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ABSTRACT
This paper addresses the problem of workload generation for dis-
tributed applications in fog/edge computing. Unlike most existing
work that tends to generate workload data for individual network
nodes using historical data from the targeted node, this work aims
to extrapolate supplementary workloads for entire application / in-
frastructure graphs through diffusion of measurements from limited
subsets of nodes. A framework for workload generation is proposed,
which defines five diffusion algorithms that use different techniques
for data extrapolation and generation. Each algorithm takes into
account different constraints and assumptions when executing its
diffusion task, and individual algorithms are applicable for mod-
eling different types of applications and infrastructure networks.
Experiments are performed to demonstrate the approach and eval-
uate the performance of the algorithms under realistic workload
settings, and results are validated using statistical techniques.
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lations; Network measurement; • Computing methodologies→
Model development and analysis; •Mathematics of comput-
ing → Network flows.
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1 INTRODUCTION
Workload analysis and modeling aim to construct models that pro-
vide insights into workload behavior and enable predictions of
workload changes over time. Workload analysis has gained in-
creased attention as workload characteristics have been demon-
strated to have great impact on the performance and resource uti-
lization of distributed systems - in particular cloud/fog/edge appli-
cations where network awareness and accurate understanding of
workload variations are required to efficiently evaluate and opti-
mize systems [13]. To facilitate workload modeling, large volumes
of workload data from real systems are needed. Unfortunately, nu-
merous studies (including, e.g., [5, 14, 21, 23]) have demonstrated
a real lack of publicly available and usable data traces, driving a
need for tools and techniques for synthetic and artificial workload
generation for distributed systems.

For distributed fog/edge applications, workload behavior models
for individual application component need to be complemented
with workload propagation models [17], which model how work-
loads propagate through or among components in distributed appli-
cations, and how workload fluctuations at component level impact
the performance of other components, the application as a whole,
and the infrastructure resources (servers and networks) onto which
components are deployed. Conceptually, lacking any of these mod-
els can be interpreted as incomplete knowledge about the workload
behavior of applications, which illustrates the importance of cap-
turing the complete behaviour of applications and workloads in
monitoring and data collection. However, in reality it is often infea-
sible to obtain correlated workload measurements at all network
locations where application components are deployed, especially
in large scale production systems and/or fog/edge computing envi-
ronments. This shortage of workload data availability introduces
difficulties and inaccuracies in workload analysis and modeling,
and drives a need for artificial workload generation techniques
capable of augmenting available monitoring data.

This work focuses on an area not thoroughly explored in litera-
ture: extrapolation of supplementary workloads at all (application /
infrastructure) node locations of distributed systems, so that given
measurements at a limited number of locations fog/edge applica-
tions can completely model their workload behaviors as well as the
propagation of workloads within applications. This paper tackles
the problem using a comprehensive approach of workload diffu-
sion, which is formed based on various factors including application
types, the distribution of application users throughout the network
infrastructure, the bandwidth of network links, neighborhood clus-
tering information, and the network routing principles.
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A general framework for workload diffusion is proposed and
five algorithms using different diffusion techniques for workload
generation are presented. These techniques are grouped into two
categories: non-hierarchical and hierarchical diffusion. More specif-
ically, with the given workload traces measured at some network
(source) nodes, the non-hierarchical diffusion disseminates work-
load data to other (destination) nodes omnidirectionally, while
the hierarchical algorithms use information about the application
/ network hierarchy to constrain workload propagation to pre-
determined directions. Non-hierarchical diffusion algorithms in-
clude location-based, link-capacity-based, and population-based
diffusion; and the hierarchical ones are neighborhood-based and
network-routing-based diffusion. Note that workload data consid-
ered in this paper are given as time series. The diffusion algorithms
presented are thus required to not only calculate workload propaga-
tion patterns for individual timestamps, but also construct artificial
workload time series at node locations.

To the best of our knowledge, this is the first paper addressing
workload diffusion for distributed applications within fog/edge
computing environments. The key contributions of the paper in-
clude: (i) an investigation of the problem of workload generation
based on a limited number of measurements for different types
of distributed applications in diverse network architectures; (ii) a
framework for workload diffusion defining five algorithms that
employ individual techniques to generate workloads using differ-
ent types of knowledge of applications and underlying networks;
and (iii) experiments that illustrate the approach and evaluate the
performance of the algorithms. Validation of results is presented
along with a discussion of the underlying modeling techniques.

2 LITERATURE REVIEW
A wide range of approaches has been proposed for analysis and
modeling of distributed workloads in the literature, as evident by
the number of surveys of workload analysis and modeling tech-
niques. [3, 11, 13] review large bodies of work adopting both sta-
tistical analysis and machine learning to address the problem of
workload modeling and prediction. Various methods of data pro-
cessing, feature selection, and workload classification are surveyed,
and applications of the techniques are discussed. Several recent
studies address the increasingly common problem of diversity and
heterogeneity in application and system types. [1, 7, 19] propose
different approaches to characterize workloads and/or applications,
and formulate resources usage patterns to construct workload pro-
files. With such understanding of the workload behavior, workload
models can be derived and utilized for future predictions.

