
Aggregate Architecture Simulation in Event-Sourcing
Applications using LayeredQueuing Networks

Gururaj Maddodi
Utrecht University
Utrecht, Netherlands
g.maddodi@uu.nl

Slinger Jansen
Utrecht University
Utrecht, Netherlands
slinger.jansen@uu.nl

Michiel Overeem
AFAS Software

Leusden, Netherlands
michiel.overeem@afas.nl

ABSTRACT
Workload intensity in terms of arrival rate and think-time can be
used accurately simulate system performance in traditional systems.
Most systems treat individual requests on a standalone basis and
resource demands typically do not vary too significantly, which
in most cases can be addressed as a parametric dependency. New
frameworks such as Command Query Responsibility Segregation
and Event Sourcing change the paradigm, where request process-
ing is both parametric dependent and dynamic, as the history of
changes that have occurred are replayed to construct the current
state of the system. This makes every request unique and difficult
to simulate. While traditional systems are studied extensively in
the scientific community, the latter is still new and mainly used by
practitioners. In this work, we study one such industrial applica-
tion using Command Query Responsibility Segregation and Event
Sourcing frameworks. We propose new workload patterns suited
to define the dynamic behavior of these systems, define various
architectural patterns possible in such systems based on domain-
driven design principles, and create analytical performance models
tomake predictions.We verify themodels bymakingmeasurements
on an actual application running similar workloads and compare
the predictions. Furthermore, we discuss the suitability of the archi-
tectural patterns to different usage scenarios and propose changes
to architecture in each case to improve performance.

CCS CONCEPTS
• Software and its engineering → Software performance.

KEYWORDS
Software Performance Engineering, Software Architecture Varia-
tion, Command-Query Responsibility Segregation, Event Sourcing,
Domain-Driven Design

ACM Reference Format:
Gururaj Maddodi, Slinger Jansen, and Michiel Overeem. 2020. Aggregate
Architecture Simulation in Event-Sourcing Applications using Layered
Queuing Networks. In Proceedings of the 2020 ACM/SPEC International Con-
ference on Performance Engineering (ICPE ’20), April 20–24, 2020, Edmonton,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6991-6/20/04. . . $15.00
https://doi.org/10.1145/3358960.3375797

AB, Canada. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3358960.3375797

1 INTRODUCTION
Enterprise application workloads vary greatly, due to differences in
the usage behavior of end-users [14]. Variation is typically caused
by the types of business an organization conducts, e.g. a wholesale
business will have large orders from the same customer while a
supermarket has many single orders with a few items. For appli-
cations deployed in the cloud, the current approach is to simply
scale the hardware. However, it may be profitable for the architects
to use knowledge of the correlation between usage patterns and
resource utilization to select an architecture for better performance.

Software Performance Engineering (SPE) [19], a methodology
developed by the software engineering community, benefits soft-
ware architects by incorporating performance objectives into the
development process. SPE involves building Software Execution
Models that represent the control flow of the features of the soft-
ware system using techniques such as UML sequence diagrams,
execution graphs [19], transforming software execution model into
System Execution Model representing the resource utilization of the
software system in operation using techniques such as queuing net-
works [10, 15], stochastic petrinets [11], process algebras [8], etc.,
finally solving the system execution model models using analytical
techniques to obtain performance predictions.

In this work, we investigate the effect of workload patterns on
performance and resource metrics of component-based software
using Event Sourcing (ES) and Command Query Responsibility
Segregation (CQRS) [9, 24] patterns. CQRS and ES frameworks are
popular in the industry, but require more academic study, as these
patterns are becoming the standard in business systems develop-
ment. ES pattern differs from other software design patterns, in that
the processing of every request is different even for the same re-
quest types. This is because ES frameworks do not save the current
state of the system, rather the state is rebuilt from all the history (or
events) that have occurred in the system’s life-cycle. As history is
different for each request, the performance parameters are different
for each request, which poses an interesting challenge to model
such dynamic system behavior. We chose LQN to handle this as
LQNs are expressive in defining system behavior [3, 10, 16, 18].

We use LQN to not only model the details of communications
between the components in the software system but also to model
replaying of the events to build the state. The three main aspects
of modeling the system execution model for ES systems are: (1)
the grouping of features into aggregates, where the features use
same data in an aggregate, and features need to communicate for
data access between the aggregates, (2) event store simulation with

SESSION 6: Performance Costs and Emerging Problems ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

238

https://doi.org/10.1145/3358960.3375797
https://doi.org/10.1145/3358960.3375797
https://doi.org/10.1145/3358960.3375797

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Gururaj Maddodi, Slinger Jansen, and Michiel Overeem

new stream of events for every new instance of an aggregate is
created, and (3) Event replay. The first aspect can be modeled by
placing features in aggregates as single or separate stations in the
LQN model so that features share a single queue or have separate
queues for requests. The second aspect can also be modeled by
using single or separate event store stations for the features in
single aggregate or separate aggregates respectively. Lastly, the
third aspect is modeled by multiplying the average number of
events that can be occurring over a user session to the service
demands at the identified stations and request types in the model.

The paper is organized as: In Sec. 2, we use the proven SPE
methodology and describe the manner in which we position this re-
search to align with the SPE methodology. We give a brief overview
of the technical details of a CQRS and ES based software system
(Sec. 3), and performance engineering concepts and scenarios in
which the system is measured (Sec. 4).

The contributions of this work are mentioned in the sections:
Sec. 5 presents the performancemodel creation using LQN tomodel

the system from the sequence diagram. We describe model
creation and the calculation of the model parameters

Sec. 6 describes how the models are executed against the described
scenarios and validate the models against measurements on
an actual industrial application. We also discuss the choices
architects can make based on the scenarios and propose
improvements to the system to alleviate performance issues

We review related literature and discuss the differences and
contributions to the existing literature that this work provides in
Sec. 7. In In Sec. 8, we discuss the implications of the research, and
conclude the paper with future work in the area.

