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ABSTRACT
Intermittent hardware failures are generally non-catastrophic and
typical large-scale service infrastructures are designed to tolerate
them while still serving user traffic. However, intermittent errors
cause performance aberrations if they are not handled appropri-
ately. System error reporting mechanisms send hardware interrupts
to the Central Processing Unit (CPU) for handling the hardware
errors. This disrupts the CPU’s normal operation, which impacts
the performance of the server.

In this paper, we describe common intermittent hardware errors
observed on server systems in a large-scale data center environment.
We discuss two methodologies of handling interrupts in server sys-
tems - System Management Interrupt (SMI) and Corrected Machine
Check Interrupt (CMCI). We characterize the performance of these
methods in live environments as compared to prior studies that
used error injection to simulate error behavior. Our experience
shows that error injection methods are not reflective of production
behavior. We also present a hybrid approach for handling error
interrupts that achieves better performance, while preserving mon-
itoring granularity, in large scale data center environments.

CCS CONCEPTS
•Hardware→Transient errors and upsets; •General and ref-
erence → Performance; Reliability; Experimentation; • Com-
puter systems organization → Reliability.
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1 INTRODUCTION
When hardware errors happen in large data center environments,
they are either manually repaired or automatically remediated. This
is important to keep a large fleet of servers running at high availabil-
ity for serving the software applications. There are various reasons
why hardware errors happen during the life of a component, in-
cluding material degradation (e.g. the mechanical components of
a spinning hard disk drive); over-usage beyond the device’s en-
durance (e.g. NAND flash devices); environmental impacts (e.g.
corrosion due to humidity); and manufacturing defects. Large scale
environments have minimal human intervention to detect and re-
mediate such hardware failures. They achieve this by deploying
autonomous management systems that can handle different types
of hardware failures [21, 26, 29].

These autonomous systems are good at detecting permanent
hardware failures in a deterministic manner. As a result, the man-
agement system takes the server offline, the faulty component is
repaired, and then the server is brought back into service. However,
when intermittent errors happen, it would be cost-prohibitive and
disruptive to repair every component. The system is designed to tol-
erate or automatically remediate such errors. In addition, a common
class of these errors are also correctable in hardware, and hence the
application is not expected to see any impact on the correctness
of the operations. There have been substantial studies on program
resilience against correctable and uncorrectable intermittent er-
rors [15, 25, 28]. However, in real production environments, we
see intermittent errors cause performance aberrations which are
unpredictable. The major cause of this behavior is the underlying
interrupt handling mechanism implemented in server architectures.
Therefore, it is important to consider this while designing both
server hardware and the software autonomous management sys-
tems.

Hardware errors in server systems are typically reported through
interrupts. For memory error handling there are two types that are
important. System Management Interrupt (SMI) is a high-priority
interrupt that puts the system into the System Management Mode
(SMM). SMI is commonly used for reporting correctable memory
errors, along with the location of the errors [2]. When the system
enters SMM to handle the interrupt, operations on all CPU cores
are suspended, which leads to wasted cycles. Corrected Machine
Check Interrupt (CMCI) is another type of interrupt which reports a
user-specified number of correctable errors, and the signal is treated
as a normal software interrupt, halting the operations on only the
local core [4]. While this enables better performance, CMCI also has
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few constraints, for instance it does not reveal the location of the
errors. In this paper, we present both approaches, and characterize
their behaviors in production. We also present how we minimized
the performance impact of the error reporting mechanism using
SMI and CMCI jointly. In our hybrid approach, we minimized the
polling frequency of the errors without losing the accuracy of the
error count, while retaining the ability to look up error locations.

Prior studies [16, 19] in this area have used error injection meth-
ods to create varying number of interrupts to observe system behav-
ior. These approaches provide a way to understand interrupt behav-
ior in the absence of any production traffic and without monitoring
at scale. However, the simulated behavior is not reflective of real
environments. In production, interrupts exhibit non-deterministic
behavior. Albeit, the performance impact is perceivable through
cascading tail latency at the service level. These impacts are seen
even at low interrupt counts due to the penalty associated with
interrupt handling and logging the required error details. This pa-
per presents an industry experience that looks at optimizing the
interrupt performance in real production environments.