The topic of workload generation has been extensively studied
and numerous applications (including, e.g., [5, 9, 15, 20, 23, 26])
have been demonstrated. A comprehensive survey on workload
generators for web-based systems is carried out by [6]. The survey
presents an analysis on characteristics and properties of workloads
from various types of web applications, followed by an investiga-
tion on different types of workload generators and their operational
as well as data models. As mentioned in [24], most of the proposed
schemes fall into two categories: data-driven and model-driven
techniques. Generally, data-driven techniques reproduce workloads
using sampled historical workload, while model-driven techniques

construct mathematical models of historical workloads and gener-
ate new workloads using parametrizations of the developed models.
Two recent studies on workload generation shown below well illus-
trate these approaches. [4] introduces a technique to dynamically
generate scalable workloads that is realized in a prototype system
called Durango. The system integrates multiple tools to enable
application performance modeling and simulation, and workload
generation. [16] presents a workload generator called CloudPump,
which adopts a generalized workload model developed with various
core concepts, e.g., the operation, connection, transaction, session,
in order to be capable of flexibly implementing any workload types.
The generator operates in two modes (request initiator and work-
load consumer), and also supports synthetic workload generation
and workload profile replaying. Although these studies have inves-
tigated various types of workload and application, and also applied
multiple approaches for workload generation, neither aims at an
analysis on the mutual effects of workload variations at different
network nodes that exist in fog/edge applications.

3 MODELING TECHNIQUES
3.1 Workload Time Series
A time series is a set of measurements at different time stamps
which are aligned in a chronological order, e.g., {x1,x2, ...,xk } with
k time stamps. It can be either discrete time series or continuous
time series [2]. In this paper, workload of a node is measured as
traffic exiting from the node, as detailed in 5.1, and then provided
as a time series. Assume that workload time series are measured
with the same set of time stamps, manipulations on workloads are
applied merely to the measured values without a consideration
on the time stamps. In this way, a workload can be interpreted as
a vector (of workload values); hence, the operator ‘×’ between a
scalar and a workload is defined as a multiplication of the vector by
the scalar and results in a workload. Similarly, the operator ‘+’ of
two workloads is defined as a vector addition, and a sum of multiple
workloads, denoted by

∑⋆[·], is defined as the sum of vectors. Both
also result in a workload.

3.2 Network Model
The network infrastructure is modeled as a graphG = (V ,E), where
V and E represent the set of nodes and the set of edges of the net-
work, respectively. An edge (u,v) ∈ E represents a link connecting
nodes u,v ∈ V , with which a bandwidth capacity B(u,v) is associ-
ated. Every link is assumed to be full duplex and symmetric, i.e.,
B(u,v) = B(v,u), and that the traffic in one direction does not af-
fect the traffic in the opposite one on a link. A node is associated
with coordinates including latitude and longitude to indicate its
geographical position in the network deployment plan. In addition,
a node v is also associated with a number of usersm(v), i.e., there
are m(v) users attached to node v . For simplicity, all algorithms
assume homogeneous user behavior, i.e., all users behave similarly
in all for the algorithms relevant ways, e.g., all users are assumed to
issue similar types of requests to services deployed in the network.
This (user behavior) assumption is the main simplification in the
modeling and future work will addresses relaxation of this assump-
tion through integration of more complex statistical treatment of
user behavior.
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Figure 1: An exemplary four-tier network model.

In a hierarchical network, a node v is assigned a node level
L(v). The number of levels can be different from application to
application, or depends on the management viewpoint of network
operators. Without loss of generality, this paper assumes the pres-
ence of at least four hierarchical levels corresponding to four layers
(or tiers) of nodes, namely inner-core, outer-core, metro, and tier-1
(T1) access layer as illustrated in Figure 1. These layers are placed
in that ascending order, which means the inner-core is the most
centralized layer and T1 is the edge of the network topology. In
this sense, an inner-core node I is said to be at lower level than
an outer-core node O , i.e. L(I ) < L(O). This type of model, which
essentially captures hierarchy of nodes and redundancy of links,
can be seen to be representative of a wide variety of distributed
applications and networks, e.g., content delivery networks (CDNs)
and the British Telecom BT 21CN production network [12].

For notation, let N (v) denote the set of neighboring nodes of v .
A node u is called an upper node of v if u ∈ N (v) and L(u) > L(v).
This also implies that v is a lower node of u. U (v) and D(v) are
used to denote the set of upper nodes and lower nodes of a node
v , respectively. In addition, assume there is a set of service nodes
designated as destinations of all user requests in the network and
these nodes are located in the inner-core layer. User requests are
directionally forwarded towards the service nodes from edge layers
to more central layers, and responses from the application/service
return to the users in the reverse direction.

If an application adopts network routing in its service chain, a
user request of the service is forwarded following predetermined
routing paths from the request origin down to service nodes. It
is also assumed to use the multi-path routing mechanism [10] in
the application. Let P(v) denote a set of routing paths originated
from node v destined to every service node. A path p of length k
is defined as a sequence of nodes {v0,v1,v2, ...,vk } in which v0 is
the request origin and vk is a core/service node. This also implies
that path p includes a set of links ei = (vi ,vi+1) or it is trivial to
derived such links of path p. Given a set of paths P ≡ P(v), let
DP (v) denote the set of lower nodes of v , each of which is a lower
node of v and included in at least one path p ∈ P going through v .

4 NON-HIERARCHICAL AND
HIERARCHICAL WORKLOAD DIFFUSION

To address a broad range of scenarios where different types of infor-
mation of applications and networks are available, we propose five

workload diffusion algorithms classified into non-hierarchical and
hierarchical diffusion (based on whether they make use of network
hierarchy information or not). Non-hierarchical diffusion performs
load propagation based on a discrete spatial model of how heat is
diffused in materials in physics or chemistry, and is applicable to
non-hierarchical systems such as unstructured peer-to-peer over-
lays or ad-hoc mobile networks. Hierarchical diffusion relies on
a hierarchical network model where the workload propagation is
directed through network layers using predetermined routing paths.
This diffusion technique is applicable to hierarchical systems such
as CDNs or core broadband networks.

