
The Performance Cost of Software-based Security Mitigations
Lucy Bowen

lrbowen@calpoly.edu

California Polytechnic State University

San Luis Obispo, California, USA

Chris Lupo

clupo@calpoly.edu

California Polytechnic State University

San Luis Obispo, California, USA

ABSTRACT
Historically, performance has been the most important feature

when optimizing computer hardware. Modern processors are so

highly optimized that every cycle of computation time matters.

However, this practice of optimizing for performance at all costs

has been called into question by new microarchitectural attacks,

e.g. Meltdown and Spectre. Microarchitectural attacks exploit the

effects of microarchitectural components or optimizations in order

to leak data to an attacker. These attacks have caused processor

manufacturers to introduce performance impacting mitigations in

both software and silicon.

To investigate the performance impact of the various mitigations,

a test suite of forty-seven different tests was created. This suite was

run on a series of virtual machines that tested both Ubuntu 16 and

Ubuntu 18. These tests investigated the performance change across

version updates and the performance impact of CPU core number

vs. default microarchitectural mitigations. The testing proved that

the performance impact of the microarchitectural mitigations is

non-trivial, as the percent difference in performance can be as high

as 200%.

ACM Reference Format:
Lucy Bowen and Chris Lupo. 2020. The Performance Cost of Software-

based Security Mitigations. In Proceedings of the 2020 ACM/SPEC Inter-
national Conference on Performance Engineering (ICPE ’20), April 20–24,
2020, Edmonton, AB, Canada. ACM, New York, NY, USA, 8 pages. https:

//doi.org/10.1145/3358960.3379139

1 INTRODUCTION
Performance has always been an important factor in computer de-

sign. Over time the gap in performance between the memory and

CPU has widened. In order to take advantage of the CPU speed, var-

ious microarchitectural optimizations were created. Unfortunately,

recent research shows these optimizations can leak privileged infor-

mation if exploited by savvy attackers [2]. Processor manufacturers

and operating system programmers have created software based

solutions to these exploits, but some exploits can only be solved

with hardware changes [15]. Several software solutions are harmful

to performance, but are necessary to secure the system until new

hardware is designed.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6991-6/20/04. . . $15.00

https://doi.org/10.1145/3358960.3379139

It is important to quantify how much performance has been

lost for the sake of security. Users are allowed to disable these

security mitigations, even if it is to their own detriment. Those

with performance-intensive tasks: simulation, image creation / ren-

dering, video encoding, etc., may desire to regain the previous

performance. A user could choose to take the risk with removing

the mitigations, or if they want to keep some security, instead use

a dedicated machine for those tasks and ensure that it contains no

sensitive information.

This paper is a comprehensive analysis of the performance im-

pact from software-based security mitigations on different patch

levels of Ubuntu 16 and Ubuntu 18, and the affect of allocating

differing numbers of cores to the latest patch. By using a test-suite

consisting of forty-six different tests, a quantitative summary of

the performance impacts was created. Analysis of these tests shows

that the mitigations had a quantifiable performance affect, with

some being negligible but others by as much as three orders of

magnitude difference in performance.

Section 2 provides background into the various microarchitec-

tural optimizations and the attacks on them. The design and im-

plementation of the experiments are covered in Sections 3 and 4,

with an explanation of the tests in the test-suite in the former and

an explanation of the software mitigations in the latter. Section 5

presents an analysis of both the individual test results and of the

results when compared as a group. Future work and conclusions

are presented in Sections 6 and 7, respectively.

2 BACKGROUND
Many of the microarchitectural optimizations that exist within

modern processors were first created decades ago. These same op-

timizations that are critical to modern design and performance,

have recently been proven to have significant, difficult to fix, se-

curity flaws. A dangerous cache-timing attack has been adapted

to attack how these optimizations work. By doing this, attackers

can access sensitive data without detection. This section covers

how cache timing attacks work, and what the recent high profile

microarchitectural attacks are.

2.1 Cache Attacks
Historically in computer security, solutions which used powerful

encryption/decryption algorithms with cryptographic keys were

considered secure. If a cryptographic algorithm is given a large

enough key, brute force attacks become computationally infeasi-

ble. Attackers can instead target the physical implementation in

hardware in order to take advantage of some physical information

leaked by a cryptographic device. This is a side channel attack,

SESSION 6: Performance Costs and Emerging Problems ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

210

https://doi.org/10.1145/3358960.3379139
https://doi.org/10.1145/3358960.3379139
https://doi.org/10.1145/3358960.3379139

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Lucy Bowen and Chris Lupo

where the information is gained from the implementation of a com-

puter system, rather than weaknesses in the implemented algorithm

itself [2].

A timing attack is an attack based on measuring how much time

various computations take to perform. Cache attacks are a subset

of timing attacks, which focus on exploiting the timing differences

caused by the lower latency of CPU caches when compared to

off-chip memory [2]. While other attacks exist, the three most

well known are the Prime + Probe attack [21], the Evict + Time

attack [21], and the Flush + Reload attack [42], with many of the

other existing cache attacks being derivations or combinations of

them.

2.2 Microarchitectural Attacks
Microarchitectural attacks are attacks which exploit the effects of

microarchitectural components or optimizations. Since January

2018 the field has been in the news due to high profile, difficult-to-

fix attacks, specifically those based on the Meltdown and Spectre

attacks. Meltdown- and Spectre-type attacks are both speculative

execution based attacks; the former attacks obtain data from instruc-

tions following a fault, while the latter attack prediction units [2].

