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ABSTRACT

Performance in heterogeneous service-based systems shows non-
determistic trends. Even for the same request type, latency may
vary from one request to another. These variations can occur due
to several reasons on different levels of the software stack: op-
erating system, network, software libraries, application code or
others. Furthermore, a request may involve several Remote Proce-
dure Calls (RPC), where each call can be subject to performance
variation. Performance analysts inspect distributed traces and seek
for recurrent patterns in trace attributes, such as RPCs execution
time, in order to cluster traces in which variations may be induced
by the same cause. Clustering "similar" traces is a prerequisite
for effective performance debugging. Given the scale of the prob-
lem, such activity can be tedious and expensive. In this paper, we
present an automated approach that detects relevant RPCs execu-
tion time patterns associated to request latency degradation, i.e.
latency degradation patterns. The presented approach is based on
a genetic search algorithm driven by an information retrieval rel-
evance metric and an optimized fitness evaluation. Each latency
degradation pattern identifies a cluster of requests subject to latency
degradation with similar patterns in RPCs execution time. We show
on a microservice-based application case study that the proposed
approach can effectively detect clusters identified by artificially
injected latency degradation patterns. Experimental results show
that our approach outperforms in terms of F-score a state-of-art
approach for latency profile analysis and widely popular machine
learning clustering algorithms. We also show how our approach
can be easily extended to trace attributes other than RPC execution
time (e.g. HTTP headers, execution node, etc.).

CCS CONCEPTS

« Software and its engineering — Software performance; Soft-
ware testing and debugging; Software evolution; Search-based
software engineering.
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1 INTRODUCTION

Modern high-tech companies deliver new software in production
every day [6] and perceive this capability as a key competitive
advantage [22]. In order to support this fast-paced release cycle,
IT organizations often employ several independent teams that are
responsible "from development to deploy" [20] of loosely coupled
independently deployable services. One challenge of this "move
fast" mentality is to ensure software quality [22]. State-of-art perfor-
mance assurance practices usually involve load testing [11], which
unfortunately only covers quite specific use cases, while perfor-
mance limits and unexpected behaviors often emerge in the field
with live-user traffic [29]. In this context, performance debugging
in production is becoming an essential activity of software mainte-
nance. Debugging performance issues can be hard in heterogeneous
distributed systems, where a request may involve several Remote
Procedure Calls (RPCs) and each call can be subject to performance
fluctuation due to several reasons (e.g. computational expensive
code paths, cache misses, synchronous I/O, slow database queries).
Indeed, since machine-centric tracing mechanisms are often insuffi-
cient in these cases, recent research has developed workflow-centric
tracing techniques [12, 23, 27]. These latter techniques capture the
workflow of causally related events (e.g., work done to process a
request) among the services of a distributed system, as well as their
performance metrics and traced information, e.g., RPCs execution
times, HTTP headers, resource consumption, execution nodes or
application logs.

Despite the effort in developing techniques to collect causally
related performance data, there is still lack of research on how
to exploit workflow-centric traces to provide useful suggestions
during performance debugging. Widely popular workflow-centric
technologies (e.g. Zipkin! , Jaeger? , Dapper[27], etc) provide Gantt
charts to debug performance issues related to RPC degradation (see

Uhttps://zipkin.io
Zhttps://www.jaegertracing.io
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Figure 1). Gantt charts are used to show individual requests, where
Y-axis shows the overall request and resulting RPCs issued by the
distributed system, and the X-axis shows relative time. The relative
start time and execution time of RPCs are encoded by horizon-
tal bars. However, Gantt charts effectiveness is restricted to cases
where the targets of the analysis are one or few requests. Indeed, as
the number of requests under analysis grows, the causes of perfor-
mance degradation potentially increase. For example, the workload
of a system can change multiple times during a single day, thus
causing performance degradations on different RPCs. Furthermore,
different request parameters can trigger performance deviations
on different RPCs. Specific patterns can emerge in RPCs execution
times from these complex non-deterministic behaviors, which we
call latency degradation patterns in this paper. They usually con-
cern a small subset of RPCs in which execution time deviation is
correlated with request latency degradation. A rough example of la-
tency degradation pattern is "homepage requests slow down when
getProfile execution time is over x jointly to getCart execution
time over y". Each pattern identifies a cluster of requests subject
to performance degradation, that can show similar RPC execution
time behavior. Such clusters enable performance analysts to narrow
the scope of the analysis to requests and RPCs that are strictly
related to the same performance degradation. Obviously not all
patterns have same relevance, in that relevant patterns are the ones
more frequently occurring upon slow requests and rarely or never
present upon fast requests. In this work, we use a quality metric
based on F-score to quantify the relevance of latency degradation
patterns.

Unfortunately, the manual identification of highly relevant pat-
terns is often unfeasible due to the large number of requests and
RPCs involved. Hence, in this paper we introduce automation in
searching those patterns, thus to support performance analyst ca-
pabilities during performance debugging. Our approach models
the problem of identifying high quality patterns as an optimiza-
tion problem. The problem is solved through the combination of
an existing dynamic programming algorithm and a novel genetic
algorithm. The source code of the approach is made available on a
public repository [28].

The proposed technique can be applied to any service-based
system that employs a common workflow-centric tracing solution.
We evaluate our approach on a microservice-based application and
we show that it can effectively and efficiently detect clusters of
requests affected by same artificially injected degradations. We
also compare our approach against a state-of-the-art approach for
latency profile analysis [14] and general-purpose machine learning
clustering algorithms (i.e., kmeans, hierarchical and mean shift).

The paper is organized as follows. Section 2 describes the prob-
lem that we aim to solve, in both informal and formal ways. Sec-
tion 3 describes our approach and its main components: dynamic
programming algorithm, genetic algorithm and employed optimiza-
tions. The research questions, experimental method, validity and
results are described in Section 4. Section 5 shows how the described
problem can be generalized to deal with traced performance infor-
mation other than RPC execution time. Section 6 reports on related
work, while final remarks are presented in Section 7.
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Figure 2: Example of latency distribution.