With a practical assumption that only some parts of the network
can be instrumented and monitored, the basis of the algorithms is
that some (data) measurements are available to diffuse, and that
workloads primarily propagate among neighboring nodes, where
a neighborhood is defined as a cluster of nodes connected to each
other or located close to each other. Different algorithms use differ-
ent neighbourhood definitions and clustering algorithms. Note that
the generic terms ‘node’ and ‘network’ are used to refer to both
application and infrastructure network structures as the algorithms
can be used to model and analyze behavior of both applications
and infrastructure networks.

4.1 Non-hierarchical Workload Diffusion
The workload diffusion is introduced with three algorithms utiliz-
ing different factors in their diffusion processes: the population,
the geographical location of network nodes, and the bandwidth
capacity of the network links. The key idea of the algorithms is that
unless nodes have their own workload measurements they are in-
fluenced primarily by their neighboring nodes. The first algorithm
(population-based diffusion) performs its diffusion task within a
single iteration, while the other execute their tasks in iterations
until a predefined maximum number of iterations is reached or a
convergence state, at which only negligible changes in the diffused
workloads of nodes are observed, is obtained.

4.1.1 Population-based Diffusion. This diffusion technique is im-
plemented as in Algorithm 1 which requires the knowledge of the
population/number of usersm(·) attached to network nodes, and
workload measurements ω(·) of a given set of nodes, denoted byW ,
as the inputs. Note thatm(·) may not be measured in some cases,
thus this is checked (if ‘undefined’) by the condition in line 3 of
the Algorithm, and the definition ofW are used for all the algo-
rithms hereafter. The amount of workload (e.g., application/service
requests) arriving to a node is assumed to be proportional to the
size of the node population, i.e., the amount of users associated
with and/or accessing network services through a specific node.
Such a proportion is calculated over the population in a vicinity
with a distance of a given radius ∆ from that specific node. It is
constrained that there must be at least a node having workload
measurements in this vicinity; otherwise, ∆ should be increased
until all nodes are included. Accordingly, the workload of a node is
generally calculated using the formula in line 7, where the portion
of workload diffused to the node is derived as line 6. For nodes with
unknown population, an average of the population of neighboring
nodes in the predefined vicinity is assumed; hence, the amount of
workload diffused to such a node is calculated as in line 5.
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Algorithm 1 Population-based-Diffusion

Input: G = (V ,E); ∆;m(v),∀v ∈ V ; ω(v),∀v ∈W
Output: ω(x),∀x ∈ V
1: Nd (v) ← {x |x ∈ V ∧ d(v,x) ≤ ∆},∀v ∈ V
2: for each node v in V do
3: if m(v) is undefined then

4: ω(v) ← 1
|Nd (v)|

×∑⋆
u ∈Nd (v)[ω(u)]

5: else

6: ρ ←
∑
u ∈Nd (v)m(u)
|Nd (v)|

7: ω(v) ← m(v)
ρ |Nd (v)|

×∑⋆
u ∈Nd (v)[ω(u)]

8: end if
9: end for

4.1.2 Location-based Diffusion. Location-based diffusion performs
its workload distribution based on the geographical location of
nodes in the network. Algorithm 2 presents the implementation
of the diffusion process. The key idea is that the interpolation of
workload for a node is accomplished through weighted average
influences of neighboring nodes which are selected from a param-
eterized sized set of nodes located close to the node. Controlling
parameters include the maximum size K of the set and the radius ∆
defining the neighborhood of the node. More specifically, first, a set
of k ≤ K closest neighboring nodes of a nodev are selected from its
neighborhood as shown in line 1 of the Algorithm. Then, workload
propagated to v is the total amount of workloads contributed by
these k nodes under a condition that the contributions of neighbor-
ing nodes is inversely proportional to their distances (i.e., closely
located nodes have higher influence than remote nodes). Such a
proportion is derived by formulas listed in line 2 and line 3, and
the workload received at a node is calculated as in line 6.

Algorithm 2 Location-based-Diffusion

Input: G = (V ,E); K ; ∆; ω(v),∀v ∈W
Output: ω(x),∀x ∈ V
1: Nk (v) ← {xi ∈ V , i ∈ [1,k] ∧ k ≤ K |

d(v,x1) = minx j ∈V [d(v,x j )]
∧ d(v,xi−1) ≤ d(v,xi ) ≤ ∆, i ∈ [2,k]},∀v ∈ V

2: r (v,u) ←
∑
x ∈Nk (v) d(v,x)

d(v,u) ,∀v ∈ V ,∀u ∈ Nk (v)

3: ϱ(v,u) ← r (v,u)∑
x ∈Nk (v) r (v,x)

,∀v ∈ V ,∀u ∈ Nk (v)

4: repeat
5: for each node v in V do

6: ω(v) ← 1
|Nk (v)|

×∑⋆
u ∈Nk (v)[ϱ(v,u) × ω(u)]

7: end for
8: until convergence or max-iterations is reached

4.1.3 Bandwidth-based Diffusion. As demonstrated in Algorithm 3,
the bandwidth-based diffusion is based on bandwidth capacity of the

neighboring network links. Particularly, the workload disseminated
to a node from one of its neighboring nodes is proportional to the
capacity of the link connecting the two nodes. Such a proportion
of workload contribution to the node is calculated as in line 2 of
the algorithm, where the set of neighboring nodes of the node is
calculated as in line 1. The total workload received at a node is an
average of the contributions of all its neighboring nodes as shown
in line 5.