Microarchitectural Data Sampling is a new attack type that instead

targets small frequently overwritten buffers used in speculative ex-

ecution. The microarchitectural attacks Nemesis [39], TLBleed [8],

and Spoiler [11] use concepts from the above attack types but are

not, themselves, members of them.

2.2.1 Meltdown-Type Attacks. Meltdown, once a single attack, has

become the name of an overarching attack type where information

is gained from transient executions following a faulting instruction.

This attack type exploits out-of-order execution by extracting data

from faulting instructions that are forwarded ahead in the pipeline.

Meltdown attacks use transient execution to “melt down” architec-

tural isolation barriers by computing on unauthorized results of

faulting instructions, thus transiently bypassing hardware-enforced

security policies in order to leak data that was architecturally in-

accessible for the application. They reflect a failure of the CPU to

respect hardware-level protection boundaries for transient instruc-

tions [4].

The originalMeltdown [17], Foreshadow [38], Foreshadow-NG [41],

Rogue System Register Read [10], and Lazy FP State Restore [36]

are examples of Meltdown-type of attacks.

2.2.2 Spectre Type Attacks. Like Meltdown, the original Spectre

attack, made up of Variants 1 and 2, has grown to encompass its

own attack type. Spectre-type attacks exploit transient execution

following control or dataflow misprediction, and rely on dedicated

control or dataflow prediction machinery. In Spectre-type attacks,

transient instructions only compute on data which the application

is also allowed to access architecturally, which allows the attacks

to transiently bypass software-defined security policies in order to

access secrets out of the program’s intended code/data paths [4].

Variant One [15], Variant Two [15], SGXPectre [5], Branch-

Scope [7], Speculative Store Bypass [10], Bounds Check Bypass

Store [14], Speculative Store Read-Only Overwrite [14], Spectr-

eRSB and ret2spec [16, 18], NetSpectre [35], and SplitSpectre [19]

are examples of Spectre-type attacks.

2.2.3 Microarchitectural Data Sampling. Microarchitectural Data
Sampling (MDS) is a class of CPU vulnerability that does not rely

on assumptions about memory layout, or depend on the proces-

sor cache state. This separates these attacks from Meltdown- and

Spectre-like attacks. However, several MDS attacks are also counted

as Meltdown-type attacks due to their use of fault or exception ex-

ploitation. Because of the lack of assumptions, MDS attacks are

difficult to mitigate, though the structures involved are relatively

small and are overwritten more frequently.

Fallout [20], Rogue In-Flight Data Load [40], Store-To-Leak For-

warding [34], and ZombieLoad [37] are examples of MDS attacks.

More detail on each of the attacks listed in this section can be

found in [3].

3 DESIGN
In order to get a quantifiable impact of the software mitigations to

the various microarchitectural attacks, the performance of many

programs should be looked at. These programs should cover a

large spectrum of possible users, and not simply be a series of

micro-benchmarks, as those are often optimized by processor man-

ufacturers. By using a wide variety of programs, different imple-

mentations and use cases can be investigated. Testing on virtual

machines allows for additional control conditions to be added and

tested without the need to perform the tests on additional, expen-

sive, hardware. Using a known test-bench software suite allows for

future comparisons to the same dataset.

3.1 Virtual Machines
Running the experiment on virtual machines allows for a compar-

ison of both core count and vulnerability mitigation. The virtual

machines in these experiments will run different Ubuntu versions.

Additionally, by comparing against all of the older versions of a

release, the performance loss or gain from Linux development can

be seen. It should be noted that all versions of Ubuntu 18 have

been released since the discovery of Meltdown and Spectre, while

version 16.04.04 on-wards have been influenced by their discovery.

3.2 Phoronix Test Suite
The Phoronix Test Suite is a free, open-source benchmark software

that supports Linux, Windows, Apple OS X, GNU Hurd, Solaris and

BSD Operating Systems. It has access to more than 450 test profiles

and over 100 test suites via OpenBenchmarking.org, and comes

with built-in statistical result reporting. Tests and Test Suites inside

Phoronix are built with eXtensible Markup Language.

3.3 Benchmarks
The following benchmarks were chosen on the basis of time, envi-

ronment, and function. All of the chosen benchmarks can run on

both Windows and Linux, so that in the future the results can be

compared with Windows results.

3.3.1 PostgreSQL. pgbench is a simple program for running bench-

mark tests on PostgreSQL. It runs the same sequence of SQL com-

mands over and over, possibly in multiple concurrent database

sessions, and then calculates the average transaction rate (Trans-

actions Per Second). We use the pre-created options provided by

SESSION 6: Performance Costs and Emerging Problems ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

211

OpenBenchmarking.org

The Performance Cost of Software-based Security Mitigations ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada

Phoronix so these results can be easily compared against both future

tests and other tester’s work.

3.3.2 DaCapo Benchmarks. The DaCapo benchmarks were created

in order to see the complex interactions between the architecture,

compiler, virtual machine, memory management, and application.

The DaCapo benchmarks used in this paper are: Eclipse, H2, Jython,

and DayTrader [25].

3.3.3 SciMark. SciMark was developed by NIST and is widely used

by the industry as a floating point benchmark. It is a benchmark for

scientific and numerical computing. It consists of several subtests:

Dense Lower-Upper Matrix Factorization, Fast Fourier Transform,

Jacobi Successive Over-Relaxation, Monte Carlo, and Sparse Matrix

Multiply. The SciMark benchmarks tested in this paper are Dense

Lower-Upper Matrix Factorization, Fast Fourier Transform, Jacobi

Successive Over-Relaxation, Monte Carlo, Sparse Matrix Multiply,

and a Composite of all of these [22].