Request | getRecommended getCart getHome
size execution time execution time latency

(bytes) (ms) (ms) (ms)
200 60 60 320
280 75 90 450
220 60 60 390

Table 1: Tabular representation of traces

2 PROBLEM

In this section we first informally explain the problem of detecting
latency degradation patterns, and then we provide a more formal
description as an optimization problem.

2.1 Detecting latency degradation patterns

Figure 1 shows the Gantt chart example of a homepage request to a
service-based e-commerce system. The workflow starts with the call
of getHome API exposed by the frontend service, and it involves
three RPCs (i.e., getProfile, getRecommended and getCart) ex-

posed by three different services (i.e., accountservice, items-service

and cart-service, respectively).

Suppose that a performance analyst wants to detect potential causes
for latency degradations in homepage requests. A workflow-centric
tracing solution collects information related to getHome requests.
This information can be processed and transformed in a tabular
format, where a row represents a request execution and a column
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represents a particular traced information (see Table 1). In this pa-
per, we refer to a row of the table as a trace and to a column as a
trace attribute. In particular, we will focus on two kinds of attributes,
that are the execution time of each RPC (i.e., all central columns of
Table 1), and the latency of the whole request (i.e., the rightmost
column in Table 1).

Figure 2 shows an example of the getHome request latency dis-

tribution, as estimated from traces processing. The estimated distri-
bution shows that several getHome requests latencies deviate from
the major mode that is around 300-350 milliseconds, hence they
represent latency degradations. Now, let suppose that these degra-
dations are caused by requests that trigger expensive computations
in getRecommended and a slower database query in getProfile.In
this case, a latency degradation pattern example could be described
as follows: "getHome latency is between 350-670ms when the re-
sponse time of getRecommendedItems is between 70ms and 120ms
and the response time of getCart is between 80ms and 102ms". In
order to identify such a pattern, a performance analyst must inspect
attributes in all traces, while comparing requests with latencies that
fall within the 350-670ms interval against the ones that fall outside
it. This task can be trivial when the number of traces and attributes
are small, but it becomes overwhelmingly complex as the scale of
problem grows.
In order to provide the problem intuition, the example above has
been left intentionally simple, since it associate just one pattern
to latency degradation. However in real-world distributed systems
latency degradations are often associated to multiple causes. For
example, Figure 2 shows two minor modes in latency distribution,
a single pattern may not identify these two different performance
behaviors. Obviously, this context further complicates the pattern
identification.

2.2 Problem definition

We first define a set of notations, we then formally describe the
optimization problem.

Definition 2.1. A trace r, as observed on a specific request, is
an ordered sequence of attributes r = (e, ey, ..., em, L), where ej
denotes the execution time of an RPC j invoked by the request, and
L is the whole observed latency of the request.

Definition 2.2. A condition c is a triple ¢ = {j, emin, €max ), Where
jis an RPC, and [emin, emax) represent an execution time interval
for the RPC j. A request r = (..., e}, ...) satisfies ¢, denoted as r < ¢,
if:

emin < €j < €max

Definition 2.3. A pattern P = {co, c1, ..., ¢ } is a set of conditions.
We say that a request r satisfies a pattern P, denoted as r < p, if:

YceP, r<c

We say that a request r doesn’t satisfy a pattern P, denoted as r 4 p,
if:

deeP, r4c

Given a set of traces R = {ro, 1, ..., } and an interval I, where
I represents the request latency interval considered as "degraded”,
we want to determine the relevance of a pattern P with respect to
I. The most relevant pattern would be one that is always satisfied
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by "degraded traces" (i.e., traces whose request latencies fall within
I) and never satisfied by the other ones. More formally, is a pattern
P such that:
r<P < Lel (1)
Although it is rare to find a pattern P that satisfies the above
described property, it is obvious that some patterns can be more
relevant with respect to others. In order to quantify the relevance
of a pattern P with respect to an interval I, we use an information
retrieval quality metric. We partition traces in two sets, namely
positive and negative traces, as follows:
Rpos ={reR|Lel}

Rnegz{rER|L¢I} @

A pattern P identifies true positives and false positives:

tp={r € Rpos | r < P}
fp=A{r € Rpeg | r < P}
Hence, P has precision and recall defined as follows:
. | ip |
recision = ————————
P [ip|+1fp]
ltp|
[ Rpos |

recall =

If a pattern shows high recall, then it means that it frequently
appears in positives, although this does not guarantee correlation
with latency degradation, because identified attribute values can
also be present in negative traces. On the other hand, a high value
of precision indicates that, when a trace satisfies the pattern, its
latency usually falls in the latency degradation interval. However,
this does not exclude that traces satisfying the pattern are too few
to be worth to investigate.

In order to overcome both limitations, as in [14], we use the har-
monic mean of precision and recall (i.e., F-score) to provide a quality
score for latency degradation pattern:

precision - recall

Q(P.I) =2 ®)

The goal of our optimization problem is to identify a pattern P*
which maximizes the quality score:

P* =arg max O(P, 1)

precision + recall

(6)

However, an entire interval I is not likely to be explained by
the same pattern, whereas multiple different latency degradation
patterns can be found in traces that affect different sub-intervals
of I. For this reason, we use the approach proposed in [14], where
a set of potential split points {s, s1, ..., S¢ } is pre-defined on an
interval I = [so, sg]. This set can be chosen using local minima
in latency distribution, the key insight is to partition the set of
request with latencies L € I in groups that show similar latency
behavior. Furthermore, high density regions of the latency interval
(modes) are often associated to the same performance degradation
causes>. For example, in Figure 2 the second mode (350-400ms) may
be related to a cause and the third mode (400-500ms) to another.

3http://www.brendangregg.com/FrequencyTrails/modes.html
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Let ©(P) = maxp Q(P, (si,sj)) be the score of a sub-interval
(si,sj). The ultimate goal of our approach is to identify a subset of
split points {s;, s}, ...,s;} (Where z < k, s} = sp and s} = si) that
maximize the following equation:

z—1
D766s7,57,)
i=0

The key intuition is that by optimizing the sum of scores, the
interval [ is partitioned in sub-intervals in a way that favors the
identification of more relevant patterns over the others.