Algorithm 3 Bandwidth-based-Diffusion

Input: G = (V ,E); ω(v),∀v ∈W ; B(u,v),∀(u,v) ∈ E
Output: ω(x),∀x ∈ V
1: N (v) ← {x |x ∈ V ∧ (v,x) ∈ E},∀v ∈ V
2: δ (v,u) ← B(v,u)∑

x ∈N (v) B(v,x)
,∀v ∈ V ,∀u ∈ N (v)

3: repeat
4: for each node v in V do

5: ω(v) ← 1
|N (v)| ×

∑⋆
u ∈N (v)[δ (v,u) × ω(u)]

6: end for
7: until convergence or max-iterations is reached

4.2 Hierarchical Workload Diffusion
Hierarchy-based diffusion requires knowledge of the network struc-
ture, hierarchy, and links. The network hierarchy implies a directed
network flow in the network, i.e., upstream and downstream direc-
tions that can be assumed when modeling how network traffic is
processed. For this workload diffusion technique, two algorithms
are proposed with the flow charts shown in Figure 2. Each algorithm
operates in multiple phases which are corresponding to procedures
presented in following subsections.

4.2.1 Hierarchy-basedDiffusion. As shown in Figure 2a, the hierarchy-
based diffusion is composed of four phases executing user aggrega-
tion, workload extrapolation, and workload propagation as detailed
in Procedures 1 – 4.

The first diffusion phase is to aggregate users attached to all
nodes toward the inner-core nodes (see Procedure 1). Due to the
homogeneous user behavior, the amount of user requests is propor-
tional to the number of users. The aggregation process is performed
layer by layer from the edge (T1) to the network core, which is
controlled by two ‘for’ loops in line 8 and line 10 of the proce-
dure. The total number of users attached to each node is distributed
to its lower nodes proportional to the bandwidth capacity of the
links connecting corresponding pairs of nodes. The ratio of user
distribution that a node u contributes to its lower node v is given
by the formula in line 11 and the aggregated number of users of v
is then calculated as in line 12. Both are calculated for every node
and returned as the output of the procedure.

The second phase of diffusion is to propagate and extrapolate a
workload time series at every node on the way from the nodes with
measurements backwards to the core nodes as shown in Procedure
2. The extrapolation is based on ratios of workload distribution of the
lower nodes to the upper ones. Such a ratio is calculated as in line 7

of the Procedure. As described, the ratio of workload distribution
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Figure 2: The flow charts of two hierarchical workload diffusion algorithms.

Procedure 1 Hierarchy-based-User-Aggregation

Input: G = (V ,E); L(v),m(v),∀v ∈ V ; B(u,v),∀(u,v) ∈ E
Output: ϕ(x),∀x ∈ V ; δ (u,v),∀v ∈ V ,∀u ∈ U (v)
1: Let lmax be the highest level of nodes
2: S0 ← {x |x ∈ V ∧ L(x) = 0}
3: Slmax ← {x |x ∈ V ∧ L(x) = lmax }
4: N (v) ← {x |x ∈ V ∧ (v,x) ∈ E},∀v ∈ V
5: U (v) ← {x |x ∈ N (v) ∧ L(x) = L(v) + 1},∀v ∈ V \ Slmax

6: D(u) ← {x |x ∈ N (u) ∧ L(x) = L(u) − 1},∀u ∈ V \ S0
7: ϕ(v) ←m(v),∀v ∈ {x |L(x) = lmax }

8: for each level l from lmax − 1 downto 0 do
9: Sl ← {x |x ∈ V ∧ L(x) = l}
10: for each node v in Sl do

11: δ (u,v) ← B(u,v)∑
x ∈D(u) B(u,x)

,∀u ∈ U (v)
12: ϕ(v) ←m(v) +∑u ∈U (v) δ (u,v)ϕ(u)
13: end for
14: end for

from a node v to one of its upper nodes u is proportional to the
contribution of u to v in terms of the aggregated number of users.
Using this ratio combined with workload measurements at upper
nodes of node v , the workload time series of v can be extrapolated
as shown in line 9.

This extrapolation is recursively executed for every lower node
of v (if applicable) down to the inner-core nodes. The recursive
execution is controlled by two ‘for’ loops shown in (line 3 and

Procedure 2 Backward-Workload-Extrapolation

Input: G = (V ,E); L(v),∀v ∈ V ;W ; ω(v),∀v ∈W ;
B(u,v),∀(u,v) ∈ E; δ (u,v),∀v ∈ V ,∀u ∈ U (v)

Output: ω(x),∀x ∈ V
1: Calculate lmax andU (v) as in Procedure 1
2: X ←W

3: for each level l from lmax − 1 downto 0 do
4: Sl ← {x |x ∈ V ∧ L(x) = l}
5: Y ← {Sl \ X }
6: for each node v in Y do

7: γ (v,u) ← δ (u,v)ϕ(u)
ϕ(v) ,∀u ∈ U (v)

8: if {U (v) ∩ X } , ∅ then

9: ω(v) ←
∑⋆
u ∈{U (v)∩X }[δ (u,v) × ω(u)]∑

u ∈{U (v)∩X } γ (v,u)
10: X ← X ∪ {v}
11: end if
12: end for
13: end for

line 6). It is worth noting that the workload of a node v can be
extrapolated iff there exists workload data of at least one upper
node u of v as illustrated by the condition in line 8. This means
there is no guarantee for the attainment of extrapolated workload
for every node in the network after this phase. Additionally, this
backward workload propagation and extrapolation is required only
when there exists workload measurements at nodes in upper layers
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different from the inner-core layer and there is a lack of measure-
ments at any single inner-core node. If measurements are obtained
for every inner-core node, the diffusion algorithm will bypass this
extrapolation and continue with next phases (inner-core workload
extrapolation and/or workload propagation).