The rest of the paper is structured as the following: Section 2
describes the common intermittent hardware errors and the re-
porting mechanisms used in server systems. Section 3 covers the
autonomous management system for error remediation in our pro-
duction environment. Section 4 illustrates SMI and its performance
impact when reporting correctable errors, and Section 5 demon-
strates how we use CMCI jointly with SMI to minimize the per-
formance impact while enabling necessary monitoring. Finally,
Section 6 concludes the paper.

2 IMPACT OF INTERMITTENT ERRORS
A typical server architecture consists of CPUs and Dual In-line
Memory Modules (DIMMs) for executing operations, hard disk
drives (HDD) or solid state drives (SSD) for data retention, and
a network interface card (NIC) for external communications, as
show in Figure 1. Special function devices for performing parallel
processing like GPUs are connected to the CPU using the Peripheral
Component Interconnect (PCI) Bus. To monitor the health of the
machine, we use a Baseboard Management Controller (BMC), with
multiple sensors for voltages, fan speed, Hot Swap Controller (HSC)
etc. Each of these blocks are prone to hard faults, where they don’t
appear online, or intermittent faults which can cause a temporary
performance drop or unavailability.

In order to understand why intermittent errors cause perfor-
mance impact, it is important to understand the common types of
intermittent errors in server systems and the error reporting mech-
anisms used. Unlike permanent failures which can be reproduced in
any operating state and workload, intermittent failures occur only
under certain criteria. Intermittent errors also require continuous
reporting for the hardware remediation system to decide when
the hardware has degraded to a point that it needs be repaired.
This section discusses intermittent errors, their impacts on server
performance, and the reporting mechanisms for the errors.

CPUs

DIMMs

PCH

storage

GPU

USB

BMC

TPM

sensors HSC

fan controller

peripherals

NIC

Figure 1: High-level architecture of a server.

2.1 Common Intermittent Errors
In this section, we describe primarily memory errors, and briefly
cover other intermittent errors that happen in CPU, PCI, NIC to
provide examples of areas where our methodology could be useful.

2.1.1 Memory Error. A memory device can encounter bit faults
due to many factors including hardware degradation, manufac-
turing defects, electrical noise, and cosmic rays. Conventionally,
memory errors are categorized by the cause and by correction
mechanisms [8].

• Hard vs. Soft Errors
Hard memory errors are inherent defects in the chip or the
memory array. Retries or rewrites will not eliminate the
error, as the hardware circuitry is permanently affected, and
the hard error would continue to repeat. Soft memory errors
are errors due to an electrical noise or a glitch in the system.
In the case of hard errors, the remediation is to replace the
component. Soft errors do not necessarily repeat and are
usually fixed by retries.

• Correctable vs. Uncorrectable Errors
Implemented with the use of Hamming codes, Error Cor-
recting Code (ECC) [18, 20] is a mechanism for correcting
memory errors. When an ECC protected memory encoun-
ters correctable errors, the memory controller can detect
and correct the errors up to design points. While correctable
errors have no impact on the correctness of the program
processing, they are reported through system interrupts,
which could lead to noticeable latencies in a short period.
Uncorrectable errors cannot be corrected by the ECC. These
errors usually cause kernel panics and crash the machine.
The errors induce noticeable unavailability for a production
service through frequent reboots. For the purposes of this
paper, we will focus our discussion around the reporting of
correctable errors. We will discuss the reporting mechanisms
and the performance impact in Section 2.2 and Section 4

2.1.2 Other Intermittent Errors.

• CPU Intermittent Errors



A Machine Check Exception (MCE) is raised by the CPU
when it encounters an uncorrectable hardware issue either
within itself or a subsystem connected to it [7]. An MCE is a
subset of CATastrophic ERRors (CATERR), and its root cause
can usually be determined by examining the register values
from the CPU crash dump. AnMCE usually results in system
hangs or reboots, which are highly disruptive to a service.
Another intermittent error, thermal throttling is typically
asserted when the CPU on a host is operating outside the
thermal or voltage spec. Once this error is asserted, the CPU
typically gets throttled to a lower operating frequency, which
induces latency spikes on memory.

• PCIe Error
An error can occur on the PCIe link connecting the CPU, or
through the Platform Controller Hub (PCH) to an attached
PCIe device due to electrical noise, a loose connection, or a
defective (or poorly tuned) PCIe receiver or transmitter [23].
PCIe link correctable data errors generate messages to the OS
log and to the System Event Log (SEL). With each detected
PCIe bus error, the affected transaction will be retried one
or more times. In most cases, the retries are successful, and
a correctable error is logged. In rare cases, where the retries
are not successful, the event will become an uncorrectable
error, and the link may go down, affecting performance and
availability.