2 RESEARCH METHOD
The research method we employed is as follows: (1) An experimen-
tal setup is designed to exercise workload on different ES system
architectures, by analytical modeling and measurement, to illus-
trate how different architectures respond to particular workload
patterns. (2) the experiment is conducted within the context of
an exploratory theory-confirming case study. The case study adds
context to the problems we are studying and enables us to discuss
with experts the potential and challenges of the proposed solution.
Experimental Design - Two architecture scenarios in terms of the
component organization were chosen in the experimental setup.We
also define workload parameters to test system behavior as gener-
ated by end-users of an ERP software application specifically using
ES pattern. The aim of the experimental setup is to evaluate the
effects of workload patterns and test the accuracy of modeling the
system. For measurements we use an existing ES implementation
at a case-company, to closely match a realistic situation. Although
the actual framework and application could not be shared due to
proprietary reasons, the reader is referred to similar open-source
CQRS and Event-Sourcing implementations such as Ncqrs for .Net1,
CQRS and ES forWindows Azure2, and CQRS for .Net using Service
Fabric3. In the research scenario, we have used several stable factors
such as the hardware on which the measurements were done, and

1https://github.com/pjvds/ncqrs
2https://github.com/abdullin/lokad-cqrs
3https://github.com/AFASResearch/CQRS-Playground

the OS and frameworks used to build the application. Local archi-
tects were consulted to validate the tests and results for the two
identified architecture scenarios. For modeling, the SPE method-
ology was used by defining the software execution model, i.e the
sequence diagram, and define system execution models using LQN.
The performance predictions are compared to the measurements ob-
tained from the case company implementation. The measurements
were repeated several times to eliminate spurious data caused by
the operating system processes.
Case Study Context - The case study was done in an industry
context. We have conveniently selected a company, anonymized
ERPComp, in the Netherlands. ERPComp currently delivers a fully
integrated ERP suite called ERPSoft, which is used daily by more
than 1,000,000 professional users from more than 10,000 different
End-User organizations. The case-company is developing a new
version of their software, which is cloud-based, developed using
the MDD approach, and implemented on a CQRS back-end. The
work was performed on location at the company and we were given
full access to the source code and the architects. The case study,
experiment, and results were subjected to expert evaluation with
two of the architects at ERPComp.

3 TECHNICAL CONCEPTS
CQRS is a distributed computing approach that advocates the para-
digm - the requests to view the state of the system should not alter
its current state. This basically divides the requests in the CQRS
framework into (1) Commands defined as the requests that create or
modify the state of the system, and (2) Queries that are the requests
that access and present the current state.

CQRS uses Domain-driven Design (DDD) principles to specify
the mechanism in which commands are handled and how events
are generated for a specific command. DDD principles specify con-
structs called aggregates, which are groups of functional entities in
a specific domain. These groups of functional entities can be pro-
cessed together and have a consistent data boundary. An example
is when a person places an order with several items in an online
shopping application. Here, the entities are person, order, and order
items and they belong to a single domain boundary of Purchasing.
The aggregate has a hierarchical structure, i.e. the person first opens
an order and then adds the items to purchase to the order.

Figure 1 shows a representation of CQRS. As the command-side
handles the commands, the DDD aggregates exist on the command-
model indicated by the circle in Figure 1. The root entity is called
the Aggregate Root (AR). Entities that branch from the AR are Child
Entities (CE) and can be accessed only through the AR. For the sake
of simplicity, we distinguish entities as; (1) model-time entities are
not instantiated, whereas (2) run-time entities aremultiple instances
of a model-time entity. This distinction helps to define the workload
pattern for performance tests.

An Aggregate is registered to commands. There can be different
command types for creating an AR and for adding instances of each
type of CE. The commands also carry properties that have to map
to the properties that are defined as part of the state of either the
AR or the CE within the aggregate. Hence, an entity e is a set of
properties, e = {pr1, . . . ,prn | n ∈ N}, where n is the number of
properties in the entity. We assume that n is fixed is the same for

SESSION 6: Performance Costs and Emerging Problems ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

239

Aggregate Architecture Simulation in Event-Sourcing Applications using LayeredQueuing Networks ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada

Query Model

Client

Commands
or
Create/Modify
Requests

Queries or
View
Requests

Events

Projections

<<Entity>>

<<Entity>> <<Entity>>

AR

CECE

State

Command Model Aggregate

Query
Store

Event
Store

Figure 1: The Architecture of a typical CQRS Application
with Command-model Showing the Structure of the Aggre-
gates.

AR and CEs. For the purpose of simplicity, we also consider one
CE under the AR. This model-time architecture is kept the same
throughout the paper, and only the number of instances of CE at
run-time are varied during tests. During run-time, the aggregate is
defined as one instance of AR and kr t instances of CE.

The CQRS pattern is frequently used with ES [5, 24]. In ES, new
system states are recorded in the form of events, which are changes
suggested to the aggregate properties using the business logic that
is part of services within entities of the aggregate. Events are stored
in an event store as depicted in figure 1. The event store enables a
full replay of the events, leading to the reconstruction of the latest
system state. ES store events as stream per aggregate instance. This
means that for every instance of AR a new stream is created and
events from the instances of CE goes into the same stream.

4 CASE DESCRIPTION
To illustrate, consider the case of an online order management
application. The order is themain entity for the customer’s purchase
and one or more products could be present in the order represented
as order items. Hence, an order entity (which is an AR) has several
order items (CEs) under it. The order and each of the order items
can have properties such as order ID, customer name, product
name, and product cost. Using this example, we define two types
of aggregate definitions. Please note that aggregates are similar to
components in object-oriented engineering.

Single Aggregate Scenario - represented as Aддrs , is where
AR and CE are in the same domain boundary, and thereby end up
in the same aggregate. The single aggregate scenario eliminates
the need for communication as both the AR and the CEs are in the
same domain boundary.

