
Software Performance Antipatterns
in Cyber-Physical Systems

Connie U. Smith

Performance Engineering Services
L&S Computer Technology, Inc.

Austin, TX, USA
www.spe-ed.com

ABSTRACT
Software performance antipatterns (SPAs) document common
performance problems in software architecture and design and
how to fix them. They differ from software antipatterns in their
focus on the performance of the software. This paper addresses
performance antipatterns that are common in today’s Cyber-
Physical Systems (CPS). We describe the characteristics of
today’s CPS that cause performance problems that have been
uncommon in real-time embedded systems of the past. Three
new performance antipatterns are defined and their impact on
CPS is described. Six previously defined performance
antipatterns are described that are particularly relevant to
today’s CPS. The paper concludes with some observations on
how this work is useful in the design, implementation, and
operation of CPS.

CCS CONCEPTS

• Software and its engineering~Embedded software • Software
and its engineering~Software performance • Software and its
engineering~Software design engineering

KEYWORDS

Performance antipatterns; Software Performance Engineering
(SPE); Cyber-physical systems design; Software architecture

ACM Reference format:

Connie U. Smith. 2020. Software Performance Antipatterns
in Cyber-Physical Systems. In Proceedings of 2020 International
Conference on Performance Engineering (ICPE’20), April 22-24
2020, Edmonton Alberta. ACM, NY, NY, USA, 8 pages.
https://doi.org/10.1145/3358960.3379138

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ICPE '20, April 20–24, 2020, Edmonton, AB, Canada
© 2020 Copyright is held by the owner/author(s). Publication rights licensed
to ACM. ACM 978-1-4503-6991-6/20/04…$15.00
https://doi.org/10.1145/3358960.3379138

1 Introduction
Software Performance Antipatterns (SPAs) document

common performance problems in software architecture and
design and how to fix them. They were first introduced in [20];
much work has built on the original introduction and is
described in Section 2.

The demand for developers with domain expertise as well as
expertise with the new Cyber-Physical Systems (CPS) technology
exceeds the talent pool. This combination of new technology and
lack of expertise dramatically increases the risk of performance
(and other) failures. Table 1 contrasts characteristics of CPS of
the past with today’s CPS to illustrate why CPS performance
problems are now occurring much more frequently. These CPS
performance antipatterns aim to solve these performance
challenges in today’s CPS.

This work contributes three new SPAs in Section 3 that we
have found in performance engineering of CPS. The second
contribution, in Section 4, identifies other - previously defined -
SPAs that we have found to be common in SPE studies of CPS.

These SPAs are not revolutionary new ideas. In fact the
concepts should be familiar to experienced performance
engineers: to be classified as an antipattern, the problem must
occur frequently. Rare or one-off problems, by definition, are not
antipatterns. These SPAs are not the only ones found in CPS;
others are possible but in our experience not as common.
Likewise, CPS are not the only type of systems where these
antipatterns may be found.

This paper’s contribution is in identifying three new,
previously undefined SPAs and identifying the common SPAs
found in CPS. This facilitates more rapid identification and
correction of CPS performance problems by performance
engineers. More importantly it contributes enabling technology
for future automation of the detection and correction of CPS
software performance problems.

2 Related Work
Patterns capture expert software design knowledge [5, 13].

Antipatterns extend the notion of patterns to capture common
design errors and their solution [4]. Performance patterns and
antipatterns explicitly address the performance of software
architecture and design. While patterns have proven to be more
useful for software design, antipatterns have proven to be more
useful for software performance engineering.

SESSION 5: Performance Issues ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

173

Table 1: Evolution of CPS

Past Today’s CPS
Small scope

Dramatic increase in control
variables and automation of
tasks

Limited functions Complex and ambitious
functions

Monolithic software

Large numbers of processes
that require communication
and coordination

User interface limited to a few
hardware buttons

Touch screens enable more
commands and custom UIs

Constrained platform
resources

Right-sizing is difficult and
may be dictated by cost and/or
availability rather than
performance

Expert developers Demand for developers
exceeds availability

Low-level programming
languages

Automatically generated code
in high-level languages

Little or no middleware Increase in middleware for
common functions

Actions constrained by RTOS
features

OS for embedded systems
provide broader, built-in
functionality

Predetermined schedule of
tasks

Embedded OS allow dynamic
scheduling.