• Data Link CRC Error
Cyclic Redundancy Check (CRC) [27] errors indicate a cor-
ruption in the received data. CRC errors can occur due to
a faulty link between the sender and receiver, or due to a
defect in either the sender or receiver. Widely used in both
storage and network links for data transfers, a CRC error
usually indicates that the link is bad. To recover from this
class of errors, data packets are re-transmitted when the
CRC corruption is detected. The rate of errors is directly
proportional to the number of retransmits that we may see
in the system. This reduces the overall transfer bandwidth
between the sender and the receiver as the percentage of
retransmits can grow to occupy a large part of the overall
data transfer rate, thereby impacting performance.

While we presented these different intermittent errors, for pur-
poses of this paper, we will provide a deeper discussion of memory
correctable errors and the related interrupt handling mechanisms.

2.2 Error Reporting for Memory Errors
There are two major ways of reporting memory errors in server
systems - EDAC and mcelog.

• EDAC
EDAC stands for "Error Detection and Correction" [3, 9]. The
EDAC driver consists of Linux kernel modules, which make
use of the error detection facilities of the memory controller
hardware. EDAC has a number of features for detection and
correction. For monitoring memory errors, EDAC internally
uses the CMCI reporting mechanism. EDAC enables moni-
toring of memory errors at the granularity of DIMMs and
caches in the CPU. EDAC is a feature that is supported on

AMD (ghes-EDAC) and Intel (native EDAC) CPUs. How-
ever, in order to perform accurate accounting of memory
errors correctly through EDAC, error correction and detec-
tion support needs to be enabled in system firmware, i.e.
BIOS (Basic Input/Output System). The EDAC driver also
provides a configuration mechanism for enabling different
types of detection and correction mechanisms. The logging
features are enabled for both memory correctable and mem-
ory uncorrectable errors.

• mcelog
mcelog is another mechanism through the OS that is used for
monitoring memory and CPU errors [24]. The mcelog runs
as a daemon on a linux machine and aggregates memory
errors through polling or interrupts. mcelog also provides
support for page offlining (for eligible pages). mcelog en-
ables reporting of memory errors at a DIMM level. If the
DIMM is not found, it falls back to the memory channel
or the CPU socket level granularity of error reporting. The
reporting mechanism relies on the memory controller and
machine check registers in the CPU. The daemon accounts
for correctable errors in these blocks through the kernel.

While EDAC and mcelog both report memory errors, we use
EDAC in our infrastructure due to its simpler error reporting fea-
tures. mcelog in contrast provides a large number of config capa-
bilities; however, in a scalable infrastructure, consuming all those
capabilities effectively is difficult as the configurations (e.g. page of-
flining) introduce variability within similar machines. Since EDAC
relies on the memory controller metrics, it is easier to scale and be
backward compatible.

3 EXPERIMENT INFRASTRUCTURE
3.1 Autonomous Remediation Flow
Automonous systems are deployed for detecting and remediating
hardware errors to keep the service infrastructure at high availabil-
ity [21, 26, 29]. Figure 2 shows a hardware remediation system dis-
cussed in [26]. A tool namedMachineChecker periodically runs a set
of checks to detect hardware failures. When a hardware error is de-
tected, an alert is raised by the daemon monitoring Machinechecker
and sent to a centralized alert management system called Alert
Manager. Facebook Auto-Remediation (FBAR) then responds to the
alert with customizable remediations. The system is designed with
the flexibility for different service owners to customize the cor-
responding actions given the failure signals, so servers dedicated
for different services can go through the desired remediations at
different rate limits, to satisfy the specific service requirements.
When the auto-remediation in FBAR cannot bring the server back
online, the hardware failure would then be passed to Cyborg, a tool
that is designed for low-level software fixes, e.g. reimaging and
firmware upgrade. Cyborg can also create a repair ticket for field
engineers if a physical repair or manual debugging is needed. The
data gathered from these multiple systems enables us to identify
performance issues or anomalies in hardware errors across the fleet
of servers in our data centers.

SESSION 5: Performance Issues ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

195



Daemon

MachineChecker

Alert 
Manager

run periodically 
and collect output

create alert if a 
server check fails

FBAR

Cyborg

Repair 
Ticketing

Figure 2: The hardware failure detection and remediation
flow.