™

3 APPROACH

The main problem of maximizing equation (7) requires the solution
of the sub-problem described by the equation (6). In order to solve
the main problem we use the dynamic programming approach
proposed in [14]. Let D(i) denote the best score for a solution that
covers interval [so, s;), with the initial score D(0) = 0. The update
step is:

®)

Hence, to construct the solution that covers interval [sg, s;) the
algorithm search for each possible pair i, j such that D(j) + O(s;, s;)
is maximized.

In the following we describe how we solve the sub-problem,
which represents the core novelty of our approach. We first describe
the components of our search-based approach, and then we describe
how fitness evaluation is optimized through search space reduction
and precomputation.

D(i) = D(j) + max (8(s;. si))
<j<i

3.1 Genetic algorithm

Our approach uses Search Based Software Engineering (SBSE) [9],
an approach in which software engineering problems are refor-
mulated as search problems within the search space that can be
explored using computational search algorithms. Specifically, we
use a Genetic Algorithm (GA). GAs are based on the mechanism of
the natural selection [10] and they use stochastic search techniques
to generate solutions to optimization problems. The advantage of
GA is in having multiple individuals evolve in parallel to explore a
large search space of possible solutions.

Our GA is implemented on top of the DEAP framework [7].
In the following we describe the five key ingredients of our GA
implementation (i.e., representation, mutation, crossover, fitness
function and computational search algorithm) in the context of our
sub-problem defined in equation (6).

Representation: Feasible solutions to the sub-problem are all
possible patterns P. We recall that a pattern is defined as a set of
conditions P = {cy, ¢y, ..., c }, where each condition is a triple <
J»€min, €max >, with j referring to the RPC subject to the condition
and [emin, emax) representing the execution time interval.

Mutation: The mutation randomly choose among three muta-
tion actions, namely: add, remove or modify. The first action adds
a new randomly generated condition to the pattern P. However, if
the RPC involved in the new condition is already present in another
condition contained in P then the mutation doesn’t have any effect.
The remove mutation randomly removes a condition from P. The
modify mutation randomly selects a condition ¢ and modifies one
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Keys Values
1= (500, 600)

<RPC1, 223>
LT N RPC1 | RPC2 |RPC3 | L
. n ™ 250 | 330 | 125 |530

1 .

<RPC1, 233> - - 220 300 120 | 490
n ._--- ----- -- 235 320 | 140 | 480
/ geos  pneg 230 350 | 130 | 510

<RPC2, 300>

Figure 3: Hash table entry for inequality check <RPC1, 233>
over a set of traces and an interval I=(500, 600)

of the two endpoints of the interval, and then reorders them, if
necessary, so that emin < emax-

Crossover: Given two patterns P; and P, the two sets of condi-
tion are joined together Py = P UP; and then randomly partitioned
in two new patterns P| and P;.

Fitness function: In order to evaluate the fitness of each solu-
tion we adopt the quality score described by equation (5). However,
the computation of such score can be overwhelmingly expensive,
hence we optimize the fitness evaluation with the techniques de-
scribed in next subsection.

Computational search: We use a (1 + 1) genetic algorithm [2].
As a selection operator, we use a tournament selector [13] with
tournament size by 20. Crossover and mutation rates are fixed to
0.8 and 0.2, whereas y and A are both set to 100. The evolutionary
process terminates after 400 generations with a 100 population size.

3.2 Optimization of fitness evaluation

Fitness evaluation is one of the most frequently executed operations
during the evolutionary process. A time-consuming fitness evalua-
tion can severally hamper the approach efficiency. The presented
approach uses precomputation to enhance fitness evaluation per-
formance, where the employed technique requires a search space
reduction. Although search space reduction can potentially cut off
optimal or near-optimal solutions, we employ a smart reduction
policy which still preserves search space quality. In the following
we explain the key idea behind our precomputation technique, then
we illustrate the search space reduction policy.

Precomputation: The identification of true positives and false
positives for a given pattern P is the most performance-critical op-
eration executed during fitness evaluation. This operation requires
to verify for each r € R if r <« P. The verification of this property
involves a bunch of inequality checks, which are likely to be re-
peated several times during the evolution process. The aim of our
technique is to reduce fitness evaluation effort by precomputing
inequality check results in order to avoid redundant computations.
We denote inequality checks as pairs (j, e; ), where j is a RPC and e;
is an execution time threshold. Inequality check results are repre-
sented as ordered sequences of booleans B = (by, b1, ..., b, ), where
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b; refers to the check result for the trace r; € R. A check result b;
for a given inequality check (j,e;) and a trace r; = (...,ej,...) is

defined as:
True
False

Since the aim is to both improve true positives and false positives
computation, inequality check results are precomputed on positive
and negative traces (i.e., Rpos and Ryeq). Hence, for each inequality
check (j, e;) two boolean sequences are generated (namely BP°S
and B"¢9), which represent inequality check results, respectively,
for positive and negative traces. Boolean sequences are encoded as
bit strings and stored in a hash table, where the key is an inequality
check (j,e;) and the value is a pair of bit strings (BP°S, B"¢9).
Figure 3 shows a simplified example of a hash table entry for an
inequality check over a set of traces and interval I.