SPAs were first introduced in [20] followed by two additional

sets of antipattern definitions in [21, 23]. Other authors have
contributed additional and/or variations of SPAs in [6, 11, 15, 24].
That set of antipatterns has been relatively stable for years.

Performance requirements antipatterns were introduced by
Bondi in [2]. Six antipatterns identify performance requirement
specifications that are ambiguous or even misleading. While
these are not run-time SPAs they are nevertheless important to
discover at design time because they can lead to performance
problems later.

Recently, Microsoft reported new performance antipatterns
found in Cloud applications [16]. Five of them are new (Busy
Database, Busy Frontend, Monolithic Persistence, No Caching,
Synchronous I/O). Three (Chatty I/O, Extraneous Fetching,
Improper Instantiation) are special cases of the already known
set; including them in the set of SPAs is useful for detection and
correction. As new types of systems become popular, we expect
new additions to the antipattern collection.

Another important body of work builds on the definition of
SPAs seeking to automate the detection and correction of
performance problems caused by SPAs. A representative sample
and overview of this evolving work is in the following:
 A rule-based Performance AntiPattern Detection (PAD) tool

diagnoses component-based enterprise Java Bean (EJB)
applications [18].

 Formal logic-based specifications of SPAs are combined
with queueing model (QN) results derived from automatic
transformation of an architectural model to QN [9].

 Model-driven specification of SPAs (PAML) were combined
with Palladio (PCM) performance results derived from
UML/MARTE for automatic detection of SPAs [9] –
automatic correction was deferred.

 A measurement-based approach explores understanding and
formalizing the iterative process of measuring performance,
identifying performance antipatterns, (manually) correcting
them, then repeating until performance requirements are
met in [17]. It focuses on runtime behavior of the platform
rather than the software design.

 SPA based detection and refactoring with PADRE combined
with Traceability links to automate detection and
refactoring from runtime data, ties designs to runtime
behavior [1].

These steps - detection, classification, refactoring - are
currently design language and system-dependent. They have
been demonstrated for UML [7], ADL [10], Palladio [25] and
others.

Formal specification and detection of antipatterns is a
requisite first step, but the antipattern may or may not cause
performance problems. For example, there may be a “One Lane
Bridge” in the software, but the usage may be low enough that it
does not cause a performance problem. Cortellessa, et.al. classify
the problems and identify the “guilty” antipatterns in [8]. The
techniques are implemented in Palladio [26].

Some SPAs are easier to automate than others. The above
work focuses on the easier ones for proof of concept. This paper
focuses on SPAs in the CPS domain; this focus may make
automation easier for some SPAs such as, “More is Less” or “The
Ramp.”

Other work improves performance of CPS using performance
model results [14, 27]. That work is not explicitly based on SPAs
and is not included here.

The definition of new SPAs and the identification of likely
SPAs for a domain such as CPS are important topics because they
are necessary enabling technologies for future automation. The
overall goal is to achieve the same level of automatic
optimization for software architecture/design as optimizing
compilers have done for code improvement. The first necessary
step is this identification of common performance problems.

3 New Performance Antipatterns
Three new software performance antipatterns are defined in

the following sections using this standard template:
 Name: the subsection title
 Problem: What is the recurrent situation that causes

negative performance consequences?
 Solution: How can we avoid, minimize or refactor the

performance antipattern?
To be considered an SPA, a problem must be found in many CPS.
Each section provides an example of the SPA. We have not found
one single case study that perfectly illustrates all of them; instead
we describe the best example of each one.

SESSION 5: Performance Issues ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

174

3.1 Are we there yet?
This antipattern refers to repeatedly checking to see if some

event has occurred, such as a child on a trip “constantly” asking
if they have arrived. The problem is the frequency and overhead
of the checking relative to the time it takes for the event to occur.
Parents become annoyed when a child asks “are we there yet”
every minute or so of a journey that takes several hours. A
related problem is (too) frequently reporting status information
or logging data. This would be analogous to a parent “constantly”
providing updates on current position.

3.1.1 Problem
In CPS, this antipattern is often due to “polling” for

information, such as state information, that changes much less
often than the polling interval. Polling may also detect whether a
new request has arrived or whether an event has occurred.
Figure 1 shows an example of polling for the arrival of a request.