Multiple Aggregate Scenario - If the CE is defined as it’s own
domain boundary, then, in this case, we get two aggregates. Let
us represent this case as Aддrm . In our example system, we have
two aggregates Order and Item where both are ARs. Since they
are in their own domain boundary and do not share event streams,
a communication mechanism might be required. An example is,
in the online order management case, the item’s price might have
to be checked against a fixed purchase amount for the order. The
implementation for this case is complex as data models for shared
data for aggregates need to be consistent.

Figures 2[a] and 2[b] show the structure of a single and multiple
aggregate respectively. In the scenario, the order is the AR and order
items are the CEs. Figures 3[a] and 3[b] shows the sequence diagram

of receiving and processing new order creation request and adding
two items to the existing order for single and separate aggregate
architecture respectively. The important things to be noticed in
Figures 3[a] and 3[b] are: the communication between stations
where there are more internal events in Aддrm , and event store
streams used where a new stream is used for every new item. The
research question we want to answer is: given a workload pattern,
which type of aggregate architecture suits the requirements.

Order

Order
Line 1

Internal Events

AR

AR
Order
Line 1

Order
Line 2

Order
Line n

Order AR

Child
Entities

[a] [b]

Order
Line n

Order
Line 2 AR AR

Figure 2: Aggregate Architecture Variations. [a] Single Ag-
gregate, [b] Multiple Aggregate.

We define the workload pattern as the number of run-time in-
stances of the CEs kr t . The workload pattern characterizes the end-
users that use the application as shown in our previous work [14].

Several performance metrics can be used to check the optimal
architecture for a case. The time it takes to execute commands and
generate events is relevant, and the throughput of the system. This is
also proportional to total response time for a user session, as some
business actions, such as ordering a product, requires real-time
processing, while for bulk actions like salary calculations requires
small response time. CPU and disk utilization are also interesting
as hardware resources can be constrained.

We simulate different types of organizations on the order man-
agement system model by varying kr t values. The variable n is
fixed at 100 to get higher resource consumption scores. As kr t is a
continuous quantity, we performed simulation and measurements
at an interval of 15 starting from 5 up to 500 in the tests. Hence,
we generate one OrderCreate command and number of AddItem
commands given by kr t . In performance tests, the systems with
the described aggregate architectures were subjected to the work-
load pattern using a synthetic workload generator [7], which was
developed as part of research at ERPComp.

5 PERFORMANCE MODELING
Layerd Queing Networks (LQN) [6] is an extension of queuing net-
works that can simulate system operations with processing requests
and queues as LQN allows interactions between the stations in the
model. An LQN model is composed of tasks, entries, processors,
calls, and activities. A task represents the servers with resources
and a set of operations. Tasks have a queue with a discipline (d)
and a multiplicity (m) for concurrency. A task has a processor mod-
eling the physical resource (with m and d parameters) to perform
operations. The operations are called entries, where each entry
handles a specific request class. The parameters of entry are service
demand (s), pure delay (Z), and the mean number of calls. Calls can
be synchronous (y), asynchronous (z), or forwarding (f). The logic
inside an entry can be specified using phases or activities. Reader
is referred to [6] for more details of LQN and LQN Solver (LQNS).

SESSION 6: Performance Costs and Emerging Problems ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

240

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Gururaj Maddodi, Slinger Jansen, and Michiel Overeem

Command
Handler

OrderItem
Aggregate

Event
Handler

Event Store
DB

Activate
aggregate

Activate correct
event template

Write event
(OrderCreated)

Activate
aggregate Activate event

templates
Read events
(OrderCreated)

Write event
(ItemAdded)

CreateOrder
Command

AddItem(1)
Command

Command
Handler

Order
Aggregate

Event
Handler

Event
Store DB

Activate
aggregate Activate event

template
Write event
(OrderCreated)

Activate aggregate

Read events
(OrderCreated)

CreateOrder
Command

AddItem(1)
Command

Item
Aggregate

 Write event
(Itemvalidated)

Write event
(ItemAdded)

Internal event
(ValidateItem)

Order
 Item
Stream

Order
Stream

Order
Stream

Order
Stream

Item
Stream

Order
 Item
Stream

Order
 Item
Stream

 Internal event
(ItemValidated)

[a]

Activate event
templates

Read events
(OrderCreated
 +
ItemAdded)

Write event
(ItemAdded)

AddItem(N)
Command

Order
 Item
Stream

Order
 Item
Stream

Activate
aggregate

Activate aggregate

 Write event
(Itemvalidated)

AddItem(N)
Command

Write event
(ItemAdded)

Internal event
(ValidateItem)

Order
Stream

Order
Stream

Item
Stream

 Internal event
(ItemValidated)

Read events
(OrderCreated
 +
ItemValidated)

[b]

Figure 3: Sequence Diagram for Order Creation in an ES Sys-
tem with [a] Single Aggregate and [b] Separate Aggregate
Architecture Types.

5.1 System Setup and Implementation
The service demands can be calculated from measurements on the
system under test (SUT) for the request types. The application was
written as a C# .NET web application on Windows 10 OS. The
performance tests were run on a machine with Intel i5 3.4GHz
64-bit processor and 8 GB RAM. Microsoft SQL server with default
max_connections parameter 32767 was used for event store.

For the application, the frameworks specified in the section 2
is used with JSON definitions for command and events. For Cre-
ateOrder and AddItem requests, 5 and 100 properties were defined
respectively. In both the aggregate architectures, the properties are
implemented using a Dictionary datatype containing key as name
and value as a text string. In the single aggregate scenario, the
entities were again implemented using Dictionary datatype with a
key for representing the entity instance GUID and the value being
Dictionary containing the property name and value as mentioned
earlier. The properties were implemented as String with a length
of 100 characters in the commands. The aggregate’s function loops
through the properties to generate resouce utilization.