3.2 System Setup
With the autonomous hardware remediation system, we have been
able to collect hardware failure data in a fleet of servers across
multiple large-scale datacenters. The system runs across multiple
hardware generations and configurations, collecting hardware fail-
ure data from the System Event Log (SEL) and kernel log messages.

While we have significant monitoring for the actual produc-
tion events, we also validate that these errors are in fact occurring
in these systems. For reproducing the conditions that trigger the
hardware failures, we deployed multiple benchmarks in the remedi-
ation flow, including CoreMark [1], stream-scaling [6], MPrime [11],
stressapptest [10], SPEC benchmarks like perlbench, bzip2 [12], and
iperf3 [13]. In Section 4 and 5 we present the performance impact
and how we minimize it for memory correctable errors detected by
stressapptest.

We also deployed a fine-grained stall detector, a tool that detects
and measures the total time a CPU spent in interrupt handling. The
stall detector was designed to measure stalls for every core while
servicing the interrupts. It logs the stalls on the machine, to enable
measurement and comparison of the performance impact induced
by SMI and CMCI.

4 PERFORMANCE IMPACT OF SMI
INTERRUPTS

4.1 SMI
System Management Interrupt (SMI) is a high-priority interrupt
which puts the system into System Management Mode (SMM). As
shown in Figure 3, SMI is handled by systemfirmware.When an SMI
is invoked due to any of the sources (e.g. hardware errors, thermal
or power events), the control within the firmware-first model is
then transferred to the firmware. Within the firmware, the tasks
are split between the logging handler and the interrupt handler.

When both the routines are finished, the control is transferred back
to the OS to resume the operations that were halted.

SMIs are the highest priority interrupts that are available on the
server. These interrupts are non-maskable, and are not visible to the
user or the kernel applications, and hence cannot be deferred. Any
other interrupt would be kept pending until SMI exits SMM. The
configurations for SMI can be altered within the firmware. In SMM,
the machine has the highest privileged access, and thus provides a
detailed overview and debug information for errors on the machine.

The performance impact of a System Management Interrupt is
high because all the cores are suspended in SMM. The interrupt
provides control to an error logging handler, and returns to normal
operating mode after writing to an error log. Pending requests expe-
rience latencies while the cores are suspended in SMM. In addition,
since the amount of time spent in SMM is non-deterministic as it
depends on logging and interrupt handler routines, this introduces
an unpredictable system behavior for time-bound applications.

4.2 Performance Impact in Synthetic Data vs.
Production

In a synthetic environment , it is possible to generate errors at a
particular rate and measure the CPU time spent in system stall. A
number of error injection scenarios that change SMI rate from 1
per second to 100 per second and corresponding test mechanisms
can be used to show the different effects of SMI. Prior studies are
valuable to indicate and quantify the experimental measurements
for SMI with different rates.

However, production environments are not the same as syn-
thetic environments in the error occurrence rate. In contrast, in
a production environment, the errors are sporadic in nature. In a
synthetic environment, it is possible to control the environmental
factors, as well as the experimental setup, to introduce errors at
the desired rates. In contrast, in a production environment usually
consists of hundreds of thousands of machines, having randomness
with respect to the workload running on the machine, the age of
the machine. The wear and tear varies with respect to components
based on environmental and thermal factors. As a result, production
environments exhibit a larger randomness for error generation in
comparison to synthetic and controlled environments.

Machine Check HandlerNMI Handler

SMI
Firmware

PlatformProcessor

Logging 
Handler

OS Error Handling

Figure 3: Interrupt handling architecture with SMI (dashed
lines show interrupt path).



In addition, the time spent in the System Management Mode
(SMM) is dependent on the details for the logging mechanism. As a
result, the number of system stalls as well as the duration of the
system stalls due to SMIs in a production environment, are not the
same as that measured for benchmarks with error injection. This
has drastic impact on the performance of a workload executing on
a machine, as the workload is “unprepared” for a stall, and an SMI
in the middle of a critical workload can create cascaded failures in a
production fleet. An example of this is provided in the next section.

Observation 1: System Management Interrupts (SMI) cause the
machines to stall for hundreds of milli-seconds based on the logging
handler implementation. This is measurable performance impact to
report corrected errors.

