1), (iii) Weibull (shape=0.5,

scale=0.5), (iv) Pareto (Type 1, shape=2.5, scale=0.6) and (v) Uniform

(Xi ∈ [0, 2]). The mean service time E[X] of all the above distribu-

tions at cloning factor cf = 1 is 1s. The utilizations considered are

ρsim = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]. For each scenario, we

randomly select a service time distribution from (i)-(v), a utilization

from ρsim , a number of servers from ssimn and a cloning factor from

csimf . The two latter are defined below.

6.2.1 Arrival and Cancellation Delays. First, we evaluate the the-
oretical bounds from Section 5.1 for clone-to-all server systems.

We use csimf = ssimn = [2, 3, 4, 5, 6, 7, 9, 10]. Additionally, from

delaysim = [0.01, 0.02, 0.05, 0.1, 0.2, 0.5] ·E[X], we randomly select

a normalized mean delay. We run three separate experiments: (a)

arrival delays only, (b) cancellation delays only and (c) both de-

lays present. In the latter experiment, the mean delays for each

scenario are chosen such that, for 0 ≤ γ ≤ 1 uniformly random,

γE[a] + (1 − γ)E[c] becomes the chosen delay from delaysim . The

results are available in Figure 8, and show that for low normalized

delays (0.01-0.05) all normalized E[T] are close to 1. This implies that

the synchronized model describes these cases accurately. Further,

for the low delays the bounds are tight in all three experiments,

which implies that the bounds are very useful for these delays.

However, for the higher delays the normalized E[T] is larger. Also,
the bounds for the cancellation delay become very large, and for

some scenarios with delay 0.2 and 0.5 they even become infinite

as the bound can not guarantee stability for these cases. As none

of our simulated scenarios were unstable, it is obvious that the

cancellation delay bound has limited usage for these higher delays.

6.2.2 Clone-to-Any. Second, the clone-to-any co-designs are com-

pared to their synchronized counterparts. Here we set ssimn = [4,

6, 9, 12, 15, 21, 27, 30, 45, 48] and randomly choose cf , such that for

each scenario the chosen number of servers is evenly divisible by

cf .

Figure 9 shows the results for both random and JSQ. The upper

plot shows themean clone errors E[ϵ], and it can clearly be seen that
for a-JSQ-d the values are much smaller than for a-R-d. This implies

that a-JSQ-d is a much better approximation of its synchronized

counterpart than a-R-d. The lower plot, showing normalized E[T],
confirms this statement as the values for a-JSQ-d are much closer

to 1. For low ρ, both co-designs approximate the synchronized

behavior well in accordance with Theorem 8. For a-JSQ-d, the

normalized E[T] are very close to 1 for all utilizations suggesting

that we have near-synchronized service regardless of the arrival

rate. This property can be intuitively explained by looking into the

JSQ algorithm. As JSQ always sends the clones to the servers with

the least amount of running requests, this will cause the servers to

always have very similar amounts of running requests. The clones

rc
1:d of the same original request ro will then always receive very

similar processor shares, leading to small mean clone errors E[ϵ].
Looking more closely at the normalized E[T], it can be observed

that the values for a-JSQ-d and a-R-d never exceed 1. As our simula-

tion study is fairly general, considering many different parameters,

this suggests that the mean response times for the synchronized

c-ℓ-d co-design might actually form an upper bound for the a-ℓ-d

counterparts. This claim is partially supported by Theorem 3, which

can be read as that synchronized service in fact always is worse

than non-synchronized. However, we have not been able to finalize

the proof to hold for complete co-designs, and it will thus have to

be left for future work.

6.3 Summary
Our simulation campaign shows good compliance with our theo-

retical findings. For both the clone-to-all plots in Figure 6, and the

co-design plot in Figure 7, our model predicts the optimal cloning

factors c
opt

f with high accuracy. Figure 8 shows that, especially for

low arrival and cancellation delays, our theoretical bounds can be

used to predict the effect of practical imperfections on our model.