These data structures enable fast identification of true positives
and false positives across multiple traces through bitwise operations.
A bitwise operation works on one or more bit strings at the level
of their individual bits. We use two common bitwise operators: and
and not. A bitwise and (A) is a binary operation that takes two
equal-length bit strings and performs the logical and operation on
each pair of the corresponding bits:

ifej > ¢
b; = .
otherwise

XAY ={(x1 Ay1,x2 AY2, .0 Xn A Yn)

A bitwise not (=) is a unary operation that performs logical negation
on each bit:
ﬁB = <_|b1, _|b2, ey _|bn>

A condition ¢ = {j, emin,emax), can be efficiently evaluated on
positive traces as well as on negative traces with the following
two steps. First, boolean sequences associated to inequality checks
{, emin) and (j, emax ) are retrieved from the hash table. We denote
them as (Bfnoisn,Bnmii) and (Bfnosx, Bnid ) respectively. Then, posi-
tive and negative traces satisfying condition c are derived through
bitwise operations:

B;g;os = gPos A _gPos

min max
neg _ pneg neg
B, _Bmin A 2Bpax
Where b; € B{,"’S (resp. b; € BZEg) denotes if r; < ¢ with r; € Rpos
(resp. 7; € Rpeg).
The same approach is also applied for pattern satisfaction, r; < P:
pOS _ pOS
By = N\ B
ceP
neg _ neg
By = N\ B
ceP
Number of true positives and false positives are then obtained by
counting True booleans (i.e. number of 1 in the bit string) in both
POS neg.
By, and B, 7:
ltp| = [{b € B | b = True}|
e
\fpl = [{b € BIY | b = True}]
Finally, fitness is derived through a simple numerical computation
(see equations (4) and (5)).
Search space reduction: Since the execution time is a contin-

uous value, there is an uncountable number of possible inequal-
ity checks (j, e;). Hence, precomputing results for any possible
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inequality check (j, e;) is unfeasible. For this goal, we employ a
search space reduction to decrease precomputation effort as well
as the amount of inequality check results (i.e. bit strings) to store.
Obviously, search space reduction can be risky, since optimal or
near-optimal solutions can be excluded by the search. We tackle
this problem by selecting, for each RPC, only meaningful thresholds
e according to execution time distribution. We select thresholds
that separate high density regions of the execution time interval.
Those values identify relevant points that should cluster together
requests with similar execution time behavior in a certain RPC.
The key intuition is that if execution time of a certain RPC inter-
val is correlated with a relevant latency request degradation, then
its behavior must be recurrent to a relevant number of requests
(hence, to a dense interval of the execution time). Furthermore,
RPC execution time distribution often shows multimodal behavior
and modes can be often related to performance degradation (e.g.,
cache hit/miss, slow/fast queries, synchronous/asynchronous I/O,
expensive code paths). Our approach employs a mean shift algo-
rithm [4] to identify high density intervals of RPC execution time.
Mean shift is a non-parametric feature-space analysis technique for
locating the maxima of a density function [3], and its application
domains include cluster analysis in computer vision and image
processing [4]. For each RPC, we cluster traces with the mean shift
algorithm according to the corresponding execution time, we then
infer thresholds according to identified highly dense regions.

4 EVALUATION

In this section, we state our research questions (RQs) and we present
the evaluation of our approach on a microservice-based applica-
tion case study. We chosen microservices because they represent
a widely used paradigm in nowadays service-based systems. In
addition we envision that our approach can be extremely useful to
debug performance issues in microservice-based applications, given
high frequency of deployments and continuous experimentation
[26](e.g., canary and blue/green deployment).

4.1 Research questions

We aim at addressing the following research questions:

RQ1 Is our approach effective for clustering requests associated

to the same latency degradation pattern, as compared to machine
learning algorithms?
In order to answer this question, we compare our approach against
three general-purpose machine learning clustering algorithms (i.e.
K-means, Hierarchical, Mean Shift) that are described in Section 4.5.
The rationale beyond this question is the widespread of modern
machine learning tools and libraries for clustering problems.

RQ2 Is our approach effective with respect to state-of-the-art

approaches for latency profile analysis?
With this respect, we have identified the work in [14] as the closest
one to our approach, also described in Section 4.5. The differences
are that they adopt a branch and bound algorithm and they target
a more general problem, because the attributes that they consider
are not limited to latencies. We have implemented their approach
for sake of result comparison.

RQ3 How robust is our approach to "noise"?

We have introduced two types of noise in our experiments, which
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Figure 4: Estimated latency distribution of requests and
nominal request latencies

are described in Section 4.3 and can affect detection capabilities of
our approach. We have compared the above mentioned approaches
in terms of their effectiveness in presence of noise.

RQ4 What is the efficiency of our approach as compared to other
ones?
This question strictly concerns the execution time. We have mea-
sured the execution time of all considered approaches applied on
the case study, for sake of a costs/benefits analysis.

4.2 Subject application

We experiment our approach on E-Shopper?, that is an e-commerce
microservices-based web application. The application is developed
as a suite of small services, each running in its own Docker® con-
tainer and communicating via RESTful HTTP APIs. It is composed

“https://github.com/SEALABQualityGroup/E-Shopper
Shttps://www.docker.com
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Services

web-service
gateway

-gethome
- get

- [findfeaturesitems

items-server

- get
- finditems
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- findproducts
get
getcategories
get
findproductsrandom
get
finditemsbyidproduct

Figure 5: Gantt chart of a request loading the homepage of
E-Shopper

by 9 microservices developed on top of the Spring Cloud® frame-
work, where each microservice has its own MariaDB’ database. The
application produces traced data that are reported and collected
by Zipkin®, i.e. a popular workflow-centric tracing system, and
stored in Elasticsearch?. Traced information are then processed and
transformed in a tabular format, such as the one showed in Table 1.
Each trace refers to a single request, while trace attributes are RPC
pure execution time. By pure execution time we mean the RPC exe-
cution time minus the time waiting for invoked RPCs to terminate.
For example, in Figure 1 the RPC getHome calls three synchronous
RPCs (getProfile,getRecommended, getCart), hence pure execu-
tion time of getHome is its execution time minus the time waiting
for termination of the three invoked RPCs. Note that asynchro-
nous calls do not introduce waiting time, thus we do not consider
them in pure execution time calculation. We focus our analysis only
on requests loading the homepage, since it is the request which
trigger more RPCs. Specifically, each request involves 13 calls of 8
unique RPCs among 5 microservices, as showed by the Gantt chart
showed in Figure 5. Note that the first two get RPCs invoked by
web-service are asynchronous, hence they do not block gethome
execution.