A typical internet service has a front-end web infrastructure,
with intermediate caching service, and back-end databases. In an
example caching service within Facebook infrastructure, each CPU
core responds to several hundred thousand requests per second. In
the few machines which had spikes in correctable errors, the CPU
went into SMM mode (which stalls all cores of the CPU) and the
caching service dropped thousands of requests per second. This
caused timeouts for one-third of the requests for the service on that
machine. These timeouts were observed on machines encountering
System Management Interrupts (SMI), due to logging of correctable
errors into the System Event Log (SEL).

Since large scale services have higher level aggregators and
balancers, these issues are managed seamlessly. However, in a fixed
capacity service architecture, this behavior will pressurize the rest
of themachines whichwill get overloadedwith requests. This might
result in service capability being dynamically affected. Hence, due
to unpredictable nature of SMIs, the system can experience cascaded
service impact within front-end application performance.

Figure 4 demonstrates a correlation of the correctable errors with
service level caching request efficiency. The percentage of requests
successfully executed by the service, within the deadline, is termed
as request efficiency. When the caching service hosts encounter
correctable errors, at every N correctable errors, an SMI is triggered,
and all the cores encounter a system stall. This results in deadline-
driven caching requests timing out due to cores not being available
for performing workload computation while servicing the SMI. In
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rectable errors.

this example, the number of errors generated resulted in one SMI
event, which in turn caused the request efficiency to drop.

Similar to prior work that uses benchmarks while injecting er-
rors [19], we deployed benchmarks to detect the performance anom-
aly for sporadic memory errors. The benchmarks didn’t detect devi-
ations in their scores for two key reasons, the benchmarks are long
running, so sporadic patterns will not impact scores. In addition, the
errors are not generated at a fixed frequency through an external
test setup or error injection, and thus the SMIs are not intentionally
disrupting the service.

Figure 5 shows the perlbench benchmark scores for 2 different
cases. To obtain the first score, the benchmark is run with stres-
sapptest running in the background on a machine which has no
correctable errors (has a good DIMM). To obtain the second score,
the benchmark is run with stressapptest in the background with
thousands of correctable errors on the host (has a faulty DIMM).
Both scores are close to each other (within error bounds) to indi-
cate that the benchmark did not observe any difference with or
without correctable errors on the machine. As observed, the bench-
marks cannot capture the system slowness observed when actual
production behavior is replicated with sporadic memory errors.

Figure 6 shows the number of correctable errors across three
machines over time with varied error rates. These errors are not
injected on the machine. The graph is generated by randomly select-
ing three machines with faulty memory known to have correctable
errors, and plotting the errors generated under the same workload
over time. This also shows that memories can inherently have faults,
which generate different rate of errors. This is quite common in
a large production environment. From the figure, we can observe
that the errors do not have a consistent occurrence rate. In general,
memory errors are dependent on the memory address access pat-
tern and the variable memory utilization of the application over
time.

With the stall detector, we observed that the correctable errors on
the machine directly induced system stalls, and this in turn caused
a spike in the request timeouts in a caching service. Since the stall

5
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Figure 6: Variable occurrence of correctable errors on three
servers.

detector is always monitoring for stalls, any single SMI event is
captured and logged, to correlate with application performance
impact.

Optimizing error handlers within SMI for reducing the stall
time for all the cores is another mechanism to reduce performance
impact. We provide recommendations on optimizing error handlers
in Section 4.3

4.3 Optimizing error handlers within SMI
When an SMI is triggered, the control is solely limited to the error
handler within SMI. It is possible to optimize the error handler to
reduce the time spent in SMM by exploring:

• Improving the retry strategies of Intelligent Platform Man-
agement Interface (IPMI) commands [5] used in SMM mem-
ory error handler to log memory error data into System
Event Log (SEL) within the side band agent (ex. BMC).

• Adjust the IPMI commands’ processing flow within the side
band agent to expedite the acknowledgement of these IPMI
commands.

• Minimize the amount of data logged to the SEL for memory
errors by trimming the logged data to only what is required
to identify the Field Replaceable Unit (FRU).

Optimizing these proprietary mechanisms [14] can reduce per-
formance impact, however, stalls will occur on all cores due to SMM
mode. Hence we explore error reporting through CMCI interrupt
handling.

To summarize the findings, the performance impact due to SMIs
in a production environment is fine-grained, non-deterministic and
causes cascaded impact in a production service. In order tominimize
the performance impact due to System Management Interrupts, we
modify the default for logging correctable errors from SMI to CMCI.