Figure 9 shows the interesting near-synchronized service property

of the JSQ policy, suggesting that our model could accurately de-

scribe setups involving the JSQ load-balancer, where synchronized

service is not guaranteed.

7 RELATEDWORK
Cloning has been studied in the research literature, although in

most of the cases previous studies were limited to exponential

distributions for service times and the FCFS discipline. We briefly

presented an overview of the cloning literature in the introduction

of this paper. Here we provide additional details and comparisons

with the most related research contributions.

In contrast to pure cloning, speculative execution [2, 25] has

previously been studied to remedy the effects of slow tasks in

large data frameworks such as MapReduce [6] or Spark [24]. Using

speculative execution, the infrastructure keeps track of request

handling progress and launches copies of slow tasks to reduce the

total execution time. As explained by Ganesh et al. [1], cloning can

be viewed as an extreme case with no speculation time.

Restricting the arrival and service time distributions to being

exponential and the queuing discipline to FCFS, the method pre-

sented in [9] is able to handle cases that are not covered by the

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

33

0.01 0.02 0.05 0.1 0.2 0.5
1

1.1

1.2

1.3

E[a]/E[X]

N
o
r
m
a
l
i
z
e
d
E[
T
] Upper bound

Delays

No delays

(a) Arrival delays only.

0.01 0.02 0.05 0.1 0.2 0.5
1

1.5

2

2.5

E[c]/E[X]

N
o
r
m
a
l
i
z
e
d
E[
T
]

(b) Cancellation delays only.

0.01 0.02 0.05 0.1 0.2 0.5
1

1.5

2

2.5

E[a + c]/E[X]

N
o
r
m
a
l
i
z
e
d
E[
T
]

(c) Both delays present.

Figure 8: Arrival and cancellation delay simulations. The normalization of E[T] is performed such that each value is divided
by the theoretical value without delays. The intervals represent 95% confidence intervals. The legend applies to all figures.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

E[
ϵ
]

a-JSQ-d

a-R-d

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.4

0.5

0.6

0.7

0.8

0.9

1

Utilization ρ

N
o
r
m
a
l
i
z
e
d
E[
T
]

a-JSQ-d

a-R-d

c-ℓ-d

Figure 9: Simulations comparing a-ℓ-d to c-ℓ-d for random
and JSQ. The normalization of E[T] is performed such that
each value is divided by the value for the c-ℓ-d counterpart.
The intervals represent 95% confidence intervals.

synchronized service definition, e.g., to simultaneously handle both

cloning and non-cloning request classes. However, as a result of

Theorem 2, here we show that the result presented in [9] is valid

also — in the case of server systems with synchronized service —

for other queuing disciplines, including for example PS.

Gardner et al. [8] propose a service time model decoupling task

sizes from server slowdowns, conveniently allowing for model-

ing of dependencies between request clones. We use this model

throughout our paper (denoting it as the S&Z model), and show

that using our G/G/1 modeling concept, its statistical properties

under cloning can be analyzed even under PS. In the same paper [8],

the authors propose the cloning strategy Redundant-to-Idle-Queue

(RIQ), a policy that clones requests to all idle servers that it finds.

The RIQ strategy is both provably stable and analytically tractable

within the S&Z model, but cannot detect scenarios where cloning

actually deteriorates performance. Our co-design procedure pre-

sented in Section 4 is, on the contrary, able to identify scenarios

where cloning is not beneficial and should be avoided. In these

scenarios, the optimal cloning factor is equal to 1.

It is possible to determine guidelines for cloning factors for ser-

vice time distributions with specific properties [22]. The results

presented in [22] are applicable to arbitrary arrival processes, and

examples where cloning is beneficial include i.i.d. memoryless ser-

vice time distributions. In our paper, we go beyond this and utilize

the G/G/1 modeling in Section 2 to determine optimal cloning fac-

tors for any service time distributions. However, we do require

server systems to guarantee synchronized service.