3.3.4 Encoding. Encoding is the process of putting a sequence of

bytes into a specialized format for efficient transmission or storage.

The encoding benchmarks used in this paper are the LAME MP3

Encoder [33], and x264 [32].

3.3.5 Ray Tracing. Ray tracing is a technique for rendering three-

dimensional graphics with very complex light interactions, e.g.

reflection, refraction, scattering, and dispersion phenomena. The

ray tracing bencmarks used in this paper are C-Ray [24], and the

Sunflow Rendering System [30].

3.3.6 Compression. The compression benchmarks used in this

paper are 7-zip [1], and Gzip [26].

3.3.7 Miscellaneous. These are tests that, while useful and infor-

mative, did not fit well into any of the previous categories.

Bork. Bork is a small, cross-platform file encryption utility. It is

written in Java and uses a stream cipher with RC4, and is able to

obfuscate filenames with SHA-1 hashing. This test measures the

amount of time it takes to encrypt a sample file [23].

MAFFT. MAFFT is a free program used to create multiple se-

quence alignments of amino acid or nucleotide sequences. This test

performs an alignment of 100 pyruvate decarboxylase sequences,

with pairwise alignments computed with the Smith-Waterman al-

gorithm and 20000 iterative refinement cycles performed [31].

R Benchmark. The R Benchmark in the Phoronix Test Suite down-

loads several R benchmarks; however, only R-benchmark-25, was

used. The Phoronix Test Suite version is customized for the rbench

driver [27]. R-benchmark-25 is a series of R benchmarks with three

categories: matrix calculation, matrix functions, and programma-

tion [9]. .

SQLite. SQLite is a software library that provides a relational

database management system. This test profile measures the time

to perform a pre-defined number of insertions on an indexed data-

base [29].

Unigine - Sanctuary. Unigine is a proprietary cross-platform

game engine, developed by Russian software company Unigine

Table 1: Virtual Machine Information

Operating

System

Memory Video Mem-

ory

Processors Hard Drive

Size

16.04.01 8192 MB 128 MB 2 Cores 25 GB

16.04.02 8192 MB 128 MB 2 Cores 25 GB

16.04.03 8192 MB 128 MB 2 Cores 25 GB

16.04.04 8192 MB 128 MB 2 Cores 25 GB

16.04.05 8192 MB 128 MB 2 Cores 25 GB

16.04.06 8192 MB 128 MB Variable 50 GB

18.04.01 8192 MB 128 MB 2 Cores 35 GB

18.04.02 8192 MB 128 MB Variable 150 GB

Corp. This test includes both a windowed and a fullscreen mode

with a resolution of 800 x 600. [28].

4 IMPLEMENTATION
To gather data for the analysis, all of the benchmarks from the

previous section were run at least once with a minimum of three

data points per run. Most benchmarks were run an additional time

after the initial round of testing, in order to increase the number

of data points per test. However, because of how long the pgbench

benchmarks took (about 17 hours for Ubuntu 16 and about 28 hours

for Ubuntu 18) a full second run of that benchmark was not com-

pleted. Tests were completed for the different versions of Ubuntu 16

and 18, allowing for a comparison of 32-bit to 64-bit. Additionally,

comparing across the different version numbers demonstrates what

performance loss is normal from a version update vs. the mitiga-

tions to speculative execution attacks. Using the latest versions of

Ubuntu 16, 16.04.06, and Ubuntu 18, 18.04.02, the affect of having or

not having the default mitigations was across several core counts.

This allowed for a view into the performance affect of the mitiga-

tions on each core level and the affect of having more or less cores

for each benchmark.

The tests were completed on virtual machines with an Intel

Haswell processor. The mitigations were only tested in their default

and “off” states, and mitigations that required a kernel recompile

were ignored.

4.1 Virtual Machines
Oracle VM Virtual Box, version 6.0.4 r128413 (Qt5.6.2), was used to

create and manage the virtual machines. Information about these

machines can be seen in Table 1. Ubuntu 18 required a larger amount

of hard drive space than Ubuntu 16 due to it being a default 64-

bit operating system, unlike Ubuntu 16 which is a default 32-bit.

Additionally, because of its 64-bit status, gcc-multilib had to be

installed for some tests, meaning that some tests could natively

use 64-bit while others could not. Ubuntu 18.04.02 required a large

virtual drive; tests with smaller hard drive sizes (25GB, 35GB, 50GB,

75GB and 100GB) failed pgbench runs due to a size error. Ubuntu

16.04.06 had a similar issue, but the error resolved with a 50GB hard

drive rather than 18.04.02’s 150GB.

SESSION 6: Performance Costs and Emerging Problems ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

212

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Lucy Bowen and Chris Lupo

4.2 Host Machine
The machine used to host these tests is a Windows 10 Pro Desktop

computer. It has 16GB of RAM and all of the virtual machines were

run off of a 2TB hard drive. The CPU used in these tests is an Intel

Haswell i5-4690K [12]. It has a clock speed of 3.50GHz and 4 cores.