The performance problem results when the resources for
checking are high and the polling interval is too short. Polling
requires overhead processing to be awakened and scheduled,
often greater than the actual state checking. It may also require
dynamic thread creation/destruction.

Polling is easily recognized in CPS. The analogous problem of
overly-frequently reporting or logging status information is less
often recognized as a performance problem. The sequence
diagram in Figure 1 illustrates both polling and logging.

Figure 1. Polling for New Request

3.1.2 Solution
If the polling frequency is extremely high for the

circumstances, the solution may be to increase the polling

interval delay. In this case the polling savings s will be 𝑠 = ሺ𝑛 −𝑚ሻ 𝑝
where n is the original number of polls or logs, 𝑚 is the number
of new polls or logs, and p is the processing time.

The solution may not be as simple as changing the polling
frequency. For example, if polling checks for the arrival of a new
request, increasing the polling interval could cause the system to
be unresponsive if a request arrives just after a polling cycle
completes because there will be a delay before the next cycle

begins. A better mechanism would be to notify the Request
handler when a new request arrives. An implementation that
uses a notification when a new request arrives is shown in Figure
2. The logging is revised to use some application logic to
determine when to log requests. It also uses asynchronous
logging so the request processing is not delayed.

3.2 Is Everything OK?
This antipattern refers to repeatedly checking the CPS

platform status, such as the remaining battery life, storage space,
etc. This antipattern is similar to “Are we there yet” in that it
also has overly-frequent processing; but we distinguish this one
based on the purpose of the processing. By distinguishing it, we
draw attention to pro-active design to prevent the problem and
to detection when performance problems occur. Otherwise it is
an easy problem to miss.

3.2.1 Problem
In today’s CPS, status checks are often performed in separate

processes/threads that run at designated periodic intervals. They
are activated, make a “quick” check of the status of the target
resource (eg. battery), report the result, and deactivate. Thus,
they are often assumed to be simple overhead tasks and they are
seldom considered in the design of the system. The problem
occurs when the designated activation interval is very short
relative to the occurrence of a status problem and when the
accumulated overhead of activation/process/deactivation slows
down the main CPS processing.

Figure 2. Refactored Request Handling

The simplified SD in Figure 3 shows 3 instances of “Is
Everything OK” in one process/thread for convenience. In one
case study, there were more checks and they were in separate
threads thus increasing the overhead for performing the checks.
Each check was invoked once per second. The performance
problem was that the start-up time for the system was
unacceptably long and because the status checks ran on time
intervals there were nearly 1,000 total checks performed during
the start-up scenario alone contributing approximately 5 seconds
to the overly long startup time! The overhead was substantial
because more than 20 threads were created for the checks then
destroyed again each second. The processing time required for
each check was also longer than one would expect ranging from
1.5 to 4 milliseconds per check/status update.

sd: InputHandler

loop

:Requests :Input :Process :Logger

getRequest ()

delay(i)

putRequest ()

getRequest ()

 isRequest ()

getRequest ()

 ProcessReq()

sd: Not ifyRequests

opt

:Input :Requests :Process :Logger

 newRequest ()

 putRequest ()

 ProcessReq()

SESSION 5: Performance Issues ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

175

The status checks contributed to reduced availability of the
platform because they reduced the battery life, storage space, etc.
to do the checks. In addition, if storage was too low at startup,
for example, this design issued frequent warnings then; but the
user is generally starting the system to do some work and does
not want to have to stop and clean up the disk before proceeding.
If the problem occurs while performing a user function it is likely
to occur at a random time while in the middle of a task that
requires high concentration, and those warnings were frequent
and annoying. So, in this case it is better to check storage at the
completion of user tasks to make sure there is enough for the
next session.

During a scenario of interest (eg., the time for start-up) with
total execution time t; i is the time interval between checks (e.g.,
1 second), each status check c runs nc times (1). Note that “Is
Everything OK” applies when t > i so status checks occur far too
frequently. The total processing time tc for status check c is its
processing time pc plus the overhead time oc times the number of
checks (2). The total time for all status checks is (3).

nc = t/ic (1)

tc = nc (pc + oc) (2)

T = c tc (3)

3.2.2 Solution
The solution is to make the platform status check part of the

design. Checks can be a combination of any or all of the
following:
 Event-based – make checks when a specific event occurs or

at a specific point in processing. For example, at a
convenient point in startup, check the storage status once;
then check status upon completion of each user task when it
is convenient to “clean up” before the next use.