In an attempt to make cloning models closer to real implementa-

tions, Lee et al. [18] worked on modeling and analyzing the over-

head of cancellations, and the effects on the optimal scheduling

policy. We also consider practical imperfections in our paper, but

we instead focus on studying the accuracy of our synchronized

model when subjected to e.g. arrival and cancellation delays.

Joshi et al. [15] show that an (n,1) fork-join system can be equiv-

alently represented by an M/G/1 queue, under i.i.d assumptions

for service time distributions. Utilizing Theorem 1 and 2, we show

that, under synchronized service, a server system under cloning

can equivalently be represented by a G/G/1 model, without any

assumptions on either inter-arrival or service time distribution.

A group-based random cloning policy is presented in [15], that

roughly corresponds to our cluster co-design with ℓ as the random

load-balancing algorithm. Our G/G/1 modeling holds for any queu-

ing discipline, allowing us to present and analyze a wider class of

cloning co-designs. Specifically, we are able to co-design the JSQ

policy together with the cloning factor for the PS discipline. Joshi et

al. [15] show that for log-convex tail distributions, cloning to all n
servers is optimal even in the heavy traffic regime. Additionally, the

paper also takes the computing cost into account when deciding

cloning factors, which we do not consider in our paper.

Our cloning model presented in this paper is using a standard,

high-level queuing theoretic approach. As described in e.g. [7], a

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

34

computing application can be modeled in greater detail using a

layered queuing networks (LQN) approach, where the model is

split into smaller components. An interesting possible extension to

our work would be to investigate if our proposed techniques also

apply to more complex LQN models.

8 CONCLUSION
This paper presented a theoretical analysis that extends and gener-

alizes known results about request cloning in data centers. We used

the concept of synchronized service to denote a certain number of

servers that simultaneously serve clones of a request. We demon-

strated that request cloning in a server system under synchronized

service can equivalently be modeled as a G/G/1 server. We showed

that no assumptions on either inter-arrival or service time distribu-

tions are required, and that the G/G/1 model holds for any queuing

discipline. In this paper, we focused on the PS discipline and show

further results for it.

We further extended our theoretical results and discussed the

optimal cloning factor. We also analyzed more complex server sys-

tems, consisting of multiple clusters. To demonstrate the possible

applications of the equivalent G/G/1 modeling, we presented a co-

design method that, under homogeneity assumptions, found the

optimal cloning factor c
opt

f and the server system’s correspond-

ing mean response time E(T) under both random and JSQ load-

balancing for clusters with synchronized service. To the best of our

knowledge, this paper presents the first provably stable combined

load-balancing and cloning strategy for the PS queuing discipline.

Further, we relaxed the synchronized service assumption and de-

rived bounds for how practical imperfections, such as arrival and

cancellation delays, affect the accuracy of our model. We demon-

strated using simulations that removing the synchronized service

constraint for the JSQ co-design seems to only marginally reduce

the accuracy of the model. We provided an intuitive explanation to

this phenomenon, which implies that our theoretical model could

be used to design the non-synchronized a-JSQ-d version as well.

ACKNOWLEDGMENTS
This work was partially supported by the Wallenberg AI, Auto-

nomous Systems and Software Program (WASP) funded by the

Knut and Alice Wallenberg Foundation, by the Nordforsk Nordic

Hub on Industrial IoT (HI2OT), and by the ELLIIT Excellence Center

at Lund University.

REFERENCES
[1] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. 2013.