5.2 LQN Models for Aggregate Architectures
The described architecture scenarios are modeled using LQN as
shown in Figures 4 and 5 for Aддrs and Aддrm respectively. The
sequence diagrams in Figures 3[a] and 3[b] show the three requests
types: CreateOrder, AddItem1, and AddItemN, where N can be from
2 to kr t . Due to the limitations in granularity of the measurements,
i.e., we always measure events CreateOrder and AddItem together,
we have had to separate them into two entries. We subtract the
OrderCreated event replay execution from execution demand of
AddItemN request to get only the execution demand for ItemAdded
event. Therefore, we achieve event replay for all calls of AddItemN
request class by multiplying the execution demands for ItemAdded
event replay with Fmult = [(kr t − 1)/2]. Fmult . In the model Fmult
is used at read entries at event store and disk tasks and implement-
ing events at aggregate tasks in the model.

In the model, we have the tWorkloadGenerator task withm=1 (as
1 user session is used as reasoned previously) and runs on processor
pWorkload as we just look at the execution demands at the back-end
of the system and the tWorkloadGenerator simulates an end-users’
browser. As described in the execution scenario, is modeled by
having an entry called eLoad with initial activity as aCreateOrder,
followed by an aAddItem1 activity, and aAddItemN in loop with
iterations equal to kr t -1. The Workload Generator’s requests are
handled by the Command Handler module, which are redirect to
the aggregates. We include a tCommandHandler task to simulate the
delay in redirection with its m=infinite and an infinite processor.

In the LQN models, for Aддrm multiple aggregates are mod-
eled as separate tasks tOrderAggregate and tItemAggregate, whereas
there is only one task tOrderItemAggregate forAддrs . The aggregate
tasks have entries for the request types defined, i.e. eCreateOrder,
eAddItem1 and eAddItemN. Entries eValidateItem1 and eValidateIt-
emN are modeled in tOrderAggregate task in Aддrm for validating
the items. These entries contain: aGetData activity representing
validation code that iterates through all properties of the request,
aReadEvents reads events from event store, and aWriteEvents writes
events to the event store. It is to be noted that the eCreateOrder in
both eAddItem1 and eAddItemN inAддrm do not contain activity for
event read as both entries create a new stream in the event store and
hence do not have any events. For event replay, the aReadEventN
activity’s service demand is multiplied by Fmult . The number of
calls are set as deterministic with a value of ’1’.

Event Handlers manage event read andwrite between aggregates
and the event store, which is modeled by the tEventHandler task

SESSION 6: Performance Costs and Emerging Problems ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

241

Aggregate Architecture Simulation in Event-Sourcing Applications using LayeredQueuing Networks ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada

 pDisk

krt-1*

tWorkloadGenerator
eLoad

aAddItem1
aCreate
Order

 eCH0
tCommandHandler

{i} eCH1

tEventHandler

pDisk

pCPU

{1}

eEH0
{1}

{1}

aAddItemN

 eCH2

eCreateOrder

aGetItem1

eAddItem1
tOrderItemAggregate

aWriteEvent1

aGet
Order

aWrite
Order

{1}

eEH3

tEventStore
eES0 eES2 eES3 eES4

tDisk
eDisk4eDisk3eDisk2eDisk1eDisk0{1}

aReadEvents1

aGetItemN

aWriteEventN

aReadEventsN

{i}

{32767}

eAddItemN

eES1

eEH1 eEH2 eEH4

Figure 4: LQN Model for Aддrs Architectre with the Aggre-
gate and the Event Store Represented as Single Tasks.

tWorkloadGenerator
eLoad

aAddItem1
aCreate
Order

 eCH0
tCommandHandler {i}

 eCH1

tEventHandler {i}

{32767}

pDisk

pCPU

{1}

eEH0 eEH1 eEH2

{1}

{1}

aAddItemN

 eCH2

eCreateOrder

 aRead
 Events1

eValidateItem1

tOrderAggregate

aWrite
Event1

aGet
Order

aWrite
Order

{1}

eValidateItemN

eAddItem1

{krt}

eAddItemN

tItemAggregate

eEH3 eEH4

tOrderEventStore
eES0 eES2 eES3eES1 eES4 eES5 eES6

tItemEventStore

tDisk
eDisk5eDisk4eDisk3eDisk2eDisk1eDisk0 eDisk6{1}

eEH5

krt-1*

aGetItem1

aRead
EventsN

aWrite
EventN

aGet
ItemN

aWrite
Item1

aWrite
ItemN

eEH6

Figure 5: LQNModel forAддrm Aggregate Architecture with
theAggregate and the Event Store Tasks Represented as Two
Separate Tasks to Represent Separate Domain Boundary.

simulating the delay. It has a m=infinite and infinite processor.
The event store is represented by an tEventStore for Aддrs , and
tEventStoreOrder and tEventStoreItem for Aддrm . In the event store
task/s for the request type AddItemN, two entries are modeled, one
for read event (eReadN with service demand multiplied by Fmult)
and one for write (eWriteN). The tDisk like event store task/s has
entries for read and write entries with read using Fmult .

5.3 Service Demand Calculation
We use the Utilization Law and the Forced Flow Law, analogue to
other works [4, 12, 13, 18]. Utilization Law states that for a request

class, the demand at a station i in the network is Dc ,i = Uc ,i/Xc ,
whereUc ,i is the average utilisation at the station i and the Xc is
the throughput of the entire system. Similarly, using Forced Flow
Law, the number of visits at a station i is given by Vc ,i = Xc ,i/Xc ,
where Xc ,i is the throughput at i. Using the number of visits, Vc ,i ,
the service demand can be calculated as Dc ,i = Vc ,i ∗ Sc ,i , where
Sc ,i is service time per visit at the station i.