 State-based – make checks based on the state of the
resource. For example, if the battery state is 90% the next
check may be minutes later, but if it is 20% the next check
may be seconds later.

 Time-based – make checks at predetermined intervals
appropriate for each resource and its depletion rate. For
example, check for stale data once per 15 minutes rather
than once per second with frequency varying with the type
of data and the time it takes to become stale.

 Event-triggered – notification is sent from the resource
monitor to subscribers when a specified state occurs, such
as battery 20%.

The best option depends on the domain, risk of a status-based
failure, and consequences of failure. They should be designed
(rather than overhead running at some default interval).

Figure 4 shows an alternative in which the Application
conditionally calls each resMonitor when appropriate (event-,
state- or time-based); the Monitor checks the Resource status and
calls handleProblem when needed.

Figure 3. Status Checks

The revised service time tc is

tc = nc (pc + oc)

where nc is the revised number of times the check executes.
Event-based or state-based checks no longer depend on the
execution time or interval so the savings can be significant.

3.3 Where Was I?
This antipattern refers to processes that do not remember

state information and when they (re-)start they start from a
predefined state that is frequently not the user’s desired state. An
example is with intermittent windshield wipers: a change to the
setting, such as turning off, on, or changing interval, starts with
an extra “wipe.” In this simple example the result may be only an
extra, noisy scrape of wipers across a dry windshield when
turning them off. The antipattern in other applications may
result in excessive overhead to recalculate state, or worse a
failure as described in the following subsection.

3.3.1 Problem
It is easier to design systems that start from the same initial

step rather than remembering or checking the last state to
determine the desired starting point - especially in systems with
multiple users that may be in different states. This antipattern
not only causes excessive overhead to recalculate state, but it
also affects usability.

sd: Stat isCkBefore

par

Ref

resMonitor

Ref

resMonitor

Ref

resMonitor

:Monitor :Resource :Resource :Resource

sd: resMonitor

:Monitor
:Resource

getStatus()

 handleStatus()

status

 delay()

SESSION 5: Performance Issues ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

176

Figure 4. Revised Status Checks

Consider an avionics system that reports weather conditions
along a specified route. When the device is activated to review
weather predictions while in flight, “Where was I” recalculates
weather predictions. This requires network connectivity to
retrieve weather data. When flying in a location that does not
have network connectivity, after a very long delay, the device
reports a connectivity error and no displayed results; however,
the desired result is a re-display of the last prediction. The
sequence diagram in Figure 5 shows its typical behavior.

Figure 5. Recalculate Display

A second problem with this system is that the displayed
results are not automatically recalculated if/when the weather
data changes while viewing the results display. Fortunately the

data changes relatively infrequently, but there was no “refresh”
command while viewing predictions; one must close the app and
restart it to view updated data.

Another example is when one wants to change one setting in
an application, but “Where Was I” starts over from the beginning
and requires specifications for all settings. This is problematic
when the change is needed immediately but the multiple steps
required cause the function to be unavailable for a period of time.
For example, changing one setting for an instrument approach
while flying in instrument weather conditions needs to be done
very quickly and having to specify all settings may be an
unacceptable, even dangerous situation.

In another IoT application, “Where was I” first tries to
connect to the all of its last known devices, but there has been a
change to the environment and all devices are not available to re-
connect. Its timeout interval is much too long (over 1 minute) so
the user experiences a frustrating delay before she/he is able to
interact with the app and reach the desired state.

3.3.2 Solution
The solution usually depends on the CPS and its use. In the

avionics weather example, it is easy to first check for
connectivity then either display previous results or calculate new
results as in the sequence diagram in Figure 6.

In other situations it may require saving state, offering
context-dependent actions, specifying a reasonable timeout
interval, or a custom-designed solution based on specific CPS
domain/usage.

Figure 6. Check Connectivity

We could quantify the savings in resource consumption for
re-calculating state versus saving state. The more important
savings is likely to be in the end-to-end response time for the
user to execute the desired task. Resolving an emergency
situation, and being able to do so in less time, may be priceless!