Effective Straggler Mitigation: Attack of the Clones. In Proceedings of the 10th
USENIX Conference on Networked Systems Design and Implementation (nsdi’13).
USENIX Association, Berkeley, CA, USA, 185–198. http://dl.acm.org/citation.

cfm?id=2482626.2482645

[2] Ganesh Ananthanarayanan, Srikanth Kandula, Albert Greenberg, Ion Stoica, Yi

Lu, Bikas Saha, and Edward Harris. 2010. Reining in the Outliers in Map-reduce

Clusters Using Mantri. In Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation (OSDI’10). USENIX Association, Berkeley,

CA, USA, 265–278. http://dl.acm.org/citation.cfm?id=1924943.1924962

[3] Urtzi Ayesta. 2019. On redundancy-d with cancel-on-start a.k.a Join-shortest-

work (d). ACM SIGMETRICS Performance Evaluation Review 46, 2 (jan 2019),

24–26. https://doi.org/10.1145/3305218.3305228

[4] RodrigoN. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose,

and Rajkumar Buyya. 2011. CloudSim: A Toolkit for Modeling and Simulation

of Cloud Computing Environments and Evaluation of Resource Provisioning

Algorithms. Softw. Pract. Exper. 41, 1 (2011), 23–50.

[5] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56,

2 (feb 2013), 74. https://doi.org/10.1145/2408776.2408794

[6] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing

on Large Clusters. Commun. ACM 51, 1 (Jan. 2008), 107–113. https://doi.org/10.

1145/1327452.1327492

[7] Greg Franks, Tariq Al-Omari, Murray Woodside, Olivia Das, and Salem Derisavi.

2008. Enhanced modeling and solution of layered queueing networks. IEEE
Transactions on Software Engineering 35, 2 (2008), 148–161.

[8] Kristen Gardner, Mor Harchol-Balter, and Alan Scheller-Wolf. 2016. A Bet-

ter Model for Job Redundancy: Decoupling Server Slowdown and Job Size.

In 2016 IEEE 24th International Symposium on Modeling, Analysis and Simu-
lation of Computer and Telecommunication Systems (MASCOTS). IEEE. https:

//doi.org/10.1109/mascots.2016.43

[9] Kristen Gardner, Samuel Zbarsky, Sherwin Doroudi, Mor Harchol-Balter, and

Esa Hyytia. 2015. Reducing Latency via Redundant Requests: Exact Analysis.

ACM SIGMETRICS Performance Evaluation Review 43, 1 (jun 2015), 347–360.

https://doi.org/10.1145/2796314.2745873

[10] Kristen Gardner, Samuel Zbarsky, Mor Harchol-Balter, and Alan Scheller-Wolf.

2016. The Power of d Choices for Redundancy. ACM SIGMETRICS Performance
Evaluation Review 44, 1 (jun 2016), 409–410. https://doi.org/10.1145/2964791.

2901497

[11] Varun Gupta, Mor Harchol Balter, Karl Sigman, and Ward Whitt. 2007. Analysis

of join-the-shortest-queue routing for web server farms. Performance Evaluation
64, 9-12 (oct 2007), 1062–1081. https://doi.org/10.1016/j.peva.2007.06.012

[12] Gauri Joshi. 2018. Synergy via Redundancy: Boosting Service Capacity with

Adaptive Replication. ACM SIGMETRICS Performance Evaluation Review 45, 2

(mar 2018), 21–28. https://doi.org/10.1145/3199524.3199530

[13] Gauri Joshi, Yanpei Liu, and Emina Soljanin. 2012. Coding for Fast Content

Download. CoRR abs/1210.3012 (2012). arXiv:1210.3012 http://arxiv.org/abs/

1210.3012

[14] Gauri Joshi, Emina Soljanin, and Gregory Wornell. 2015. Efficient replication

of queued tasks for latency reduction in cloud systems. In 2015 53rd Annual
Allerton Conference on Communication, Control, and Computing (Allerton). IEEE.
https://doi.org/10.1109/allerton.2015.7446992

[15] Gauri Joshi, Emina Soljanin, and Gregory Wornell. 2017. Efficient Redundancy

Techniques for Latency Reduction in Cloud Systems. ACM Transactions on
Modeling and Performance Evaluation of Computing Systems 2, 2 (apr 2017), 1–30.
https://doi.org/10.1145/3055281

[16] Cristian Klein, Martina Maggio, Karl-Erik Årzén, and Francisco Hernández-

Rodriguez. 2014. Brownout: Building More Robust Cloud Applications. In Pro-
ceedings of the 36th International Conference on Software Engineering (ICSE 2014).
700–711.