Procedure 3 InnerCore-Workload-Extrapolation

Input: G = (V ,E); L(v),ϕ(v),ω(v),∀v ∈ V
Output: ω(x),∀x ∈ {set of inner-core node}
1: Calculate S0 and N (v) as in Procedure 1
2: X ← {x |x ∈ S0 ∧ ω(x) , ∅}
3: Y ← S0 \ X

4: for each node v in Y do

5: ω(v) ←
∑⋆
u ∈{N (v)∩X }[ϕ(u) × ω(u)]∑

u ∈{N (v)∩X } ϕ(u)
6: end for

After backward workload extrapolation, if there still exists an
absence of workload data at any inner-core node then the algorithm
of inner-core workload extrapolation (see Procedure 3) is invoked.
With the measurements and extrapolated workloads of neighboring
nodes, workload of an inner-core node is extrapolated based on the
weighted sum model [25]. Specifically, workload of v is calculated
by the sum of weighted values of all existing workloads ofu ∈ N (v)
as shown in line 5 of the procedure, in which the weight factor for
each workload is derived from the aggregated number of users at
the node with that given workload. This procedure is expected to
complete the missing workload data at the inner-core nodes.

The last phase of the diffusion algorithm, described in Procedure
4, performs a workload propagation which disseminates workloads
from inner-core nodes to every network node with no workload
measurement. The main flow of the propagation is controlled by
two ‘for’ loops shown in line 2 and line 5. Workload of a lower
node is disseminated to every of its upper nodes based on the ratios
of workload distribution previously calculated in Procedure 2, and
this is realized by the formula in line 7 of this Procedure 4.

Procedure 4 Workload-Propagation

Input: G = (V ,E); L(v),∀v ∈ V ;W ; B(u,v),∀(u,v) ∈ E;
ω(v),∀v ∈ {set of inner-core nodes}

Output: ω(x),∀x ∈ V
1: Calculate lmax and D(u) as in Procedure 1

2: for each level l from 1 to lmax do
3: Sl ← {x |x ∈ V ∧ L(x) = l}
4: Y ← {Sl \W }
5: for each node v in Y do
6: Calculate γ (u,v) as in Procedure 2
7: ω(v) ← ∑⋆

u ∈D(v)[γ (u,v) × ω(u)]
8: end for
9: end for

4.2.2 Network-Routing-based Diffusion. Figure 2b shows the flow
chart of the network-routing-based diffusion which also includes
four main phases. Because this diffusion assumes to have knowl-
edge of all routing paths from every node to the service nodes, it
is required a routing path discovery before performing user aggre-
gation. Therefore, the first phase of this diffusion is implemented
by employing Dijkstra’s algorithm to find shortest routing paths.
Note that there can be multiple (shortest) paths (with the same
hop-distance) from a node to a service node. The phase of user
aggregation applies the same assumption of user behavior as in
Procedure 1 and also takes the link capacities into account. The key
difference is that this aggregation is ended up at the service nodes
through a set of predetermined routing paths. This means each
service node can obtain an aggregated number of users from the
contributions of all its upper nodes; hence, the phase of inner-core
workload extrapolation is unnecessary. As a result, the diffusion
continues with the phase of backward workload extrapolation and
finishes with the phase of workload propagation. These two phases
are implemented by Procedure 2 and 4, which are also adopted by
the hierarchy-based diffusion (Algorithm 4), but using the set of
service nodes (instead of the entire set of inner-core nodes) as the
destinations and the sources for the workload extrapolation and
propagation, respectively.

Procedure 5 Network-Routing-based-User-Aggregation

Input: G = (V ,E); L(v),m(v),P(v),∀v ∈ V
Output: ϕ(x),∀x ∈ V ; δ (u,v),∀v ∈ V ,∀u ∈ U (v)
1: Calculate S0, Slmax ,U (v), and D(u) as in Procedure 1
2: ϕ(v) ←m(v),∀v ∈ V
3: for each node r in {V \ S0} do
4: P ← P(r )
5: X ← {r }
6: ϕP (r ) ←m(r )
7: repeat
8: X ′ ← ∅
9: for each node u in X do
10: DP (u) ← {x |x ∈ D(u) ∧ ∃p ∈ P : (x ,u) ∈ p}
11: for each node v in DP (u) do
12: αP (u,v) ← |{p ∈ P | (u,v) ∈ p}|

13: δP (u,v) ← αP (u,v)B(u,v)∑
x ∈DP (u) αP (u,x)B(u,x)

14: ϕP (v) ← δP (u,v)ϕP (u)
15: ψ (u,v) ← ψ (u,v) + ϕP (v)
16: ϕ(v) ← ϕ(v) + ϕP (v)
17: end for
18: X ′ ← X ′ ∪ DP (u)
19: end for
20: X ← X ′

21: until X = ∅
22: end for
23: δ (u,v) ← ψ (u,v)

ϕ(u) ,∀v ∈ {V \ Slmax },∀u ∈ U (v)
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The algorithm of user aggregation in the second phase is depicted
in Procedure 5. With the set of all routing paths produced by the
first phase, it is possible to assume that each node is associated
with a directed acyclic graph (DAG) rooted at the node, which is
constructed from a set of routing paths starting at the node and
ending at one of the service nodes. The algorithm then distributes
users attached to the root node down to the service nodes along
the given DAG. An intermediate node in the DAG aggregates users
distributed by its upper nodes and continue distributing the users
to its lower ones. With a given DAG, the partial aggregated number
of users or the number of attached users at a node u is distributed
to its lower node v proportionally to the utility of the directed link
from u to v , which is defined by a product of the number of paths
going from u to v and the capacity of link (u,v). In fact, such a
partial distribution ratio δP (u,v) is calculated by the ratio of the
utility of link (u,v) over a sum of the utility of all links going out
from u as given in line 13. Using this partial distribution ratio, the
partial number of users distributed to node v (by node u) ϕP (v) is
calculated as in line 14. And the total aggregated number of users
ϕ(v) and the total contribution (in terms of the number of users)
ψ (u,v) ofu tov are updated with an addition of ϕP (v) as illustrated
in line 16 and line 15. Lastly, the total ratio of user distribution that
a node u contributes to its lower node v is calculated as in line 23.
The output of this procedure is the same as that of Procedure 1.