4.3 Mitigations
The mitigations in this section are those that were visible when the

testing was taking place. These are displayed in the

/sys/devices/system/cpu/vulnerabilities/ directory. Table 2
shows their default state and history for the two different operating

systems. Other vulnerabilities and attacks either were not addressed

yet by Linux or were fixed entirely by microcode updates and there-

fore were not visible as a specific mitigation. Testing was between

the specific operating system’s default state and a state where all

mitigations that could be disabled without a kernel recompile, were.

It is important to note that past versions of Ubuntu 16 and 18 also

have some of the mitigations enabled.

4.3.1 GRUB. GRUB is a boot loader for Linux that allows a user

to select a specific kernel configuration. The options for GRUB are

found in /etc/default/grub. GRUB_CMDLINE_LINUX_DEFAULT is

used to change which mitigations are enabled. When this file is

changed, the system can be commanded to update grub and reboot,

and the resulting machine will have the default mitigations disabled.

4.3.2 Meltdown. TheMeltdown vulnerability (CVE-2017-5754) can

be completely mitigated in software [17]. This mitigation is kernel

page-table isolation (KPTI), previously called KAISER.

KPTI can partially be disabled with the nopti kernel boot option.
Ubuntu 16.04.06 does not have KPTI enabled by default, while

Ubuntu 18.04.02 does.

4.3.3 Foreshadow. Intel has classified all of the Foreshadow vul-

nerabilities (CVE-2018-3615, CVE-2018-3620, CVE-2018-3646) as

Level-One Terminal Fault, L1TF, and they can be partially mitigated

in software. The most basic mitigation is Page Table Entry (PTE)

Inversion. By inverting all of the bits in a PTE when it is not marked

as present the PTE will point to a nonexistent region of memory [6].

This is enabled by default and cannot be turned off without a kernel

recompile.

The two additional, non-default, mitigations are only if Kernel

Virtual Machine (KVM) is enabled. The first turns off simultane-

ous multithreading (SMT), or hyper-threading on Intel machines.

Disabling SMT can have a significant performance impact, and

therefore must be weighted against the impact of other mitigation

solutions like confining guests to dedicated cores. The other is to

have the hypervisor flush the L1 Data Cache (L1D) before entering

the guest. Flushing the L1D evicts both guest data and any data

that should not be accessed by malicious guests. However, this also

has a performance impact as the processor has to bring the flushed

guest data back into the L1D [13]. This paper uses Ubuntu as the

Guest machine, and not the host, so the virtual machines do not

have KVM enabled. Thus, these two mitigations can be ignored.

4.3.4 Spectre Variant 1. Spectre Variant 1 (CVE-2017-5753), can be

mitigated in software only by patching code sequences found to

be vulnerable. To patch a vulnerable section, a barrier instruction,

LFENCE, is inserted in order to stop speculation. Alternatively, all

instructions can be serialized in order to stop younger instructions

from executing, even speculatively, before older instructions have

retired, but LFENCE is a better performance solution. An LFENCE

instruction inserted after a bounds check will prevent younger op-

erations from executing before the bound check retires. However,

it must be used carefully; if used too often, performance is compro-

mised. Developers are using static analysis to find these vulnerable

sections, but if even one section in a codebase is skipped the entire

codebase is still vulnerable [10]. This mitigation is enabled by de-

fault on operating systems that have it, because it is compiled into

the kernel. If a user decompiles and recompiles the kernel it can be

turned off, but for this paper it was not.

4.3.5 Spectre Variant 2. Google developed the Full Generic Retpo-

line mitigation for Spectre Variant 2 (CVE 2017-5715). A retpoline

is a “return trampoline”, where the software replaces indirect near

jump and call instructions with a code sequence that includes push-

ing the target of the branch in question onto the stack and then

executing a return instruction to jump to that location, as return

instructions can be protected using this method [10].

4.3.6 Speculative Store Bypass. The mitigation for Speculative

Store Bypass (CVE 2018-3639) is not on by default on either 16.04.06

or 18.04.02. This is because Intel recommends enabling this mit-

igation only for managed runtimes or other situations that use

language-based security to guard against attacks within an address

space. If this mitigation is enabled the system sets the Speculative

Store Bypass Disable bit in order to prevent loads from executing

before all older store addresses are known. Software that does not

use language-based security should instead carefully insert LFENCE

instructions, insert additional register dependencies between vul-

nerable loads and stores, or isolate secrets into a separate address

space from code that is relying on language-based security [10].

For this paper, this mitigation was ignored because it was not on

by default.

5 RESULTS
Most benchmarks behaved as expected, with test runs with more

cores outperforming those with less, and tests with mitigations

disabled outperforming those with them enabled. While some tests

demonstrate outliers these are all within testing runs that have

otherwise consistent data.

5.1 Average Performance
Looking at the average performance of the tests prevents outliers

from skewing the data. Table 3 compares the average percent dif-

ference for vulnerable versus mitigated tests within the same core

count, showing that the average variance between tests was low.

Additionally, tests were compared across both patch and core num-

ber to see which had the best results, with best being determined

by each benchmark because for some benchmarks higher numbers

are better and others, lower.

Figure 1 compares the results of each benchmark for all of the pos-

sible core counts, mitigation impact, and patch levels for Ubuntu 16.