Observation 2: Benchmarks like perlbench within SPEC are use-
ful to quantify system performance. For variable events, we need
to augment the benchmarks with fine-grained detectors to capture
performance deviations.

5 MINIMIZING PERFORMANCE IMPACT
USING CMCI INTERRUPTS

5.1 CMCI
As shown in Figure 7, there is an alternate way of reporting memory
errors. EDAC through the use of Corrected Machine Check Inter-
rupts (CMCI) provides an accounting and aggregation of memory
errors. This reporting is outside of the SMI, firmware, and Non-
Maskable Interrupt (NMI) handlers. As a result, it is a simpler, lower
cost per core reporting mechanism. Earlier mechanisms relied on
a periodic polling mechanism with a fixed threshold. After the
fixed threshold was crossed, on a subsequent poll, the errors were
reported. However, CMCI provides a low cost per core interrupt,
which is triggered based on the threshold configs controlled through
Model Specific Registers. So instead of continuously polling for the
errors at a software level, the CMCI interrupt is now triggered
only when the threshold is crossed. This ensures that the errors are
reported accurately per bank, and also per core. EDAC utilizes the
CMCI mechanism to report the errors by reading through registers
in each CPU core. EDAC aggregates all the errors logged by all of
the CPU cores by cycling through the CMCI counters for each core,
in order to report the total number of errors logged for the system,
during the EDAC specified polling interval. The aggregation of the
errors to provide a per system count is performed by EDAC running
on just one core.

In Figure 8, we see the growth of stalls using different error
reporting mechanisms in a production environment on an example
host as the number of correctable errors increases. Reporting mem-
ory correctable errors through SMIs accumulates stalls at a faster
rate than reporting the same errors through CMCIs.

Observation 3: SMI interrupts are several times more computa-
tionally expensive than CMCI interrupts for correctable memory error
reporting in a production environment.

The EDAC driver offers a few configuration options for error
reporting and error management:

• enabling PCI error reporting
• enabling uncorrectable error reporting

EDAC

CMCI Handler

Machine Check HandlerNMI Handler

SMI
Logging 
Handler

OS Error Handling

Firmware

PlatformProcessor

Figure 7: Interrupt handling architecture with CMCI
(dashed lines show interrupt path).
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• enabling correctable error reporting
• polling frequency for errors
• enabling kernel panic on Uncorrectable Errors (UCE).

In our production infrastructure, we enable CMCI by default,
and leverage the CMCI and EDAC infrastructure for reporting cor-
rectable errors. To demonstrate the performance impact observed
through the EDAC based reporting mechanisms, we select a group
of machines with measurable correctable error rate for obtaining
the results below. We narrow our configuration changes on the
performance characteristics to two main knobs in EDAC configs;
enabling reporting of correctable errors through EDAC and polling
frequency. We tune the polling frequency and provide observations
on the stalls and the impact of these stalls on application workloads.
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Figure 9: Max individual stall vs. polling frequency.

5.2 Impact of EDAC polling interval on
individual stall time

Figure 9 shows the maximum time a core spends in EDAC aggrega-
tion logging with different configurations of polling interval. The

graph captures the maximum stall time observed (in ms) per core.
With increased polling interval for EDAC, it is more likely that
multiple cores will have logged correctable errors. As a result, the
logging mechanism of the EDAC driver needs to scan through more
cores, aggregating and logging more messages.

Observation 4: We see that with increased polling interval, the
amount of time spent in individual aggregate logging by the EDAC
driver increases.

5.3 Impact of EDAC polling interval on total
stall time

In Figure 10, we capture the total stall time a core spends (on av-
erage) across multiple EDAC aggregation logging with different
configurations of polling interval. The graph captures the total stall
time observed (in ms) per core on average. With increased polling
interval for EDAC, more cores will have detected correctable errors.
Instead of reporting a small bucket of correctable errors, the longer
polling interval allows it to log the errors from multiple cores at
once. This prevents frequent transitions between executing “work-
loads” to executing “logging”. The frequent context switches on
one core have a larger penalty for smaller polling intervals.

Observation 5: We see that with an increased polling interval for
EDAC, frequent context switches are reduced. Hence the total time a
machine spends in stalls will be reduced.