4 Other Common CPS Antipatterns
The following SPAs have been defined previously. In the

following subsections we focus on how they typically apply to
CPS. The earlier publications have quantified the improvements
that can be achieved by refactoring. For brevity, we do not
include previous sequence diagrams nor quantify improvements
here.

sd: RevStatusCk

seq

Ref

resMonitor

opt

Ref

resMonitor

opt

Ref

resMonitor

:App :Resource :Resource :Resource

process()

sd: revMonitor

opt

:Monitor :Resource :Report

 handleProblem()

 issueWarning?()

sd: revStartWeather

opt

[Timeout]

:App :Display :Weather

 updDisplay()

updatedDisplay

getWeather()

displayError()

weather

sd: revStartWeather

alt

[notConnected]

[isConnected]

:App :Display :Weather

 getWeather()
updDisplay()

updatedDisplay

restoreDisplay()

weather

SESSION 5: Performance Issues ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

177

4.1 Unnecessary Processing
This performance antipattern addresses processing that is

executed in a critical scenario that is either not needed, or not
needed at that time [21]. While it is difficult to judge whether or
not processing is needed at the architectural level [9], it is
possible to determine that the processing results are not used in a
critical scenario and can be deferred.

Startup is a critical scenario in most CPS. One common
example of “Unnecessary Processing” is creating many platform
and application screens during startup. This is often an expensive
process requiring many constructors for widgets on the screen.
In one CPS approximately 30 screens were created during startup
requiring between 100 ms for simple ones, 0.5 sec for average
screens, and up to 9 seconds for the most expensive screen
(which was rarely used but created during startup nonetheless).

When there are substantial periods of “think time” that occur
after startup, during which the processor is idle or less busy,
those periods can be used to create screens that are unlikely to be
needed until later. Screens can be ranked by when and how often
they are likely to be needed: important/frequently needed
screens can be created during startup, Screens unlikely to be
needed can be created only when they are requested, and others
can be created in the background during less busy periods. This
can be explicitly designed into the application, or it can be
accomplished in a background process that executes at a lower
priority.

Note that the total processing time required is the same if you
only change the point in time that the code executes, but it will
improve overall responsiveness.

4.2 How Many Times Do I Have to Tell You?
Originally documented in [6], this antipattern occurs when a

common method is called many times by other methods, but it is
only needed once. This happens when multiple paths in a call
tree repeatedly call the same commonMethod. Because the
implementation of methods is (deliberately) hidden, it is not
obvious that these methods are called so many times.

Figure 7 shows a sample call tree: the red arrows show the
multiple paths to the commonMethod (bottom-left of figure), the
black arrows do not lead to commonMethod. The revised
scenario (not shown) removed the redundant calls from the
method implementation and explicitly called the commonMethod
once. An 80% reduction in processing time for this scenario was
achieved.

This antipattern is usually detected in performance
improvement projects to identify and eliminate redundant calls
rather than at design time. It is detected by measuring the
number of times each method is called during performance tests
then analyzing why the processing-intensive methods are called
and who calls them.
“How many times” occurs in all types of systems. It is especially
problematic for CPS that require a high level of responsiveness
and are implemented with many independent processes that
have relatively high overhead for calling/communicating with
other processes. The redundant work causes a noticeable slow
down.

Figure 7. How Many Times.

4.3 More is Less
This antipattern occurs when having too many of some

resource results in poorer overall performance [19]. Examples are
too many processes or threads relative to the number of
processors, and too many pooled resources.

Often CPS are created with large numbers of independent
processes/threads, but in single-user CPS or IoT applications,
running on small platforms with few processors, these threads do
not increase the concurrency in the software, but they do
introduce additional overhead for scheduling, dispatching,
context switching, communication, and possibly page faults.

Profiler data shows the time spent in various threads, but it
does not show how much of the time is due to operating system
overhead so performance problems due to threading may not be
obvious. Figure 8 shows the high CPU usage that resulted from
too many threads for a CPS application (in the figure, the blue is
the CPU usage, the red is the number of threads).

Figure 8. Cost of More is Less

4.4 The Ramp
When this antipattern is present, processing time increases as

the system is used [21]. With “The Ramp” the response time
increases exponentially as processing time increases linearly. It
presents a scalability problem that is often not detected during
testing when test data does not contain enough items to reveal
the phenomenon.