4.3 Methodology

The main goal of our empirical study is to determine whether the
presented approach is able to identify clusters of requests affected
by the same degradation causes. In order to achieve this goal, we
perform multiple load test sessions in which we inject recurrent
artificial degradations, thereafter we run our approach on each
set of collected traces to evaluate whether clusters of requests
affected by same artificial degradations are correctly identified. In
our empirical study, artificial degradations are actualized as delays
injected in RPCs. Before each session, we randomly define two
recurrent artificial degradations A; and Ay, for example:

®https://spring.io/projects/spring-cloud
7https://mariadb.org/

8https://zipkin.io
“https://www.elastic.co
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e Aj: 50ms delay added to findfeaturesitems RPC and 50
ms delay added to getcategory RPC;
e Ajy: 50ms delay added to gethome RPC.

Then, during the load test, requests are randomly marked as
affected by one of the two artificial degradations with 0.1 probabil-
ity. When a request is marked as affected, the mark is propagated
through RPCs, thus leveraging context propagation [15], and delays
are injected in RPCs according to the artificial degradation defini-
tion. Hence, requests affected by the same artificial degradation
will always have the same delays injected on the same RPCs. At the
end of each load test session, each artificial degradation approxi-
mately affects 10% of requests. Figure 4 shows the latency behavior
of the main RPC gethome (i.e., the target of our analysis) during
a load test session. Specifically, it shows the shape of the latency
distribution and, under the curve, the latencies of nominal requests
randomly distributed on the Y-axis. Time is expressed on X-axis
in milliseconds. Requests not affected by any artificial degradation
are represented as black x, the ones affected by the artificial degra-
dation A; are represented as blue down triangles, whereas red up
triangles represent requests affected by A;.

Each load test session lasts 5 minutes and involves a synthetic

workload simulated by Locust!?, which makes a request to the
homepage every 50 milliseconds. Since not all RPCs are synchro-
nous, some injected delays may not cause latency degradation. In
order to avoid these cases, only synchronous RPCs are considered
in artificial degradations. In our experiments we consider three
types of artificial degradations: type I injects a delay to just one
RPC, type 2 injects delay to two RPCs and type 3 to three RPCs. Each
injected delay slows down RPC execution time by 50ms. Artificial
degradations by the same type are expected to produce a similar
performance degradation in terms of request latency, since the total
amount of injected delays is the same.
Before each load test session, the pair of artificial degradation A;
and Aj is generated as follows. First, the number of RPCs affected
by both artificial degradations is defined by randomly assigning
types to A1 and Ay, respectively. The assignment is made by ensur-
ing that A; and A, always have different types, i.e. they produce
a different performance degradation in terms of request latency
(see Section 4.4 for more details). Then, RPCs affected by delays are
randomly selected, among the 6 synchronous RPCs (see Figure 5),
for each artificial degradation according to their types.

Distributed systems are often noised, hence in order to test the
robustness of our approach we also performed "noised" load testing
sessions. In particular, we consider two types of noises:

o The first noise is a small deviation of delays injected in RPCs.
The key insight is to reproduce situations where performance
degradation doesn’t shows a constant behavior. For each
artificial degradation, a random RPC is chosen among the
affected ones so that delays injected on this RPC will not have
a constant behavior, i.e. the delay injected is 60ms instead of
50ms in half of the requests.

e The second type of noise involves situations where RPCs
execution time degradation doesn’t cause any latency degra-
dation on the overall request. In particular, for each artificial
degradation we select one of the two asynchronous calls (i.e.,

Ohttps://locust.io/

167

ICPE '20, April 20-24, 2020, Edmonton, AB, Canada

findfeaturesitems and finditems) and inject a 100ms de-
lay in half of requests to this call affected by artificial degra-
dation. We have preliminarly experimented that those delays
do not cause slow downs in requests.

We have performed 10 different load testing sessions with ran-
domly generated artificial degradations, where 5 sessions are noised.
This has generated 10 different sets of traces. We then ran our
approach as well as baseline approaches to evaluate their effec-
tiveness. For each load test session, we targeted a specific latency
degradation interval I. We have chosen, for each session, the inter-
val (Lmin> Lmax), where Ly, in and Ly, g5 are the minimum and the
maximum observed latency of affected requests in the session. Our
approach, as well as the one proposed by Krushevskaja and Sandler
[14], requires as input a set of potential split points {so, s1, ...Sk }-
In each experiment, we identify the set of split points by using the
same approach used in search space reduction to identify thresholds
of RPC execution time (see Section 3.2), i.e. local minima identified
through Mean shift algorithm. For the considered clustering algo-
rithms (i.e., Kmeans, Hierarchical and Mean shift), we use as inputs
only traces that fall in the target interval I, since the goal is to clus-
ter degraded requests with same artificial degradations. We also
set a predefined number of clusters for Kmeans and Hierarchical,
we run these algorithms multiples times with different inputs (i.e.,
k=2,...,6), and we then pick the best achieved solution for each set.

The output of each approach is a set of clusters. We select, for
each injected artificial degradation, the best matching cluster for
every approach, by identifying best pairs of cluster and artificial
degradation (Cj, A;), such that F-score is maximized while con-
sidering requests affected by artificial degradation A; as positives.
At the end of this process, for each approach we have two best
clusters C; and Cy, each one associated to the respective artificial
degradation A and As.

Finally, we then evaluate the effectiveness of each approach by
using the following metrics. In theory, an ideal approach would
identify clusters that correspond to the group of requests affected
by same artificial degradation (i.e. blue triangles and red triangles
in Figure 4). We evaluate each approach effectiveness in terms of
recall, precision and F-score. An approach with low recall would
not be adopted in practice, since it fails to detect relevant latency
degradation patterns. An approach that produces results with high
recall and low precision is not useful either, since identified clus-
ters do not precisely correspond to the same artificial degradation.
The three evaluation metrics are formally defined as follows. Let
us name G the subset of requests that are correctly associated to
the corresponding artificial degradation, P the subset of requests
affected by one of the two artificial degradation, C; and Cy the two
identified clusters. We define the recall as |G|/|P|, the precision as
|G|/(|C1| + |C2]), and the F-score as from equation 5.