5.4 Impact of EDAC polling interval on error
visibility

Figure 11 demonstrates the number of errors that are lost per poll
with respect to different configurations of EDAC polling interval.
The error counting registers have a finite bit-width allocated for
tracking error count within a memory controller. Within the CMCI
architecture, the counters trigger the CMCI interrupt after the
threshold is crossed. If the EDAC driver doesn’t log the error coun-
ters frequently enough, the error counters can overflow. We then
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Figure 10: Total stall time vs. polling frequency.
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read an incorrect value for the correctable errors which are reported
by EDAC to be the true value. This creates a condition where errors
will be lost in the overall EDAC accounting scheme.

In a large-scale infrastructure, we set criteria for acceptable error
rate for correctable errors beyond which we flag a DIMM as faulty.
Error rate in 10s of correctable errors per second (10 CE/s) is more
likely an indication that an entire row is faulty in memory, instead
of just a single cell. If the errors are under-counted with a longer
polling interval, this can lead to faulty DIMMs left in the fleet. In
order to prevent that, we enforce a hard constraint based on our
thresholds, and avoid under-counting the errors which will put our
detection mechanisms at risk. For a different threshold, this will
result in a different value of polling interval.

Observation 6: With increased polling interval for EDAC, we run
the risk of overflow in error aggregation.

5.5 Optimization of polling interval
Our goal is to reduce overall stall time on a machine using EDAC
logging, and we have the following options.

• Disable EDAC logging: We can completely disable the log-
ging of correctable errors by EDAC through one of the con-
figs mentioned above. This eliminates the stall time due to
EDAC logging on a machine. However, this in turn also
means that we lose the ability to report errors and identify
which DIMMs are faulty or have crossed a threshold of 10
Correctable Errors (CE) per second. So we don’t pursue this
option as visibility into memory health is an imperative in a
large infrastructure.

• Fine-tune polling interval: From observations 4, 5, and 6
above, we want to obtain an optimization point where we
have the minimum total stall on a system, and yet retain
the ability to diagnose our faulty memories correctly at our
threshold.
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Figure 11: Missed error counts vs. polling frequency.

Combining our 3 observations, we notice that having a polling
interval between 33-38 seconds, provides an optimum point for
minimizing total system stalls, while still retaining error visibility,
as seen in Figure 12.

The downside to this method is that one of the cores will, at the
worst case experience a stall in the range of 1200 ms. This is only
true if all the cores have logged an error. Given that the arrival rate
of memory errors is not constant, the probability of this reaching a
1200 ms value is small. Even with the worst-case scenario, we are
still better than a large stall on all the cores through (SMI) or many
consecutive stalls which amount to a larger aggregate stall time.

5.6 Optimizing Interrupt Handling Using
Hybrid CMCI and SMI approach

Memory error reporting through SMI enables us to collect debug
information related to row, cell and physical address of the failure.
This information is useful for performing actions like Post-Package
Repair (PPR) [17, 22]. Switching from SMI to CMCI means that PPR
is no longer usable. CMCI through EDAC does not provide the same
level of detail as that of SMI for memory correctable errors.

In order to minimize stalls and still use the PPR feature, we use
a hybrid approach where we enable the SMI reporting in debug
mode for a machine. When a machine is reported to have a high
error rate for memory errors by EDAC, it is taken offline and put
in a special debug mode to determine what action is necessary. In
this debug mode, the interrupt is switched from CMCI to SMI and
the threshold is reduced to trigger SMIs at the first error, instead of
1 SMI every Nth error. The machine is then subjected to a memory
stress workload to obtain the physical address and the necessary
detailed information needed for PPR. If the error is successfully
recreated, a PPR action is initiated so that the memory address can
be remapped.

This complex remediation provides us with the limited perfor-
mance impact of CMCI reporting through EDAC when the ma-
chines are in production, but when the machine is reported for high
memory errors, the additional information from SMI is used for
performing PPR.
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Figure 12: Total stall time vs. missed error count.
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6 CONCLUSIONS
This paper presents important observations that highlight the per-
formance impact of interrupt handling using large scale production
data. Memory errors are a common class of intermittent errors and
this phenomenon is less understood, as evident by the number of
server manufacturers that use SMI as default mechanism [2]. In
addition, we also present a methodology that explores the tradeoff
between performance impact, granularity of error information and
diagnostic capability. We believe that this experience will benefit
several system designers to explore interrupt handling mechanisms
that are better tuned to internet scale services.
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