Previous instances of “The Ramp” were usually associated
with database applications. As CPS expand into new domains
they are subject to similar pitfalls. In a medical application, for
example, one screen displayed a list of all patients and the user
scrolled through it to select the current patient before beginning

BtnBalance
Click

PgmMgr.
SplitAll

CountMgr.
Split

Mgr.
Create

Engine.
Configure

Mgr.
Engine

Balanced

commonMethod

Engine.
GetIntensity

Sum

Other
Processing Mgr..ctor

Mgr.
CreateThing

 Mgr.
CheckBalance

Engine.
Proceed
Engine

Changes

Mgr.
set_Polarity

Mgr.
Redraw
Shape

Mgr.
RaiseShape

Changed

OnShapeChanged

Mgr.
set_intensity

Engine.
Balance

Mgr.
GetPoints

PgmMgr.
DeinitializeAnd

UnselectAll

SESSION 5: Performance Issues ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

178

the actual use of the device. Even when the device was first
tested, the time to populate that screen was 10 seconds. It would
have gotten much worse as the system was used and the number
of patients increased.

In CPS other occurrences of “The Ramp” are associated with:
 Changing environments - For example, when the number of

nodes in networks increases so does the communication
processing overhead

 History - For example, if future results depend on past
behavior an increasing amount of processing may be
required as the amount of historical information increases

 Environmental influences - For example, when security
cameras have more processing to do when there is an
increase in activity in the frame or even when there is
background movement such as trees blowing in the wind.

The solution to “The Ramp” when it involves databases is to
change the search algorithm. For example, for the medical
patient application, rather than present a long list of patients, let
the user begin typing the patient’s name to retrieve a smaller set
of possibilities. Other design alternatives include downloading
only the patients to be treated that day so that the list is always
small.

The solution to “The Ramp” for CPS is also likely to require a
different design and will be domain dependent thus making it
difficult to automatically correct the antipattern.

4.5 Museum Checkroom
This antipattern, first reported in Bondi [2], “leads to a

deadlock in a system in which the elements of a resource pool
are acquired and released singly by processes that pass through a
common FCFS queue to do one and then the other” [3]. Bondi
establishes that the system will reach a deadlock state, and that
the time to the onset of deadlock depends on the request rate for
resources in the pool, the average holding time of the resources,
and the size of the pool.

The solution is to use priority queuing rather than FCFS
queueing and to assign a higher priority to processes queueing to
release the resource.

Deadlocks cause a system to fail: it appears that the system
“hangs up” and the usual fix is to reboot the system. When this
antipattern is the cause of the problem, the system will run fine
for a while then eventually the same failure occurs. It is often
quite difficult for a performance engineer to determine the root
cause of the problem, but once diagnosed the solution is
straightforward.

This antipattern is much easier to prevent at design time than
to detect and correct after it has become a problem. It should be
rather easy to detect it from design specifications and/or
performance models. The automatic detection and refactoring
techniques cited in Section 2 could be a powerful tool.

4.6 Falling Dominoes
“Falling Dominoes” occurs when one failure causes

performance failures in other components. An example occurred
in a component that received input then broadcast it to many
other components [23]. When a communication channel failure

caused one of the receiving components to repeatedly request re-
transmission, it slowed down the entire system. Another instance
of the antipattern occurred when one receiver failed, and it
caused a feeder process to quit sending to all receivers.

Today’s CPS are prone to this type of performance problem
because they typically have many interacting pieces. They may
rely on other COTS products for some of their features, such as
network connectivity, so the failure modes may not be known at
design time. These are not only performance problems, they are
also reliability and fault tolerance problems. Thus performance
engineering needs to include scenarios of failure modes to detect
these problems early.

The solution is to make sure that broken pieces are isolated
until they are repaired. The broadcast component could monitor
re-transmission requests and when a threshold is reached, stop
sending to a receiver until it is repaired. Feeder processes should
not stop when one receiver fails. The failed process should be
isolated until it is repaired.

Another solution to “Falling Dominoes” is to use autonomic
techniques and monitor the ratio of error processing to useful
work, and, when a designated threshold has been reached, shut
down failed components rather than continue to execute error
processing.