5 EXPERIMENTS AND VALIDATION
5.1 Settings for Experiments
Two experiments are carried out using an artificial network model
developed for the city of Umeå, Sweden. The network model has
been developed in the RECAP project [17] in collaboration with
British Telecom (BT) and is designed to retain the key characteris-
tics of the BT core network but at a smaller scale. The geographical
distribution of network nodes is constructed based on census pop-
ulation data of the city (provided by the municipality of Umeå),
which is also utilized for making assumptions on the utilization of
network links and their bandwidth capacities. The network con-
sists of 45 nodes, among which there are 3 inner-core, 6 outer-core,
9 metro and 27 T1 nodes. Nodes are named based on their type
(network hierarchy position), i.e. access tier, metro, outer-core and
inner-core are named ‘Txx’, ‘Mx’, ‘Ox’ and ‘Ix’, respectively (where
‘x’ represents an identifying index). For redundancy and fault toler-
ance, every node is connected to at least two lower tier nodes using
separate links. Moreover, an outer-core node may be connected to
two of its neighboring outer-core nodes. Each inner-core node has
connections to the other two inner-core nodes. For each layer, the
same bandwidth capacity is assigned to every inner-layer link (if it
exists) connecting two nodes located in the layer. Inner-layer links
in inner-core layer are assigned the highest capacity. All inner-layer
links in outer-core layer and cross-layer links lying between the
access tier layer to outer-core layer or between metro layer and
outer-core layer or between outer-core layer to inner-core layer are
associated with the same capacity. Cross-layer links lying between
the access tier layer and the metro layer are assigned the lowest ca-
pacity. Besides being motivated by the BT 21CN, all these network
settings are adopted to demonstrate the generality of the proposed
algorithms, i.e., they are applicable to different types of network.

Figure 3 illustrates the network topology of the city together with
the dispersion of population throughout the network.

Workload datasets used for experiments are provided by BT
through instrumentation of their production CDN system [8]. Data
is provided as time series representing the traffic (i.e., the workload)
served by three core cache servers in the system. Time series are
collected at an interval of 20 minutes for nine consecutive months
between 2016 and 2017, and normalized for security reasons. The
normalized data is called proportional traffic which is used as the
label of the y-axis while the x-axis represents the time in the fol-
lowing illustrations of workload.

We have carried out experiments of workload generation in two
scenarios. In the first scenario measurements are made at central
nodes in the inner core of the network and artificial data is dif-
fused in a single direction out towards the edge of the network.
This behavior is representative of how many systems are instru-
mented during development and illustrates the basic features and
operations of the proposed algorithms. In the second scenario, data
traces are associated to three random nodes at different network
layers and artificial data is diffused in all directions throughout the
network. This scenario is representative of ad hoc and unstructured
networks and is used to comprehensively verify the functionality
and illustrate the flexibility of the algorithms. To further support
verification, we also provide reasoning on the affinity and anti-
affinity of workload patterns together with a validation on statis-
tical properties of diffused workload traces. Experimental results
and analysis are revealed in the following subsections. Note that to
highlight specific aspects of algorithmic behavior, workload traces
from different nodes are presented in the illustrations of the two
experiments below.

5.2 Experimental Scenario 1
As described above, in this scenario real workload traces collected
from core caches of the BT CDN are associated to three core nodes
(I1, I2 and I3) in the experimental network model (a setting mim-
icking the real world situation). Figure 4 shows the shape of the
given workload data. The five proposed algorithms are executed to
diffuse the workload to every node in the network and results are
collected as workload data traces for all nodes. Due to paper space
restrictions, only a subset of traces at selected nodes is presented
and discussed in the following subsections.

5.2.1 Non-hierarchical Workload Diffusion. Figure 5 shows the
results obtained by population-based diffusion for node T21 and
T 22 and the difference between them. It is apparent that the traffic
retrieved forT 22 is much higher the one ofT 21 although the traffic
data are both pulled from the two lower nodes (M2 andM3). The
reason for this is that the diffusion algorithm propagates the traffic
proportional to the user population of the nodes, and the population
of T 22 is higher than that of T 21 as observed in Figure 3. Note that
the presented traffic data are time series with a 20-minute sampling
interval, but for the sake of clarity, the difference (in red) is shown as
a series of the rolling mean values calculated with 1-week frequency.
The same approach is applied for the following comparisons.

Figure 6 presents the results obtained by location-based diffusion
for node T 21 and T 22. As the location-based algorithm models the
influence of neighboring nodes proportional to the relative distance

SESSION 6: Performance Costs and Emerging Problems ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

224



Figure 3: Network and population models for the city of Umeå, Sweden.

(a) Workload of I1 (b) Workload of I2 (c) Workload of I3

Figure 4: Original workload measurements at nodes I1, I2 and I3.

between the nodes (which in this case is small), the node loads are
very similar for T 21 and T 22.

Identical workload trace are obtained through bandwidth-based
diffusion for the two nodes T21 and T22 as illustrated in Figure 7.
The similarity of the traces is due to the diffusion algorithm dis-
tributing traffic from two lower nodesM2 andM3 to T 21 and T 22
proportional to their relative bandwidth capacity, which in this
case (as described in section 5.1) are the same - i.e. the bandwidth
capacities of the links connecting T 21 and T 22 to their lower level
nodes are symmetric. The red line in the chart shows no difference
between the two obtained workload traces.