Figure 2 shows similar results for Ubuntu 18. The data show that

for Ubuntu 16, 3 cores vulnerable is almost always the best, while

SESSION 6: Performance Costs and Emerging Problems ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

213

The Performance Cost of Software-based Security Mitigations ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada

Table 2: Vulnerabilities and Mitigations

Vulnerability 16.04.04 16.04.05 16.04.06 18.04.01 18.04.02

Meltdown Default Off Default Off Default Off Default On Default On

Foreshadow Not Available Always On Always On Always On Always On

Spectre v1 Always On Always On Always On Always On Always On

Spectre v2 Default On Default On Default On Default On Default On

Speculative Store Bypass Not Available Default Off Default Off Default Off Default Off

(a) Best Results: All Categories (b) Best Results: Mitigated vs. Vulnerable (c) Best Results: All Patch Levels

Figure 1: Ubuntu 16 Results

(a) Best Results: All Categories (b) Best Results: Mitigated vs. Vulnerable (c) Best Results: All Patch Levels

Figure 2: Ubuntu 18 Results

Table 3: Average % Difference Per Core Count

Core Number 16.04.02 Core 18.04.02 Core

1 core 3.40% 2.54%

2 cores 3.07% 4.93%

3 cores 3.47% 3.68%

for Ubuntu 18 the results are more spread out. The Ubuntu 18 re-

sults may be affected by the patch to the host machine, and on the

benchmarks where this looks possible it is called out. It is interest-

ing to note for Ubuntu 16, when there is more than one core the

vulnerable version is almost always better. This is likely because

many of the mitigations involve both multiple physical and logical

cores; enabling those mitigations makes those tests slower. Thus,

the mitigations don’t significantly change performance when tested

on only one core. The Ubuntu 18 results are spread out across all

categories. Notably no vulnerable category outperforms its default

counterpart, potentially due to the patch to the host machine.

In Figure 3 the result of all tests compared against each other

can be seen. Ubuntu 18 is shown to be superior, and interestingly

18.04.01 can almost compete with 18.04.02 evenwhen it is at one less

core. This emphasizes the impact of the 18.04.02 micro-op changes.

The number of tests that do better without mitigations is nearly

equal to the number that do better with mitigations. This indicates

SESSION 6: Performance Costs and Emerging Problems ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

214

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Lucy Bowen and Chris Lupo

Figure 3: Best Results: All

that while many tests are affected by the software mitigations, it is

not the overwhelming majority.

5.2 PostgreSQL
The pgbench Benchmarks have the most diversity when looking

at the impact of both patch and core differences. They are almost

universally better with a higher core number and with mitigations

disabled. Additionally, these benchmarks are very much impacted

by patches to the host machine. Because of this disparity in perfor-

mance, data from before and after the patch has been separated.

Table 4: Buffer Tests Benchmark % Difference of Average

Benchmark 16 Patch 16.04.02 Core 18 Patch 18.04.02 Core

Heavy - RO 8.02 97.96 19.67 104.96

Heavy - RW 43.98 59.12 5.32 74.58

Normal - RO 12.55 98.41 18.55 106.23

Normal - RW 43.71 65.77 2.44 73.66

1 Thread - RO 27.89 57.21 7.09 61.08

1 Thread - RW 17.25 10.52 11.88 3.34

5.2.1 Buffer Test. Table 4 shows large discrepancies between the

best and the worst for each category.

Table 5: RAM Tests Benchmark % Difference of Average

Benchmark 16 Patch 16.04.02 Core 18 Patch 18.04.02 Core

Heavy - RO 7.09 9.94 199.77 14.31

Heavy - RW 3.24 18.26 199.71 21.14

Normal - RO 8.81 41.19 199.86 45.58

Normal - RW 5.09 24.70 199.88 27.68

1 Thread - RO 38.03 11.51 199.97 10.54

1 Thread - RW 17.99 6.86 199.98 20.16

5.2.2 Mostly RAM. Although Table 5 would indicate that the per-

cent difference between core levels is large, these tests share the

relationship of more cores performing markedly better.

5.2.3 Mostly RAM - Host Patch. The Mostly RAM test is the most

dramatically affected by the application of the patch to the host

system. Bizarrely, according to the documentation of the patch, this

should have affected only VIA-based systems, which the host ma-

chine is not. Further research into whether Meltdown and Spectre

mitigation patches for other chip types are inadvertently impacting

unrelated machines is needed.

Table 6: DaCapo Benchmark % Difference of Average

Benchmark 16 Patch 16.04.02 Core 18 Patch 18.04.02 Core

Eclipse 7.18 61.24 1.90 63.02

H2 32.53 34.19 3.13 19.37

Jython 4.42 72.65 2.23 68.41

Tradebeans 4.52 76.93 0.18 76.16

Tradesoap 12.75 86.21 2.35 87.69

5.3 DaCapo
Table 6 shows that all of the DaCapo benchmarks are affected

by core count, as expected. Some benchmarks, Eclipse, H2, and

Jython, do poorly with one core but the performance with two and

three cores is similar. The other DaCapo benchmarks, Tradebeans

and Tradesoap, are more sensitive to having two than three cores.

The table additionally shows that within patch levels there is little

percent difference. H2 has a significant variance when looking at

Ubuntu 16 patches.

Table 7: SciMark: ANSI C Benchmark % Difference of Avg

Benchmark 16 Patch 16.04.02 Core 18 Patch 18.04.02 Core

Dense LU 1.84 2.39 1.65 3.36

FFT 6.75 1.97 1.08 2.30

Jacobi SOR 1.29 2.36 1.00 2.53

Monte Carlo 2.18 3.29 1.19 3.94

Sparse MM 1.22 1.93 1.77 3.96

Composite 1.22 1.67 1.37 3.07

5.4 SciMark
There is little difference obserserved between either patch levels

or core number for either ANSI C or Java SciMark. This is likely

because these are fairly small math benchmarks that both processor

and operating system creators use to optimize their product before

it is released. It is still useful to investigate them to ensure nothing

has gone catastrophically wrong, considering how many scientific

simulations use thousands of these operations, but their lack of a

meaningful winning category for any given SciMark test is both

unsurprising and comforting.