In order to measure the execution demand at the stations in the
LQNmodel, measurements were run on the SUT with one user load
for the three request types defined earlier in the LQN models. We
ran only 5000 CreateOrder requests first, followed by 5000 AddItem
requests on existing orders adding one item to each order, and fi-
nally ran another 5000 AddItem requests as second item to each
order. At each stage, Performance Monitor utility on Windows was
used to do the measurements. We used the following counters: CPU
%idle (which also includes %iowait for Windows OS); %disk_time
for read and write; %CPU_time, total tps, and write tps for SQL
server instance. The SUT throughput and total execution time were
obtained using the custom workload generator. Let us take an ex-
ample for CreateOrder request onAддrs , where system overall CPU
utilization is 0.238, event store CPU utilization 0.018, throughput is
246.8, event store total and write tps as 148.9 and 147.1, and request
execution time is 3ms. By using the Utilization Law, we get the total
SUT service demand as (0.238/246.8)*1000 = 0.964ms. This includes
the service demands for aggregates, event store, and event handler.
Again using the Utilization Law, Event Store’s service demand on
pCPUwas calculated, i.e. 0.018/246.8=0.075ms. The Event Store read
service demand is found by subtracting the proportion of write tps
from the total tps, i.e. 0.075*[1-(147.1/148.9)]=0.0009ms. We subtract
the event store service demand (0.075ms) by total pCPU demand
to get demand for aggregate and event handler (0.887ms). From
separate measurements, we calculate service demand for aGetOrder
and aGetItem1/N as 0.1ms. To get disk service demand, either Uti-
lization Law or Forced Flow Law can be used. Following the same
example of CreateOrder request, the measured disk write tps is 152.1
and disk sec/write is 0.001sec. Using Forced Flow Law, the number
of disk visits is calculated as 152.1/246.8=0.616. Multiplying the
number of disk visits to disk sec/write, we get disk service demand
for CreateOrder request as (0.616*0.001)*1000=0.616ms. Any delay
is calculated as (3-0.964-0.616)=1.47ms as command handler delay.
Similar calculations were used for the other two request types. The
measurements and calculations were repeated several to get aver-
age value for the service demands. Table 1 shows the measured
average service demands input to the model. It is to be noted that
for Aддrm eES5/6 and eDisk5/6 demands are not specified as total
event store and disk write is assigned to eES2/4 and eDisk2/4

6 CASE RESULTS AND FINDINGS
The throughput and response time comparison of the simulation vs.
measurement is shown in the Figure 6. Relative error for throughput
excluding initial four points is 8% (Aддrs) and 13%(Aддrm). Request
response time error is 6% (Aддrs) and 18%(Aддrm), which are ac-
ceptable according to [13] for model validation. An important point
to be noted from the plots is that for smaller number of AddItem
requests, Elastic Search reports the response times for individual
requests as too high. When we consider the total system response

SESSION 6: Performance Costs and Emerging Problems ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

242

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Gururaj Maddodi, Slinger Jansen, and Michiel Overeem

Table 1: Table of Service Demands in milliseconds for the Request Classes at the Stations Mentioned in Parentheses in LQN
Model.

Request Class Aggregate Event Hdlr. Command Hdlr. DB Read DBWrite Disk Read Disk Write
CreateOrder (Aддrs) 0.100 (aGetOrder) 0.930 (eEH0) 1.029 (eCH0) - 0.063 (eES0) - 0.818 (eDisk0)
AddItem1 (Aддrs) 0.100 (aGetItem1) 2.178 (eEH1) 2.660 (eCH1) 0.003 (eES1) 0.187 (eES2) 0.537 (eDisk1) 8.318 (eDisk2)
AddItemN (Aддrs) 0.100 * Fmult (aGetItemN) 1.908 (eEH3) 2.045 (eCH2) 0.0015 * Fmult (eES3) 0.180 (eES4) 0.911 * Fmult (eDisk3) 5.130 (eDisk4)
CreateOrder (Aддrm) 0.100 (aGetOrder) 0.825 (eEH0) 1.087 (eCH0) - 0.107 (eES0) - 0.513 (eDisk0)
AddItem1 (Aддrm) 0.100 (aGetItem1) 3.487 (eEH1) 2.506 (eCH1) 0.004 (eES1) 0.782 (eES2) 0.601 (eDisk1) 12.01 (eDisk2)
AddItemN (Aддrm) 0.100 * Fmult (aGetItemN) 2.903 (eEH3) 2.048 (eCH2) 0.003 * Fmult (eES3) 0.641 (eES4) 0.923 * Fmult (eDisk3) 9.110 (eDisk4)

50 100 150 200 250 300 350 400 450 500
Num. of AddItem/CreateOrder Requests

0

10

20

30

40

50

60

70

R
es

po
ns

e
Ti

m
e

Response Time (Aggrs)

total (in secs)

per request (in msecs)

50 100 150 200 250 300 350 400 450 500
Num. of AddItem/CreateOrder Requests

0

5

10

15

20

25

30

R
es

po
ns

e
Ti

m
e

Response Time (Aggrm)

per request (in msecs)

total (in secs)

50 100 150 200 250 300 350 400 450 500
Num. of AddItem/CreateOrder Requests

0

1

2

3

4

5

6

7

U
se

r S
es

si
on

/S
ec

Throughput (Aggrs)

50 100 150 200 250 300 350 400 450 500
Num. of AddItem/CreateOrder Requests

0

1

2

3

4

5

6

7

U
se

r S
es

si
on

s/
Se

c

Throughput (Aggrm)

Figure 6: Plots of System Response Time for Aддrs (top left)
and Aддrm (top right), and Throughput Aддrs (bottom left)
and Aддrm (bottom right) in terms of User Sessions/Sec. The
Simulation (dashed line) and Measurement (smooth line).

0 50 100 150 200 250 300 350 400 450 500
Num. of AddItem/CreateOrder Requests

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
PU

/D
is

k
U

til
iz

at
io

n

CPU and Disk Utilization Comparison

CPU (Aggrs)

CPU (Aggrm)

Disk (Aggrs)

Disk (Aggrm)

Figure 7: Plots of CPU (blue) and Disk (red) Utilization for
Aддrs (dashed line) vs. Aддrs (dash-dotted line).

time by multiplying the individual request response time with the
reported throughput, we see in the plots for response time in red
lines that the total response time matches with predictions. This is
reasonwhy throughput values for initial points is low in throughput
plots. This is an discrepancy reported by the monitoring tool.