5. Observations
Some of the SPAs are similar. At the extreme they all result in

extensive processing that contributes to overly long response
times. Some of the documented performance antipatterns are
special cases of an already known set (see for example [16]). It is
worthwhile to have SPAs adapted to specific domains because it
is more likely that the problems will be detected and corrected –
either manually as in PASA [28] or with automated techniques as
in Section 2.

The solution for SPAs may correlate with OO patterns. In
some cases, “Tell Don’t Ask” [https://pragprog.com/articles/tell-
dont-ask] could be a solution for “Are We There Yet” or “Is
Everything OK?” If the resMonitor (Fig 3) is a system component
rather than part of the application, pattern applicability may not
be recognized.

Measurement-based approaches such as [17] have been used
to identify “guilty” antipatterns. Unless the measurements are
tied back to the design, though, many problems appear to be
extensive processing (a subset of “Unbalanced Processing”). It is
possible that connecting the measurements to design models as
in [1] could identify other antipatterns that are the root cause of
the problem and make automatic correction easier.

Another powerful extension could be using SPAs for
identifying elements of designs that should include proactive
instrumentation to detect when performance antipatterns are
nearing a threshold where they may become guilty.

Some SPAs have been excluded from automation research.
“Unnecessary processing” was excluded in [9] because it was
deemed too difficult to judge the importance of application code
at the architectural level to determine the necessity of the
processing. Future work could use requirements specifications to
determine guilt caused by “Unnecessary processing.” Another

SESSION 5: Performance Issues ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

179

possibility is to use measurement-based analysis to look at the
components with the highest usage, and then question whether
they are necessary at the time they are invoked.

“Falling Dominoes” has been excluded because it was
considered a reliability/availability concern. We argue that it
should be part of the quest for automation because it affects
usability thus it affects end-to-end user performance and
performability. Also when “Falling Dominoes” occurs in
operation the cause is often difficult to detect, and thus it
benefits most from automatic detection. Analysis techniques
such as those of [3] could assist with automatic detection.

Lastly, “bad smells” are defined as signs of potential problems
in code; they have been used to guide refactoring in [12]. Unless
those “bad smells” occur in “guilty” components, though, it is not
necessary to refactor them. In fact, in many of our SPE
engagements, we were brought in after much time was lost
correcting “bad smells” that made little or no improvement in the
overall performance of the system. For this reason, the SPAs are
far more useful for performance improvement.

6 Conclusions
Performance antipatterns document common performance

mistakes made in software architectures or designs. The use of
SPAs has proven to be valuable in detecting and correcting
performance problems as well as building performance intuition
in developers by explaining the problems in an easy-to-
understand way. This paper introduces the new antipatterns but
does not classify them, nor does it address automatic detection or
automatic refactoring. We leave these extensions to the experts
in the automation area.

This paper documented three new SPAs that we have found
to be common in CPS. It is useful to know which types of
potential problems to look for when conducting SPE studies to
quickly detect and correct problems. The new antipatterns also
may occur in systems other than CPS.

Other, previously defined performance antipatterns could
occur in future CPS. For example, database antipatterns are likely
to appear as CPS evolve and incorporate large data.

Experience with these SPAs has largely been expert-based
performance engineering with extensive efforts to understand
designs, collect data, construct models, analyze results and
explain options for improvement. This was useful for identifying
the new performance antipatterns; these SPAs provide enabling
technology that is necessary for further research and
development into automation. The real potential for adoption
and use for software development will come with extending
methods for automatic detection and correction of guilty
performance antipatterns.

REFERENCES
[1] D. Arcelli, V. Cortellessa, D. DiPompeo. 2018. Performance-driven software

model refactoring. Information and Software Technology 95. 366-397.
[2] André Bondi. 2015. Foundations of Software and System Performance

Engineering. Addison-Wesley.
[3] André Bondi. 2018. Predicting the time to migrate into deadlock using a discrete

time Markov chain. WOSP-C Workshop. ICPE’18 Companion. Berlin.
[4] W. J. Brown, R. C. Malveau, H. W. McCormick III, and T. J. Mowbray. 1998.

AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis. John
Wiley and Sons, Inc. New York.

[5] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. 1996. Pattern-
Oriented Software Architecture: A System of Patterns. John Wiley and Sons.
Chichester, England.