5.5 Encoding
Table 8 shows patch level having a negligible impact. This bench-

mark is another interesting potential case where the host patch

may have affected the Ubuntu 18 vulnerable versus default tests.

While this behaves as expected, the audio encoding benchmark,

LAME MP3, does not. Table 8 shows that LAME MP3 is not affected

by either core number or patch level.

SESSION 6: Performance Costs and Emerging Problems ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

215

The Performance Cost of Software-based Security Mitigations ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada

Table 8: Encoding % Difference of Average

Benchmark 16 Patch 16.04.02 Core 18 Patch 18.04.02 Core

LAME MP3 2.71 2.89 1.28 1.93

x264 2.14 81.67 1.61 84.35

5.6 Ray Tracing

Table 9: Ray Tracing % Difference of Average

Benchmark 16 Patch 16.04.02 Core 18 Patch 18.04.02 Core

C-Ray 1.20 98.44 0.70 97.54

Sunflow 7.08 35.32 4.57 35.28

The ray tracing benchmarks both perform as expected. There is

little variance in patch levels according to Table 9.

Table 10: Compression % Difference of Average

Benchmark 16 Patch 16.04.02 Core 18 Patch 18.04.02 Core

7-zip 3.96 64.36 0.09 66.61

Gzip 1.14 5.20 3.90 6.33

5.7 Compression
The compression tests perform as expected. It is interesting to

see that for both tests Ubuntu 18.04.01 was the best. The 7-Zip

benchmark has a slightly unusual bimodal distribution and seems

to be able to use two cores at most, while the Gzip tests do not

display the same distribution. 7-Zip’s bimodal distribution is likely

caused by caching; the test is compressing a file three times, the

first time will always be the worst and the next test runs will better

because the data will be in one of the cache levels. If this test was

improved it would compress the file multiple times each run and

average the time, or compress a file that was much larger than the

last level cache. Table 10 shows that there is little variance with

different patch levels for either test. Lastly, the gzip Ubuntu 18 tests

have a better average speed than their Ubuntu 16 counterparts,

meaning that the tar function in Ubuntu 18 is better optimized.

5.8 Miscellaneous

Table 11: Miscellaneous % Difference of Average

Benchmark 16 Patch 16.04.02 Core 18 Patch 18.04.02 Core

Bork 38.62 39.53 1.43 57.32

MAFFT 8.42 87.75 0.10 84.84

R 5.28 4.45 0.38 3.00

SQLite 41.23 33.77 3.33 25.56

Uengine - Fullscreen 3.99 94.56 0.75 93.64

Uengine - Windowed 4.21 94.87 1.61 94.03

5.8.1 Bork. The Bork test is unusual as an outlier in this regard,

but this is likely caused by its larger variance when compared to the

other tests in this section. When comparing the percent difference

in the testing runs, seen in Table 11, the Ubuntu 18 Patches have

smallest percent difference, confirming how similar the data is

between the two runs. In contrast the different core levels of 18 have

the largest variance, but this is likely due the extreme anomalous

behavior shown in 2-cores vulnerable.

5.8.2 MAFFT. The tests for MAAFT behaved as expected. Table 11

shows a small variance between patches.

5.8.3 R. Table 11 shows that the percent difference between runs

for the R benchmark is small, so it seems affected by the mitigations,

but without more data from other sources it is hard to know if it is

just a coincidence.

5.8.4 SQLite. The SQLite tests are unusual in that they do not

perform better for having more cores. This is likely because, as a

Lite model, it is designed without the heavy threading that would

take advantage of the higher core number. Additionally, these tests

have a high degree of variance, Table 11, which is likely caused by

some of the tests having extreme outliers.

5.8.5 Unigine. Both tests for Unigine behaved as expected, with

the number of cores being the most important aspect.

6 FUTUREWORK
Recording the total impact from the mitigations to stop Meltdown

and Spectre is a large task. The number of potential combinations

is enormous, and the computation time for the tests in this paper

is non-trivial. Considering how quickly new speculative execution

attacks are being discovered, it is very likely that a new attack will

be discovered and mitigated before the testing is complete.

The benchmarks demonstrated in this paper take 20 hours to

complete, for a single run. Total experiment time is a function of test

time, hardware, mitigation, virtual machine software, host os, and

guest os. The experiment time for a reasonable set of combinations

quickly grows to thousands of years of computation time.

7 CONCLUSION
The result of the tests were not surprising. As expected, almost all

benchmarks benefited greatly from an increased core count. These

benchmarks were either the newer or more complex benchmarks

whose developers optimized for the additional performance the

increase in core number can give. Simpler benchmarks were af-

fected less by either core count or having mitigations turned off.

Surprisingly, even though Ubuntu 16 did not have the Meltdown

mitigation, kpti, enabled by default, it did not outperformUbuntu 18.

This shows that being 64-bit native is more of a performance impact

than the kpti mitigation. The biggest surprise was the impact of the

accidental patch to the host, which according to Windows, should

have only affected VIA-based systems. Although many benchmarks

showed affect, the degree of change was mostly small.