From Figure 7, we can see that the pCPU and pDisk utilization
scores for the two aggregate architectures have contrasting pat-
terns. It can be seen that Aддrs utilizes more CPU cycles than the

Aддrm . This is because in Aддrm smaller events are handled, while
more time is spent in disk IO. Contrary to CPU utilization, more
disk utilization is observed in the Aддrm compared to Aддrs as
the former has three times more events to write for every AddItem
request processed, whereas in latter only one event is written. Since
CPU is shared among several stations in the model, the response
time increases as there is more waiting time for requests in Aддrs
which leads to its steady rise.

6.1 Analysis of Findings
From the simulation and measurements on ES and CQRS based
component-based software, one of the main observations is that
there is no one single architecture that performs best in all the scenar-
ios that were envisioned in the research method. Each architecture
performs differently for different workloads.

While comparing the architectures, the following can be ob-
served: inAддrs , CPU utilization keeps increasingwithkr t , whereas
with Aддrm high disk utilization is observed. Similarly, we see that
the throughput drops sharply in case of Aддrs dropping 10 times
for k=5 to k=80 (o1), whereas as in Aддrm the throughput drop
is gradual with 10 times drop from kr t=5 to kr t=290 (o2). Conse-
quently, we also see that the per-request processing time is higher
in Aддrs going up to 20 secs for the higher end of the kr t , while in
Aддrm the processing time is only a couple of seconds.

Based on the plots, the architects suggested - “It would better
to go for Aддrm if there is no/less complex business logic or other
communications between the ARs (as then there is no overhead and
greater scalability). If there is complex business logic, Aддrs would
be a better option”. If there is both complex business logic and
the need for scalability and greater response times, the following
was mentioned - “It would be better to convince the designers to
loosen the complex business logic. The application could be more
forgiving and render the business logic as a warning after storing
the input, instead of a blocking error before storing the input”.

To summarize the findings, the guidelines that could be drawn
from results shown in the graphs are:

(1) A separate aggregate architecture is better for scalability and
response times, particularly if for a large number of child
entities (o2).

(2) A separate aggregate architecture makes the life of program-
mers harder when they need to implement complex business
logic (as seen from sequence diagram from separate aggre-
gates being more complex).

(3) When 2. is in play, and 1. is not important, it would be ad-
visable to go for a single aggregate architecture (o1).

SESSION 6: Performance Costs and Emerging Problems ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

243

Aggregate Architecture Simulation in Event-Sourcing Applications using LayeredQueuing Networks ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada

50 100 150 200 250 300 350 400 450 500
Num. of AddItem/CreateOrder Requests

0

20

40

60

80

100

120

140

Ex
ec

ut
io

n
Ti

m
e

pe
r U

se
r S

es
si

on

Execution Time Improvement

w/o cpu multiprocessor

with cpu multiprocessor

50 100 150 200 250 300 350 400 450 500
Num. of AddItem/CreateOrder Requests

0

5

10

15

20

25

30

35

40

45

Ex
ec

ut
io

n
Ti

m
e

pe
r U

se
r S

es
si

on

Execution Time Improvement

w/o disk multiprocessor

with disk multiprocessor

Figure 8: Plots of Total Execution Time (msecs) from Sim-
ulation for 10 User Load for w/o Multiprocessor for pCPU
(dashed line) vs. with Multiprocessor (dotted line) for Aддrs

(4) When 1. is a hard requirement, but 2. is also in play, trying to
find other solutions for complex business logic is preferable
such as to break up commands with a large number of prop-
erties into smaller commands as CPU contention in loading
aggregate state is the bottleneck in Fig. 7.

From the observations and architects opinions,it can be con-
cluded that the final choice depends on the business logic complex-
ity, speed of execution, and workload patterns.

6.2 Tactics for Overcoming the Bottlenecks
Since the models were shown to have acceptable prediction accu-
racy, we can modify element parameters to improve performance.

In theAддrs simulations, it is observed that the pCPU utilization
of aggregate task increases from 8% to 72% for k=5 to k=500 while
pCPU utilization of event store remains in and around 8%. This is
an issue for large number of concurrent users where utilization
starts from 17% at k=5, increases to 41% at k=35, and then drops to
16% for k=500. This means that the event store is mostly idle for
larger k values. We ran the simulations with 10 users without and
with multiple processors for pCPU with m=4. The execution time
per user session is shown in Figure 8 (left). From the plots, we can
see that response time with multiprocessor is drastically reduced
as CPU bottleneck for concurrent users is alleviated.

For Aддr(m), pCPU utilization of stations is relatively low with
the highest being at the event store at 6% (k=500). The event store’s
utilization itself goes from 29% to 96% for k=5 to k=500 and pDisk
utilization is 27% to 90% for the same k range. This shows that the
event store is waiting for disk IO as its CPU utilization is not high.
Hence increasing the disk resource will improve performance. We
simulated 10 concurrent users without and with multiprocessor for
the disk with m=4. The Figure 8 (right) shows the response times
per user session with and without a disk multiprocessor. With the
introduction of a disk multiprocessor, the throughput of the disk
task is improved even with the same utilization score for the event
store task. This means that the disk, and hence the event store, is
also processing more requests rather than waiting for disk.

7 RELATEDWORK
Several research works have investigated the effects architectures
and workload on resource utilization and performance. In [18],
web application (MyBikeRoutes-OSM) performance modeling using
LQN is performed. The authors compare the predictions to actual

measurement results and also suggest improvements in terms of
identifying the most utilized station in the model.