[6] C. Cates. 2004. Where’s Waldo: Uncovering hard-to-find application killers.
Proc. CMG. Las Vegas.

[7] V.Cortellessa, A.DiMarco, R.Eramo, A.Pierantonio, C.Trubiani. 2010. Digging
into UML models to remove performance antipatterns. ICSE Workshop.
Quovadis, 9–16. ?</bib>

[8] V.Cortellessa, A.Martens, R.Reussner, C.Trubiani. 2010. A process to effectively
identify “Guilty” performance antipatterns. D.S. Rosenblum, G.Taentzer (eds.).
FASE 2010. LNCS vol. 6013. 368–382. Springer. Heidelberg.

[9] V.Cortellessa, A.DiMarco, C.Trubiani. 2012. Software performance antipatterns:
Modeling and analysis. M.Bernardo, V.Cortellessa, A.Pierantonio (eds). Formal
Methods for Model-Driven Engineering. SFM 2012. Lecture Notes in Computer
Science, vol 7320. Springer. Berlin, Heidelberg.

[10] Martina De Sanctis, C. Trubiani, V. Cortellessa, A. Di Marco, M. Flamminj.
2016. A model-driven approach to catch performance antipatterns in ADL
specifications, Information and Software Technology. DOI:
http://dx.doi.org/10.1016/j.infsof.2016.11.008 </bib>

[11] R. F. Dugan Jr., E. P. Glinert, A. Shokoufandeh. 2002. The Sisyphus database
retrieval performance antipattern,” Proceedings of the Workshop on Software
and Performance (WOSP 2002),Rome.

[12] M. Fowler, K. Beck. 1999. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional. ?</bib>

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley. Reading,
MA.

[14] A. Gómez, C.U. Smith, A.C. Spellmann, J.Cabot. 2018. Enabling performance
modeling for the masses: Initial experiences. SAM 2018. 105-126.

[15] C. Larman. 2000. Aggregate entity pattern. Software Development, vol. 8 no. 4.
46-52.

[16] https://docs.microsoft.com/enus/azure/architecture/antipatterns/</bib>
[17] L. Pagliari, R. Mirandola, C. Trubiani. 2019. Engineering cyber-physical systems

through performance-based modelling and analysis. Journal of Software
Evolution and Process, Wiley, to appear.

[18] T.Parsons, J.Murphy. 2008. Detecting performance antipatterns in component
based enterprise systems. Journal of Object Technology 7. 55–91.

[19] G. Rogers and R. Boyer. 2002. The More is Less antipattern. Private
communication.

[20] C. U. Smith and L. G. Williams. 2000. Software performance antipatterns.
Proceedings Second International Workshop on Software and Performance
(WOSP2000). Ottawa, Canada. 127-136.

[21] C. U. Smith and L. G. Williams. 2002. New software performance antipatterns:
More ways to shoot yourself in the foot. Proc. CMG, Reno.

[22] C. U. Smith and L. G. Williams. 2002. Performance Solutions: A Practical Guide
to Creating Responsive, Scalable Software. Addison-Wesley. Boston, MA.

C.U. Smith, L.G. Williams. 2003. More new software antipatterns: Even more ways
to shoot yourself in the foot. International Computer Measurement Group
Conference. 717–725. ?</bib>

[24]B.A. Tate. 2002. A taste of 'Bitter Java:' The Round-tripping antipattern.
http://www-106.ibm.com/developerworks/java/library/j-bitterj-
java/bjsidebar1.html.

[25] C.Trubiani, A.Koziolek. 2011. Detection and solution of software performance
antipatterns in Palladio architectural models. International Conference on
Performance Engineering (ICPE), 19–30.

[26] C. Trubiani, A. Koziolek, V. Cortellessa, R. Reussner. 2018. Guilt-based handling
of software performance antipatterns in Palladio architectural models. Journal
of Systems and Software 95, 141-165.

[27] C. Trubiani, A. Bran, A. van Hoorn, A. Avritzer, H. Knoche. 2018. Exploiting
load testing and profiling for performance antipattern detection. Journal of
Information and Software Technology. Elsevier.

[28] L.G.Williams, C.U.Smith. 1998. Performance engineering of software
architectures. Proceedings Workshop on Software and Performance, Santa Fe,
NM.

SESSION 5: Performance Issues ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

180