4.4 Threats to Validity

A threat to validity of our empirical study is that our experiments
were performed on only one subject application, which makes it
difficult to generalize the results to other distributed service-based
systems. However, E-Shopper has been already used as a represen-
tative example of a microservice-based application in software per-
formance research [1]. We expect our results to be generalizable to
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other distributed systems that employ a common workflow-centric
tracing solution.

Our current implementation only consider RPCs execution time
for cluster identification, whereas often other trace attributes are
correlated to request latency degradation (such as resource con-
sumptions, http headers, RPCs execution node, etc.). While this is a
potential threat, in our opinion this is not a major one, since our
approach can be easily adapted to other attribute types. There is no
theoretical limitation that prevents our approach from considering
attributes other than RPCs execution time. A first formalization in
this direction is discussed in Section 5.

Artificial delays were injected into randomly chosen RPCs at
application-level. This may be a threat, since performance degra-
dation can happen on different level of the software stack (e.g.,
libraries, operating systems, databases, networks, etc.), and it can
be due to different reasons, such as workload spikes, network is-
sues, contention of hardware resources and so on. However, in this
work we only consider performance degradations related to RPC
execution time, hence we consider injected delays as a rough but
reasonable simulation of a generic performance problem (e.g. slow
query, expensive computation, etc). Also, in our experiments we
only consider cases where injected pairs of artificial degradations
have different types. Basically, we do not consider cases where dif-
ferent performance issues produce same performance degradation
in terms of request latency. Those cases are excluded from evalua-
tion, because they are very specific and less frequent in practice.
However, we plan to extend our study also considering these cases
in future works.

A different threat is that we perform load test sessions with
a single synthetic user. We used such a simple and controllable
workload, because it allows us to have control on causes of relevant
latency degradations. Using a more intense and mixed workload
(e.g. requests to different pages of the application) may lead to more
chaotic system behavior, but injected performance degradation may
become not relevant and the approach difficult to evaluate. We leave
the evaluation of our approach in more chaotic contexts to future
works. Also, the approach is evaluated on sets of about 1000 traces,
while performance debugging in modern distributed systems could
involve higher number of traces. We plan to evaluate the scalability
of the approach in future.

In spite of these threats, this empirical study design allowed
us to evaluate our approach in a controlled setting. Thus, we are
confident that the threats have been minimized and our results are
reliable.

4.5 Baseline approaches

In this section we describe the approaches that we have used as
baselines, that are: three widely popular clustering algorithms (i.e.,
K-Means, Hierachical, Mean shift) and an optimization based ap-
proach (that we call here Branch and Bound [14]). For clustering
algorithms we use the implementation provided by scikit-learn
Machine Learning library!!. We have instead implemented the op-
timization approach, since no implementation was available, and
the source code is publicly available in [28].

https://scikit-learn.org
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K-Means The K-Means algorithm [17] clusters data by trying to
separate samples in k groups by equal variance, while minimizing a
criterion known as within-cluster sum-of-squares. KMeans requires
the number of clusters to be specified.

Hierachical Hierarchical clustering [21] is a general family of
clustering algorithms that build nested clusters by merging or split-
ting them successively. We use an implementation based on a bot-
tom up approach: each observation starts in its own cluster, and
clusters are successively merged together. Also hierarchical clus-
tering requires the number of clusters to be specified.

Mean shift MeanShift clustering [4] aims to discover blobs in a
smooth density of samples. It is a centroid based algorithm, which
works by updating candidates for centroids to be the mean of the
points within a given region. The mean shift algorithm doesn’t
require upfront specification of number of clusters.

Branch and bound The branch and bound approach proposed
in [14] is the closest one to our work. It aims to explain latency
intervals through combination of traces attributes. It works both on
continuous and categorical trace attributes. In case of continuous
attributes, an encoding step is required to transform them in a
binary form: the value range of an attribute is split between several
binary attributes, each one corresponding to an interval of value. In
our experiments, we split the RPC execution time by using the same
approach used in search space reduction (i.e. Mean shift algorithm,
see Section 3.2).

4.6 Results

Figure 6 shows average and standard deviation of F-scores achieved
by each approach in both normal and noised experiments, where
our approach is denoted as Genetic. F-score in normal experiments
suggests that all the approaches identify near optimal clusters, ex-
cept for the Mean shift algorithm. Conversely, results of noised
experiments show different performances among approaches. Ac-
cording to reported F-scores in noised experiments (see detailed
results in Table 2), clusters identified by our approach are better
than those identified by machine learning clustering approaches.
Kmeans, Hierarchical and Mean shift are highly precise (see Figure
7), thus suggesting that each identified cluster is almost always
composed by requests affected by the same artificial degradation.
But their performances are low in terms of recall (see Figure 8), in
that an average recall of = 0.57 for Kmeans and Hierarchical, and
of = 0.22 for the Mean Shift algorithm have been obtained. These
results suggest that identified clusters do not include significant
portion of requests affected by artificial degradations. The reason of
these behaviors relies on the fact that machine learning approaches
blindly group together requests with similar RPC execution times,
without considering their correlation with latency degradation.
Therefore, performance fluctuation in RPC that doesn’t produce
any effect in the request, such as performance degradations in
asynchronous RPC (i.e. second type of noise), can easily confuse
those methods. Our approach provides on average +48% in terms
of recall with respect to best clustering approaches (Kmeans and
Hierarchical), without showing decrease in precision, thus leading
to an improvement +26% in terms of F-score, thereby positively
answering to RQ1.
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Genetic Branch and bound Kmeans Hierarchical Mean shift