Tribastone [20] use LQN to model service-oriented systems.
In [2], performance of CPU intensive containerized applications
using LQN is studied. In [21], LQN is used to model a JavaEE
component-based applications. The authors modeled ECPerf, which
is a JavaEE benchmark for measuring the scalability and perfor-
mance of J2EE applications. Urgaonkar et al. in [22] model multi-tier
Internet applications where the number of tiers was arbitrary. The
authors validated the approach on two applications and also sug-
gested improvements to identified tiers by increasing the capacity
of the tiers. In these works, the authors do not investigate the
application architecture in terms of organization of features into
components, but rather model the different stations of the system
and suggest improvements. In contrast to this, we focus on the
placement of the individual features of the overall application.

In [3, 17] investigate workload’s effects in terms of interactions
between software components and predicting the overall behavior
of the system from individual components. Our work is different
because the interaction between the components is modeled using
events. Zúñiga-Prieto et al. [25] propose dynamic and automated
reconfiguration of architecture in the cloud. The authors use meta-
models and transformations to specify architecture patterns and
reconfiguration to suit resource consumption. Our work is similar
in that we have model-time component organization. Dynamic
reconfiguration is seen as part of future work. Klock et al. [10],
presents a workload based performance analysis on the query-side
of the CQRS. The authors try to identify the optimum Microservice
architecture to suit a workload. The authors look at the query-side
of CQRS, while we look at run-time instantiation of components.

The authors in [1] investigate tools for architects to make archi-
tectural design decisions in large software projects. The solutions
include reuse of past architectural decisions, alternate choices, the
rationale behind a choice, and ask experts about decisions. In [23],
the authors propose a framework for architects to evaluate quality
attributes by utilizing software operation data in run-time termed
as Architectural Intelligence. An e-Learning case-study is presented
showing a framework for the development of information systems
using process mining techniques. We propose a similar decision
framework in architectural knowledge for a CQRS system, however,
we define workload patterns and define hypothetical scenarios for
workload, and use experts for architecture selection.

In several of the related works, researchers propose methods to
capture resource requirements of component-based software sys-
tems at the individual component level [3, 17]. We use this principle,
by defining architecture components that map to the workload at
different levels. We then tested the component organization on dif-
ferent types of workloads and their effect on several performance
metrics. An important distinction with the related works is that
while many of these works consider workload intensity [10, 25],
we consider in-depth workload patterns that help to map resource
usage to different types of end-users of the software.

8 DISCUSSION AND CONCLUSION
The work in this paper was carried out on an enterprise software
system that is under development at ERPComp. The system uses

SESSION 6: Performance Costs and Emerging Problems ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

244

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Gururaj Maddodi, Slinger Jansen, and Michiel Overeem

component-based architecture, combining ES and CQRS. If we were
to experiment on different hardware platforms, the results would
vary in terms of absolute numbers, but the patterns observed from
the tests would be similar as it is tied to architecture and how they
run into bottlenecks (CPU vs disk resource). This was verified us-
ing analytical modeling using LQN. Additionally, the performance
tests were conducted on a computer with a specific configuration
and assumed to be a black box. During testing, we ensured that
all processes were stopped, except for the application, the work-
load generator, and resource metrics logging. It is possible that
OS processes could have introduced peaks at some stage in the
measurements, but these points would be few and measurements
were repeated several times and averaged out to smooth out the
peaks. We only consider two features in the work, which helps to
study the behavior of two possible aggregate architectures without
complex modeling for larger systems. Studying larger systems with
more features is seen as part of future work. In the future, we will
do more complex modeling of aggregate and event store.

In this paper, a study of the effects of workload patterns on the
performance of a component-based CQRS/ES based enterprise ap-
plication is presented. We identified two main types of architecture,
dependent on domain boundaries: the single aggregate architec-
ture with all entities in one boundary, and the separate aggregate
architecture with entities within their own boundaries. We eval-
uated how the two architectures would function in an industry
case study. The LQN models were solved using analytical solvers
and the results of simulation and measurements were compared to
check the validity of the models. The relative error for throughput
and response time were, 8% and 6% for single aggregate, and 13%
and 18% for separate aggregates, which were within the acceptable
error range as specified by Lazowska et al. [13].

We observe from both the simulations and measurements that
the bottlenecks come from the definition of domain boundaries and
this determines resource scaling and execution time. As the CPU
resource is a bottleneck in the case of the single domain boundary,
the throughput drops steeply and as a consequence, the response
time steadily increases. Since with separate domain boundaries,
the bottleneck is disk and it is not shared by several processes, the
throughput drop is lower and response time is nearly constant.
We proposed improvements to the single aggregate architecture to
alleviate the CPU bottleneck by introducing a multiprocessor in the
simulations, which resulted in a response time reduction. We also
showed that multiprocessor for disk can improve response time for
separate aggregate architecture.

In the near future, we will experiment with aggregate architec-
tures for larger systems and we envision a self-adapting system
that modifies the architecture dynamically to suit the workload.

REFERENCES
[1] Manoj Bhat, Klym Shumaiev, and Florian Matthes. 2017. Towards a framework

for managing architectural design decisions. In Proceedings of the 11th European
Conference on Software Architecture: Companion Proceedings. ACM, Canterbury,
UK, 48–51.

[2] Emiliano Casalicchio. 2019. A study on performance measures for auto-scaling
CPU-intensive containerized applications. Cluster Computing 22, 3 (2019), 995–
1006.

[3] Merijn De Jonge, JohanMuskens, andMichel Chaudron. 2003. Scenario-based pre-
diction of run-time resource consumption in component-based software systems.
In Proceedings: 6th ICSE Workshop on Component Based Software Engineering:

Automated Reasoning and Prediction. IEEE, Portland, Oregon, USA.
[4] Peter J Denning and Jeffrey P Buzen. 1978. The operational analysis of queueing

network models. Comput. Surveys 10, 3 (1978), 225–261.
[5] Martin Fowler. 2005. Event sourcing. http://martinfowler.com/eaaDev/

EventSourcing.html
[6] Greg Franks, Peter Maly, Murray Woodside, Dorina C. Petriu, and Alex Hubbard.