These tests showed that currently, the number of benchmarks

that performed better without mitigations was almost equal to the

number that performed better with the mitigations enabled. Thus,

while many benchmarks are affected by the software mitigations, it

SESSION 6: Performance Costs and Emerging Problems ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

216

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Lucy Bowen and Chris Lupo

is not the overwhelming majority. Therefore, users seeking perfor-

mance gain must research their individual usecase, as there does

not seem to be a blanket gain by disabling mitigations.

Some microarchitectural exploits can only be fixed in hardware.

Processor manufacturers are attempting to create new designs that

are not vulnerable to Meltdown- and Spectre-type exploits How-

ever, even as these designs are created new exploits are discovered

that need to be protected against, causing additional temporary soft-

ware mitigations. Consumers seeking top performance will need to

continue to follow the news about these exploits and mitigations.

The problem of performance versus securitywill continue as long

as computers exist, if not longer. The flaws exposed by Meltdown

and Spectre are causing security researchers to tear apart hardware

diagrams and undocumented optimizations. Eventually they will

be fixed, and new optimizations will be added that will in turn be

targeted, starting the cycle anew.

REFERENCES
[1] 7-Zip. 2019. 7-Zip Website. https://www.7-zip.org

[2] Swarup Bhunia and Mark Tehranipoor. 2019. Chapter 16 - System Level Attacks

& Countermeasures. InHardware Security, Swarup Bhunia andMark Tehranipoor

(Eds.). Morgan Kaufmann, 419 – 448. https://doi.org/10.1016/B978-0-12-812477-

2.00021-6

[3] Lucy Bowen. 2019. The Cost of Security. Master’s thesis. California Polytechnic

State University.

[4] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von

Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2018.

A Systematic Evaluation of Transient Execution Attacks and Defenses. CoRR
abs/1811.05441 (2018). arXiv:1811.05441 http://arxiv.org/abs/1811.05441

[5] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and

Ten H. Lai. 2018. SgxPectre Attacks: Leaking Enclave Secrets via Speculative

Execution. (02 2018).

[6] Jonathan Corbet. 2018. Meltdown strikes back: the L1 terminal fault vulnerability.

(2018). https://lwn.net/Articles/762570/

[7] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry Pono-

marev. 2018. BranchScope: A New Side-Channel Attack on Directional Branch

Predictor. In Proceedings of the Twenty-Third International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS ’18).
ACM, New York, NY, USA, 693–707. https://doi.org/10.1145/3173162.3173204

[8] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation

Leak-aside Buffer: Defeating Cache Side-channel Protections with {TLB} Attacks.

In 27th {USENIX} Security Symposium ({USENIX} Security 18). 955–972.
[9] Philippe Grosjean and Stephan Steinhaus. 2008. R Benchmarks. https://mac.r-

project.org/benchmarks/

[10] Intel. 2018. Intel Analysis of Speculative Execution Side Channels. http:

//kib.kiev.ua/x86docs/SDMs/336983-004.pdf

[11] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk Gulmezoglu,

Thomas Eisenbarth, and Berk Sunar. 2019. SPOILER: Speculative Load Hazards

Boost Rowhammer and Cache Attacks. CoRR abs/1903.00446 (2019).

[12] Tarush Jain and Tanmay Agrawal. [n.d.]. The haswell microarchitecture-4th

generation processor. ([n. d.]).

[13] The kernel development community. [n.d.]. L1TF - L1 Terminal Fault. https:

//www.kernel.org/doc/html/latest/admin-guide/l1tf.html

[14] Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative Buffer Overflows:

Attacks and Defenses. CoRR abs/1807.03757 (2018).

[15] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner

Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael

Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execu-

tion. In 40th IEEE Symposium on Security and Privacy (S&P’19).
[16] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu Song, and Nael

Abu-Ghazaleh. 2018. Spectre returns! speculation attacks using the return stack

buffer. In 12th {USENIX} Workshop on Offensive Technologies ({WOOT} 18).
[17] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval

Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User

Space. In 27th USENIX Security Symposium (USENIX Security 18).
[18] Giorgi Maisuradze and Christian Rossow. 2018. ret2spec: Speculative execution

using return stack buffers. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2109–2122.

[19] Andrea Mambretti, Matthias Neugschwandtner, Alessandro Sorniotti, Engin

Kirda, William Robertson, and Anil Kurmus. 2018. Let’s Not Speculate: Discover-

ing and Analyzing Speculative Execution Attacks. IBM Research (2018).

[20] Marina Minkin, Daniel Moghimi, Moritz Lipp, Michael Schwarz, Jo Van Bulck,

Daniel Genkin, Daniel Gruss, Berk Sunar, Frank Piessens, and Yuval Yarom. 2019.

Fallout: Reading Kernel Writes From User Space. (2019).

[21] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-

termeasures: The Case of AES. In Topics in Cryptology – CT-RSA 2006, David
Pointcheval (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–20.