[17] Leonard Kleinrock. 1975. Queueing Systems. Vol. I: Theory. Wiley Interscience.

[18] Kangwook Lee, Ramtin Pedarsani, and Kannan Ramchandran. 2017. On Schedul-

ing Redundant RequestsWith Cancellation Overheads. IEEE/ACM Transactions on
Networking 25, 2 (apr 2017), 1279–1290. https://doi.org/10.1109/tnet.2016.2622248

[19] Giuseppe Modica and Laura Poggiolini. 2012. A First Course in Probability and
Markov Chains. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118477793

[20] Zhan Qiu, Juan F. Pérez, and Peter G. Harrison. 2016. Tackling Latency via

Replication in Distributed Systems. In Proceedings of the 7th ACM/SPEC on
International Conference on Performance Engineering - ICPE '16. ACM Press.

https://doi.org/10.1145/2851553.2851562

[21] N. B. Shah, K. Lee, and K. Ramchandran. 2014. The MDS queue: Analysing the

latency performance of erasure codes. In 2014 IEEE International Symposium on
Information Theory. 861–865. https://doi.org/10.1109/ISIT.2014.6874955

[22] Nihar B. Shah, Kangwook Lee, and Kannan Ramchandran. 2016. When Do

Redundant Requests Reduce Latency? IEEE Transactions on Communications 64,
2 (feb 2016), 715–722. https://doi.org/10.1109/tcomm.2015.2506161

[23] Huajin Wang, Jianhui Li, Zhihong Shen, and Yuanchun Zhou. 2018. Approxima-

tions and Bounds for (n, k) Fork-Join Queues: A Linear Transformation Approach.

In 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting (CCGRID). IEEE. https://doi.org/10.1109/ccgrid.2018.00069

[24] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-

silient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster

Computing. In Presented as part of the 9th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 12). USENIX, San Jose, CA, 15–28. https:

//www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

[25] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion Stoica.

2008. Improving MapReduce Performance in Heterogeneous Environments. In

8th USENIX Conference on Operating Systems Design and Implementation (OSDI’08).
29–42.

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

35

http://dl.acm.org/citation.cfm?id=2482626.2482645
http://dl.acm.org/citation.cfm?id=2482626.2482645
http://dl.acm.org/citation.cfm?id=1924943.1924962
https://doi.org/10.1145/3305218.3305228
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1109/mascots.2016.43
https://doi.org/10.1109/mascots.2016.43
https://doi.org/10.1145/2796314.2745873
https://doi.org/10.1145/2964791.2901497
https://doi.org/10.1145/2964791.2901497
https://doi.org/10.1016/j.peva.2007.06.012
https://doi.org/10.1145/3199524.3199530
http://arxiv.org/abs/1210.3012
http://arxiv.org/abs/1210.3012
http://arxiv.org/abs/1210.3012
https://doi.org/10.1109/allerton.2015.7446992
https://doi.org/10.1145/3055281
https://doi.org/10.1109/tnet.2016.2622248
https://doi.org/10.1002/9781118477793
https://doi.org/10.1145/2851553.2851562
https://doi.org/10.1109/ISIT.2014.6874955
https://doi.org/10.1109/tcomm.2015.2506161
https://doi.org/10.1109/ccgrid.2018.00069
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

	Abstract
	1 Introduction
	2 Synchronized Model
	3 Examples
	3.1 Independent Exponential Distributions
	3.2 Independent Heterogeneous Distributions

	4 Applications
	4.1 S&Z - A Service Time Model
	4.2 Server Systems

	5 Non-Synchronized Service
	5.1 Arrival and Cancellation Delays
	5.2 Clone-to-Any

	6 Evaluation
	6.1 Server Systems
	6.2 Non-Synchronized Service
	6.3 Summary

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