ID | F-score | Prec | Recall | F-score | Prec | Recall | F-score | Prec | Recall | F-score | Prec | Recall | F-score | Prec | Recall
0 0.844 1.0 0.73 0.743 0.741 0.745 0.678 1.0 0.513 0.678 1.0 0.513 0.349 1.0 0.211
1 0.987 1.0 0.974 0.979 1.0 0.959 0.716 1.0 0.557 0.716 1.0 0.557 0.352 1.0 0.214
2 0.855 0.986 | 0.754 0.714 1.0 0.555 0.716 1.0 0.558 0.716 1.0 0.558 0.341 1.0 0.205
3 0.855 1.0 0.747 0.862 1.0 0.758 0.961 0.925 1.0 0.956 0.92 0.995 0.272 1.0 0.157
4 0.992 1.0 0.984 0.769 0.765 0.773 0.722 1.0 0.565 0.722 1.0 0.565 0.272 1.0 0.158
5 0.951 1.0 0.907 0.879 1.0 0.784 0.708 0.964 0.56 0.71 0.956 0.565 0.364 1.0 0.223
6 0.992 1.0 0.984 0.888 0.799 1.0 0.681 1.0 0.516 0.681 1.0 0.516 0.43 1.0 0.274
7 0.87 1.0 0.77 0.849 1.0 0.738 0.68 0.98 0.521 0.683 0.99 0.521 0.273 1.0 0.158
8 0.997 1.0 0.995 0.847 1.0 0.734 0.696 1.0 0.534 0.692 1.0 0.529 0.317 1.0 0.188
9 0.904 0.976 | 0.843 0.873 0.974 | 0.791 0.733 1.0 0.579 0.731 0.991 0.579 0.468 1.0 0.305
10 0.837 0.993 0.724 0.871 1.0 0.771 0.696 1.0 0.534 0.696 1.0 0.534 0.353 1.0 0.215
11 0.992 1.0 0.984 0.867 1.0 0.766 0.692 0.98 0.535 0.692 0.98 0.535 0.26 1.0 0.15

12 0.984 1.0 0.969 1.0 1.0 1.0 0.982 0.965 1.0 0.982 0.965 1.0 0.374 1.0 0.23

13 0.985 0.975 | 0.995 0.987 1.0 0.974 0.696 1.0 0.534 0.696 1.0 0.534 0.415 1.0 0.262
14 0.815 0.951 0.714 0.619 0.978 | 0.453 0.706 0.939 | 0.565 0.706 0.939 | 0.565 0.395 0.923 | 0.251
15 0.992 1.0 0.984 1.0 1.0 1.0 0.733 1.0 0.579 0.733 1.0 0.579 0.43 1.0 0.274
16 0.926 1.0 0.862 0.676 1.0 0.51 0.7 1.0 0.538 0.696 1.0 0.533 0.259 1.0 0.149
17 0.834 1.0 0.716 0.838 1.0 0.721 0.68 1.0 0.515 0.68 1.0 0.515 0.438 1.0 0.281
18 0.828 0.953 | 0.732 0.663 0.695 | 0.634 0.7 0.964 | 0.549 0.7 0.964 | 0.549 0.429 0.981 0.275
19 0.734 1.0 0.58 0.844 1.0 0.731 0.669 0.99 0.505 0.671 1.0 0.505 0.38 1.0 0.234
20 0.997 1.0 0.995 1.0 1.0 1.0 0.683 1.0 0.518 0.683 1.0 0.518 0.398 1.0 0.249
21 0.845 1.0 0.732 0.849 1.0 0.737 0.669 1.0 0.503 0.669 1.0 0.503 0.292 1.0 0.171
22 0.878 1.0 0.782 0.875 1.0 0.777 0.689 1.0 0.526 0.689 1.0 0.526 0.407 1.0 0.255
23 0.886 1.0 0.795 0.832 1.0 0.713 0.7 0.972 0.546 0.707 1.0 0.546 0.403 1.0 0.253
24 0.853 0.993 | 0.747 0.855 1.0 0.747 0.691 0.99 0.531 0.691 0.99 0.531 0.318 1.0 0.189
25 1.0 1.0 1.0 0.896 0.811 1.0 0.703 1.0 0.543 0.703 1.0 0.543 0.291 1.0 0.17

26 0.852 1.0 0.742 0.852 1.0 0.742 0.688 1.0 0.524 0.688 1.0 0.524 0.418 1.0 0.265
27 0.995 1.0 0.989 0.887 0.987 | 0.805 0.674 1.0 0.508 0.674 1.0 0.508 0.371 1.0 0.228
28 0.955 0.923 0.99 0.73 0.829 0.653 0.714 1.0 0.555 0.709 1.0 0.55 0.585 1.0 0.414
29 0.686 1.0 0.522 0.686 1.0 0.522 0.72 1.0 0.562 0.724 1.0 0.568 0.263 1.0 0.151

Table 2: Detailed results of noised experiments

The analysis of the F-score (see Figure 6) reveals that our ap-
proach not only outperforms common machine learning approaches,
but also the state-of-the-art technique against which we compare it.
Our approach shows similar precision with respect to the branch
and bound approach (see Figure 7), but it achieves improvements
in terms of recall. The result of Wilcoxon test confirms that our
approach outperforms branch and bound in noised experiment in
terms of recall with statistical significance (p < 0.05) and medium
effect size (Cohen’s d < 0.8 and > 0.5). Although both approaches
are driven by the same optimization objective, the presented tech-
nique achieves an improved recall due to the searching capability of
the genetic algorithm on a wider solution space. To further confirm
the improvement over the state of art, we also performed Wilcoxon
test on F-Score results. Results of statistical test confirm that our
approach outperforms branch and bound approach with statistical
significance (p < 0.05) in both normal and noised experiments,
where the effect size is negligible (< 0.2) in normal experiments
and medium in noised experiments. These results suggest that per-
formance analysts should use our approach for clustering requests
affected by similar performance issues, since identified clusters are
more comprehensives than those identified by the state of the art
approach, thus positively answering to RQ2.

Both optimization-based approaches seems to be more resilient
to noise with respect to machine learning approaches. Optimization-
based approaches steer the search towards clusters that are strictly
related to latency degradation. Comparison of F-score among nor-
mals and noises experiments show the robustness of our approach:
Genetic approach decreases its average F-score of just = 8%, Branch
and Bound decreases its average F-score of ~ 14%, Hierachical and
Kmeans of ~ 28%, and the Meanshift of ~ 54%. These results show
the robustness of our approach, hence positively answering to RQ3.