5.2.2 HierarchicalWorkloadDiffusion. Figure 8 illustrates thework-
load traces generated for node M3 by two different hierarchical

diffusion algorithms: hierarchy-based and network-routing-based.
As described in section 4.2, the workload distributed to nodes (from
their connecting lower level nodes) by these two algorithms de-
pends on multiple factors including the population of the node, the
bandwidth of the links connecting the nodes, and the routing paths
conveying the propagated workloads.

The difference factor between the performance of the two algo-
rithms in the experiment is the traffic-propagating paths. As ob-
served from Figure 3, in hierarchy-based diffusion node M3 serves
a set of nodes {T21, T22, T23, T31, T32, T33}, which means that
the traffic collected atM3 will be distributed to neighboring nodes
proportional to their corresponding populations and the capacity
of the links connecting them and M3. Note however that when
using network-routing-based diffusion, node T 31 is excluded from
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Figure 5: A comparison of workloads generated by
population-based diffusion for nodes T 21 and T 22.

Figure 6: A comparison of workloads generated by location-
based diffusion for nodes T 21 and T 22.

Figure 7: A comparison of workloads generated by
bandwidth-based diffusion for nodes T 21 and T 22.

the set. This is because of the utilization of shortest paths routing
algorithm in traffic propagation, which distributesO2 traffic toT 31
only through the link (O2-T 31) (i.e. never through the propagation
path (O2-M3-T31) / via M3). This results in the traffic collected at
M3 in hierarchy-based diffusion being higher than that of network-
routing-based diffusion as shown in the figure. Due to the traffic
being normalized and the population of T 31 is low, the traffic prop-
agated through the link (M3-T31) in hierarchy-based diffusion is

Figure 8: A comparison of workloads generated for node
M3 by hierarchy-based and network-routing-based diffu-
sion. HB and NR represent hierarchy-based diffusion and
network-routing-based diffusion, respectively.

quite small, and the difference between the two obtained workload
traces is relatively insignificant.

5.3 Experimental Scenario 2
To illustrate the flexibility of the approach, we also construct a
scenario where the real workload traces are associated to non-core
nodes (M2,M9 and T62), and execute the proposed algorithms to
diffuse workloads in this setting. As for scenario 1, only a selected
subset of the diffused workloads is presented and analyzed.

5.3.1 Non-hierarchical Workload Diffusion. Figure 9 illustrates the
results obtained by the bandwidth-based diffusion (Algorithm 3).
In this case, workload time series generated for two inner-core
nodes {I1, I2} and two outer-core nodes {O2,O5} are presented.
According to the algorithm, the extrapolated workloads of nodes
are influenced by the workloads of its neighbors at rates propor-
tional to the capacity of the connecting links. As the core of the
network is connected with symmetric links, extrapolated work-
loads at the selected nodes are of almost the same scale, and similar
workload patterns are obtained for all inner-core nodes as illus-
trated in Figure 9a and 9b. The shape of workload of O2 is slightly
different from that ofO5 as they are influenced correspondingly by
the original workloads given atM2 andM9 with different shapes
(note that other influencers ofO2 andO5 just received extrapolated
workloads with smoothed patterns). Workload of T91 is derived
from only two connecting nodes (M8 andM9). With the same rea-
soning above, the workload pattern, evolved over symmetric links,
of T91 is nearly matched with that ofM9, but different from that
of others with extrapolated workloads (e.g., node O2) as illustrated
in Figure 11.

5.3.2 Hierarchical Workload Diffusion. Figure 10 illustrates the
results obtained by the hierarchy-based diffusion (Algorithm 4),
which include the generated workloads of two inner-core nodes
{I1, I2} and two outer-core nodes {O4,O5}. In case of the hier-
archical workload diffusion, according to Procedure 2, workload
measured at a higher tier node leads to a complete workload ex-
trapolated at its connecting lower tier nodes, and this recursively
causes influences (the increase of workload) toward the core nodes.
The extrapolated workload of a node is proportional to the size of
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(a) Workload of I1 (b) Workload of I2

(c) Workload of O2 (d) Workload of O5

Figure 9: Workloads at nodes I1, I2, O2 and O5, generated by bandwidth-based diffusion (Algorithm 3).

(a) Workload of I1 (b) Workload of I2

(c) Workload of O4 (d) Workload of O5

Figure 10: Workloads at nodes I1, I2, O4 and O5, generated by hierarchy-based diffusion (Algorithm 4).

Figure 11: Workload patterns of nodes O2,M9 and T 91.

population served by the node. Note that the population served
by a node is an aggregated population of all its higher tier nodes,
and such an aggregated population is obtained by the Procedures
(1 and 5) of user aggregation. This implies that the extrapolated

Figure 12: Workload patterns of nodes I1, I2, O4 and O5.

workload at a lower tier node will be higher than the workload
of any of its connecting higher tier nodes. Based on this, with the
workload measurement atT 62 it is possible to extrapolate complete
workloads at {M6,M7} (serving all their higher tier nodes). Such
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backward extrapolation is recurred down to lower tier nodes which
are {O4,O5} and finally {I1, I2}. Among three given workloads,
the influence of T62 (the lowest tier / inner-most node) on the
workloads of nodes I1 and I2 dominates that of the others. Thus,
workload patterns of these two nodes are nearly the same as shown
in Figure 12. Additionally, the workloads of these nodes are higher
than the workload of their connected higher tier nodes {O4,O5}.