[22] Roldan Pozo and Bruce R Miller. [n.d.]. SciMark 2.0. https://math.nist.gov/

scimark2/about.html

[23] Open Benchmarking. 2016. Bork File Encrypter. https://openbenchmarking.org/

test/pts/bork

[24] Open Benchmarking. 2018. C-Ray. https://openbenchmarking.org/test/pts/c-

ray-1.2.0

[25] Open Benchmarking. 2018. DaCapo Benchmark. https://openbenchmarking.

org/test/pts/dacapobench-1.0.0

[26] Open Benchmarking. 2018. Gzip Compression. https://openbenchmarking.org/

test/pts/compress-gzip-1.2.0

[27] Open Benchmarking. 2018. R Benchmark. https://openbenchmarking.org/test/

pts/rbenchmark-1.0.3

[28] Open Benchmarking. 2018. Sanctuary Demo. https://openbenchmarking.org/

test/pts/unigine-sanctuary

[29] Open Benchmarking. 2018. SQLite. https://openbenchmarking.org/test/pts/sqlite

[30] Open Benchmarking. 2018. Sunflow Rendering System. https://

openbenchmarking.org/test/pts/sunflow-1.1.2

[31] Open Benchmarking. 2018. Timed MAFFT Alignment. https://

openbenchmarking.org/test/pts/mafft

[32] Open Benchmarking. 2018. x264. https://openbenchmarking.org/test/pts/x264-

2.5.0

[33] Open Benchmarking. 2019. LAME MP3 Encoding. https://openbenchmarking.

org/test/pts/encode-mp3-1.7.3

[34] Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss. 2019. Store-

to-Leak Forwarding: Leaking Data on Meltdown-resistant CPUs.

[35] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss. 2018. Net-

spectre: Read arbitrary memory over network. arXiv preprint arXiv:1807.10535
(2018).

[36] Julian Stecklina and Thomas Prescher. 2018. LazyFP: Leaking FPU Register State

using Microarchitectural Side-Channels. CoRR abs/1806.07480 (2018).

[37] Phillip Tracy. 2019. ZombieLoad Attacks May Affect All Intel CPUs Since 2011:

What to Do Now. https://www.tomsguide.com/us/zombieload-attack-intel-

what-to-do,news-30082.html

[38] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.

2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient

Out-of-Order Execution. In Proceedings of the 27th USENIX Security Symposium.

USENIX Association.

[39] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2018. Nemesis: Studying

microarchitectural timing leaks in rudimentary cpu interrupt logic. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 178–195.

[40] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi

Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:

Rogue In-flight Data Load. In S&P.
[41] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Raoul Strackx, Thomas F. Wenisch, and Yuval Yarom.

2018. Foreshadow-NG: Breaking the Virtual Memory Abstraction with Transient

Out-of-Order Execution. Technical report (2018). See also USENIX Security paper

Foreshadow [38].

[42] Yuval Yarom and Katrina Falkner. 2014. FLUSH+ RELOAD: a high resolution,

low noise, L3 cache side-channel attack. In 23rd {USENIX} Security Symposium
({USENIX} Security 14). 719–732.

SESSION 6: Performance Costs and Emerging Problems ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

217

https://www.7-zip.org
https://doi.org/10.1016/B978-0-12-812477-2.00021-6
https://doi.org/10.1016/B978-0-12-812477-2.00021-6
http://arxiv.org/abs/1811.05441
http://arxiv.org/abs/1811.05441
https://lwn.net/Articles/762570/
https://doi.org/10.1145/3173162.3173204
https://mac.r-project.org/benchmarks/
https://mac.r-project.org/benchmarks/
http://kib.kiev.ua/x86docs/SDMs/336983-004.pdf
http://kib.kiev.ua/x86docs/SDMs/336983-004.pdf
https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html
https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html
https://math.nist.gov/scimark2/about.html
https://math.nist.gov/scimark2/about.html
https://openbenchmarking.org/test/pts/bork
https://openbenchmarking.org/test/pts/bork
https://openbenchmarking.org/test/pts/c-ray-1.2.0
https://openbenchmarking.org/test/pts/c-ray-1.2.0
https://openbenchmarking.org/test/pts/dacapobench-1.0.0
https://openbenchmarking.org/test/pts/dacapobench-1.0.0
https://openbenchmarking.org/test/pts/compress-gzip-1.2.0
https://openbenchmarking.org/test/pts/compress-gzip-1.2.0
https://openbenchmarking.org/test/pts/rbenchmark-1.0.3
https://openbenchmarking.org/test/pts/rbenchmark-1.0.3
https://openbenchmarking.org/test/pts/unigine-sanctuary
https://openbenchmarking.org/test/pts/unigine-sanctuary
https://openbenchmarking.org/test/pts/sqlite
https://openbenchmarking.org/test/pts/sunflow-1.1.2
https://openbenchmarking.org/test/pts/sunflow-1.1.2
https://openbenchmarking.org/test/pts/mafft
https://openbenchmarking.org/test/pts/mafft
https://openbenchmarking.org/test/pts/x264-2.5.0
https://openbenchmarking.org/test/pts/x264-2.5.0
https://openbenchmarking.org/test/pts/encode-mp3-1.7.3
https://openbenchmarking.org/test/pts/encode-mp3-1.7.3
https://www.tomsguide.com/us/zombieload-attack-intel-what-to-do,news-30082.html
https://www.tomsguide.com/us/zombieload-attack-intel-what-to-do,news-30082.html

	Abstract
	1 Introduction
	2 Background
	2.1 Cache Attacks
	2.2 Microarchitectural Attacks

	3 Design
	3.1 Virtual Machines
	3.2 Phoronix Test Suite
	3.3 Benchmarks

	4 Implementation
	4.1 Virtual Machines
	4.2 Host Machine
	4.3 Mitigations

	5 Results
	5.1 Average Performance
	5.2 PostgreSQL
	5.3 DaCapo
	5.4 SciMark
	5.5 Encoding
	5.6 Ray Tracing
	5.7 Compression
	5.8 Miscellaneous

	6 Future Work
	7 Conclusion
	References