2005. Layered queueing network solver and simulator user manual. , 15–69 pages.
[7] Jan-Pieter Guelen, Slinger Jansen, and Jan-Martijn E. M. van der Werf. 2015.

Informed CQRS design with continuous performance testing. Master’s thesis. Dept.
of Information and Computing Sciences, Utrecht University, Utrecht, the Nether-
lands.

[8] Holger Hermanns, Ulrich Herzog, and Joost-Pieter Katoen. 2002. Process algebra
for performance evaluation. Theoretical computer science 274, 1-2 (2002), 43–87.

[9] Jaap Kabbedijk, Slinger Jansen, and Sjaak Brinkkemper. 2012. A case study of
the variability consequences of the CQRS pattern in online business software. In
Proceedings of the 17th European Conference on Pattern Languages of Programs.
ACM, Irsee, Germany, 2:1–2:10.

[10] Sander Klock, Jan-Martijn EM Van Der Werf, Jan-Pieter Guelen, and Slinger
Jansen. 2017. Workload-based clustering of coherent feature sets in microservice
architectures. In IEEE International Conference on Software Architecture (ICSA).
IEEE, Gothenburg, Sweden, 11–20.

[11] Samuel Kounev and Alejandro Buchmann. 2003. Performance modelling of
distributed e-business applications using queuing petri nets. In 2003 IEEE Inter-
national Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE, Austin, Texas, USA, 143–155.

[12] Samuel Kounev and Alejandro P Buchmann. 2003. Performance modeling and
evaluation of large-scale J2EE applications. In Proceedings of the Computer Mea-
surement Group’s International Conference (CMG), Vol. 11. Dallas, Texas, USA,
273–283.

[13] Edward D Lazowska, John Zahorjan, G Scott Graham, and Kenneth C Sevcik.
1984. Quantitative system performance: computer system analysis using queuing
network models. Vol. 22. Prentice-Hall, Inc.

[14] Gururaj Maddodi, Slinger Jansen, and Rolf de Jong. 2018. Generating Work-
load for ERP Applications through End-User Organization Categorization using
High Level Business Operation Data. In International Conference on Performance
Engineering. ACM, Berlin, Germany, 200,210.

[15] Gianantonio Me, Giuseppe Procaccianti, and Patricia Lago. 2017. Challenges
on the Relationship between Architectural Patterns and Quality Attributes. In
IEEE International Conference on Software Architecture (ICSA). IEEE, Gothenburg,
Sweden, 141–144.

[16] Daniel A Menascé and Hassan Gomaa. 2000. A method for design and perfor-
mance modeling of client/server systems. IEEE transactions on software engineer-
ing 26, 11 (2000), 1066–1085.

[17] Vibhu Saujanya Sharma, Pankaj Jalote, and Kishor S Trivedi. 2005. Evaluating
performance attributes of layered software architecture. In International Sym-
posium on Component-Based Software Engineering. Springer, Berlin, Heidelberg,
66–81.

[18] Y. Shoaib and O. Das. 2011. Web application performance modeling using layered
queueing networks. Electronic notes in theoretical computer science 275 (2011),
123–142.

[19] Conie U Smith and Lloyd G Williams. 2002. Performance Solutions: A Practi-
cal Guide to Creating Responsive, Scalable Software. Addison-Wesley Pearson
Education.

[20] Mirco Tribastone, Philip Mayer, and Martin Wirsing. 2010. Performance predic-
tion of service-oriented systems with layered queueing networks. In International
Symposium On Leveraging Applications of Formal Methods, Verification and Vali-
dation. Springer, Berlin, Heidelberg, 51–65.

[21] Alexander Ufimtsev and Liam Murphy. 2006. Performance modeling of a JavaEE
component application using layered queuing networks: revised approach and
a case study. In Proceedings of conference on Specification and verification of
component-based systems. ACM, Portland, Oregon, USA, 11–18.

[22] Bhuvan Urgaonkar, Giovanni Pacifici, Prashant Shenoy, Mike Spreitzer, and
Asser Tantawi. 2007. Analytic modeling of multitier internet applications. ACM
Transactions on the Web (TWEB) 1, 1 (2007), 2.

[23] Jan-Martijn E. M. van derWerf, Casper van Schuppen, Sjaak Brinkkemper, Slinger
Jansen, Peter Boon, and Gert van der Plas. 2017. Architectural intelligence: a
framework and application to e-learning. In Evaluation and Modeling Methods
for Systems Analysis and Development (EMMSAD). Springer, Essen, Germany,
95–102.

[24] Greg Young. 2010. CQRS and Event Sourcing. http://codebetter.com/gregyoung/
2010/02/13/cqrs-and-event-sourcing

[25] Miguel Zúñiga-Prieto, Javier González-Huerta, Emilio Insfran, and Silvia Abrahão.
2018. Dynamic reconfiguration of cloud application architectures. Software:
Practice and Experience 48, 2 (2018), 327–344.

SESSION 6: Performance Costs and Emerging Problems ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

245

http://martinfowler.com/eaaDev/EventSourcing.html
http://martinfowler.com/eaaDev/EventSourcing.html
http://codebetter. com/gregyoung/2010/02/13/cqrs-and-event-sourcing
http://codebetter. com/gregyoung/2010/02/13/cqrs-and-event-sourcing

	Abstract
	1 Introduction
	2 Research Method
	3 Technical Concepts
	4 Case Description
	5 Performance Modeling
	5.1 System Setup and Implementation
	5.2 LQN Models for Aggregate Architectures
	5.3 Service Demand Calculation

	6 Case Results and Findings
	6.1 Analysis of Findings
	6.2 Tactics for Overcoming the Bottlenecks

	7 Related Work
	8 Discussion and Conclusion
	References