After the workload extrapolation processes, workloads of all
inner-core nodes are available to be distributed to all nodes in the
network by Procedure 4. It is apparent that workloads received at
nodes {O4,O5} are propagated only from nodes {I1, I2}; hence, the
workload patterns of both O4 and O5 follow the same pattern of I1
or I2 (see Figure 12), and the extrapolated workload ofO5 is higher
than that of O4 (illustrated by Figure 10c and 10d). The reason
behind is that the workload of O5 serves the highest population
nodes of the network (see Figure 3), including the four metro nodes
{M6,M7,M8,M9} and a large number of T1 nodes including T 5x,
T 6x, T 7x and T 8x.

5.4 Validation
Due to the absence of real measurements for the diffused nodes,
it is not possible to directly assess the similarity of diffused work-
loads and corresponding actual measurements. Instead, we use
statistical techniques to evaluate the performance of the less intu-
itive bandwidth-based and hierarchy-based diffusion algorithms
(Algorithm 3 and 4, respectively) as follows:
• The original measurements of nodes M2, M9 and T62 (in the
following, referred to as ground truth data) are used for data
diffusion using the bandwidth-based and hierarchy-based algo-
rithms. This newly synthesized data is further used to once again
diffuse measurements, this time for nodes M2, M9 and T62 (in
the following, referred to as diffused data). Hence, using this
transitivity diffusion approach, data for the baseline nodesM2,
M9 and T 62 is created, rendering a ground truth to diffused data
comparison possible.
• The entropy [22] and approximate entropy [18] of the ground
truth and diffused workload data is evaluated and analyzed. This
provides a comparison of the ground truth and diffused data in
terms of added or lost fluctuations and noise in the diffused data.
• The correlation between the ground truth and the diffused data
is calculated. This provided a metric for the dependency and
association of the diffused data to the ground truth data. This
ideally should be both high and positive.
Hereby, for the performed validation, it is worth reiterating that

the purpose of the so-called data rediffusion is not to synthesize
data identical to the ground truth. Rather, the aim is to diffuse
workload measurements reflecting the original ground truth data in
its statistical properties, and by extension, proving the applicability
of the presented algorithms.

The results of both the entropy and approximate entropy calcula-
tion are demonstrated in Table 1. An interpretation and explanation
of the shown numbers is in order here. The approximate entropy for
the entire dataset shows only a minor deviation for both algorithms
in terms of fluctuation of the data (the highest difference being 0.03).
This means that the diffused data retains its properties in terms of
predictability, which in turn shows that any forecasting application

on the diffused is not negated by the presented algorithms. As for
the entropy, the bandwidth-based algorithm (Algorithm 3) is ob-
served to succeed in retaining the supposed information properties
without introducing any additional noise to the data. This, in terms,
is different for the hierarchy-based algorithm, which as seen in
the minor approximate entropy increase and the larger entropy
increase, introduces noise into the data. As previously stated, this
does not harm the forecastability of the data. This behavior can be
attributed to the fact that the hierarchy-based diffusion algorithm
(Algorithm 4), when diffusing, aggregates the workload over all up-
per nodes (at the lower one); hence, any noise present in the input
measurements is bound to be reflected and to an extent amplified
in the diffused data.

Lastly, Figure 13 shows a high correlation between the ground
truth and diffused workload data of nodeM2. The scatterplots also
show that the data following the same trend and being clustered
densely together. This again validates the ability of the algorithms
to diffuse the workload data while retaining its core properties.

6 CONCLUSION
This paper addresses the problem of workload generation and pro-
poses a framework with five algorithms to extrapolate and generate
workload data for network nodes using diffusion of measurements
from a subset of nodes. Each algorithm uses different types of data
and knowledge of the network, and employs different techniques
to perform its diffusion, and is thus applicable to different situa-
tions and types of network. The performance of the algorithms is
evaluated using workload data from a production CDN. Results are
presented, analyzed, and validated using statistical techniques.

Besides the main target of workload generation to support large-
scale distributed application profiling, the proposed framework can
also be used to mitigate data privacy concerns in dissemination of
data traces collected from sensitive data applications, for example
through combinations of data privacy filters and publications of
subsets of (anonymized) monitored data and generated artificial
data (that can be shown to retain the key statistical properties of
the original data without disclosing sensitive information). With
the given subset of traces and a network/application graph model,
the diffusion algorithms can be tuned to generate workloads for
all application components/network nodes as needed. Future work
includes further development of application models for service
function chains and IoT applications, and adaptation of the diffusion
algorithms to such applications for a comprehensive validation of
the framework in multiple settings (workload generation and data
privacy evaluations in simulation-based emulators, testbeds, and
production environments). Standardization and abstraction of the
models as well as the proposed algorithms to accomplish the entire
framework are also underway.
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Table 1: Entropy and approximate entropy measurements for the rediffused data of nodes M2,M9 and T 62. Hereby the values
M2,M9 andT 62 correspond to the originalmeasurements, whereasHB and BW stands for hierarchy-based and bandwidth-based
respectively.

M2 M2HB M2BW M9 M9HB M9BW T 62 T 62HB T 62BW
Entropy 5.6252 6.7778 5.6368 5.7002 7.0710 5.6491 5.7588 6.8891 5.6464
Approximate Entropy 0.6017 0.6344 0.6236 0.5972 0.6245 0.6202 0.6179 0.6257 0.6236

Figure 13: The distribution of the rediffused values and the original measurements for node M2. In the left upper corner is
the correlation coefficient between the original measurement (M2дt ) and the rediffusion using bandwidth-based (M2bw) or
hierarchy-based (M2hb) algorithm. The second linear relationship observed in theM2bw plot (below the red line) is explained
by the nature of the algorithm described in 4.1.3 that workload of adjacent nodes is averaged for the total workload of a node.
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