Table 3 shows the average execution time and standard deviation
of each approach. Note that each load test session produces a set of
about 1000 traces, therefore the execution time results are referred
to this scale. Common clustering algorithms are extremely faster
compared to optimization-based methods. However they fail to
achieve a good recall in noised experiments. Furthermore, both
optimization-based methods provide as output, together with each
cluster, a description of its main characteristics (i.e. latency degrada-
tion pattern), which can then be used as a valuable starting point for
a deeper performance analysis. Performance analyst should decide,
based on the context, which technique to use. Machine learning
clustering are preferable only in cases where optimizations-based
methods are not able to provide solutions in a reasonable time,
since the former do not provide easily interpretable results and
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Normal Noised
Execution time Execution time Execution time Execution time
Approach . .
mean (sec) standard deviation (sec) mean (sec) standard deviation (sec)

Genetic 17.551 3.390 37.106 21.143
Branch and bound 49.070 12.820 102.259 89.291
Kmeans 0.024 0.006 0.025 0.005
Hierachical 0.004 0.001 0.004 0.001
Mean shift 0.509 0.08 0.307 0.039

Table 3: Execution time in experiments: average and standard deviation

are less robust to noise. It is important to note that efficiency of
optimization-based methods is influenced not only by the scale
of the problem (number of traces under analysis) but also by the
shape of RPCs execution time distributions. This aspect is suggested
by the fact that execution times in both optimization-based meth-
ods are significantly higher in noised experiments. The reason of
this behavior can be explained by the fact that different shapes
of RPCs execution time distribution trigger different performance
behaviors in optimization-based methods. For example, branch and
bound can less frequently prune branches since bound conditions
are not verified, or distributions with multiple modes can trigger a
time-comsuming precomputation in our approach.

Obviously, if the analysis of requests allows to efficiently com-
pute clusters with optimization-based methods, our proposed ap-
proach should be preferred since it outperforms the state-of-art
baseline both in terms of effectiveness and efficiency (+179% faster
in normal experiments and +175% faster in noised experiments).
Therefore, we positively answer also to RQ4.

For sake of completeness, all results of both normal and noised
experiments are publicly available in [5].

5 ONE STEP AHEAD

Often, other information than RPC execution time are related to
performance degradation (e,g. http header, RPC execution node,
resource consumption, request size, etc.). This information may
be often critical to debug performance issues. In this section, we
describe how our problem can be easily extended to trace attributes
other than RPC execution time. Typically, a trace attribute can
either be categorical or continuous. A categorical attribute can take
one of a limited and usually fixed number of possible values (e.g.
request country, request language, RPC execution node, etc.), while
a continuous attribute can take any value in a particular interval
(e.g. request size, RPC response time, etc.).

The problem formalized in Section 2.2 can be generalized as
follows:

Definition 5.1. A trace r is an ordered sequence of attributes
r = (ao,ai, ...,am,L), where a; denote the observed value of a
traced attribute j, and L is the observed latency of the request.

Definition 5.2. A trace attribute j can be either categorical or
continuous. A categorical attribute can take a value a; in a finite set
Aj, aj € Aj. A continuous attribute can take value in a continuous
interval a; € [a]'."i", a;.n“x).

According to the attribute type, a condition can be either cate-
gorical or continuous.

171

Definition 5.3. A categorical condition is a pair ¢ = (j, v), where
Jj is a categorical attribute and v € Aj. A request r = (..., aj,...)
satisfies ¢, denoted as r < ¢, if and only if a; = v.

Definition 5.4. A continuous condition cisatriple ¢ = (j, Umin, Umax)»

where j is a continuous attribute, and [v;in, Umax) represent a sub-
interval of the interval [a’."’",a;."“x). A request r = (...,aj,...)
satisfies c, denoted as r < c , if:

Umin < 4j < Umax

Definition 2.3 of pattern still holds.

Obviously, this generalization will impact the genetic represen-
tation of a solution, as well genetic variation operators and fitness
optimization.

6 RELATED WORK

Workflow-centric tracing research area [23] is certainly related
to our work. Dapper [27] was the pioneering work in this space,
Canopy [12] processes traces in real-time, derives user-specified
features, and outputs performance datasets that aggregate across
billions of requests. Pivot Tracing [16] gives users the ability to
define traced metrics at runtime, even when crossing component
or machine boundaries.

Interesting work in the area of supporting performance diagnosis
has appeared in the last few years. The study of Sambavisan et al.
[24] compares three well-known visualization approaches in the
context of results presentation of an automated performance root
cause analysis approach [25]. Malik et al. [18] use performance
counter data of a load test to craft performance signatures and use
them to pinpoint the subsystems responsible for the performance
violations. In [19] four machine learning approaches are presented
and evaluated to help performance analysts to more effectively
compare load tests in order to detect performance deviations which
may lead to SLA violations, and to provide them with a smaller
and manageable set of important performance counters. StackMine
[8] also aims to improve performance debugging by reducing the
scope of the callstack traces analysis.

The closest work to ours is the approach by Krushevskaja and
Sandler [14], which we have in fact used in our experimentation for
sake of comparison. They introduced multi-dimensional f-measure,
that is an information retrieval metric helping to identify the best
values of monitored attributes for a given latency interval. They
also proposes algorithms that use this metric not only for a fixed
latency interval (branch and bound and forward feature selection),
but also to explain the entire range of service latency by segmenting
it into smaller intervals.
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7 CONCLUSION

In this paper we have introduced an automated approach for detect-
ing relevant patterns in workflow-centric traces with the goal of
improving performance debugging in service-based systems. The
approach has been based on a genetic algorithm that aims at cluster-
ing traces with similar characteristics, in terms of execution times of
called RPCs, that determine latency degradations. We have applied
our approach on a microservice-based application, and we have
compared our results (in terms of effectiveness and efficiency) with
four other approaches. The results demonstrate that our approach
outperforms existing ones, especially when system runtime behav-
ior is not very regular but varies over time in terms of execution
time of called RPCs. This is a relevant result, because non-regular
behavior systems are the ones where it is difficult to determine,
without automation, the causes of performance degradation.

Our first promising results encourage us to deeply investigate
the application of our approach to other distributed systems, ever
more chaotic, so to gain confidence in its ability to capture per-
formance degradation patterns. As future work, by relaying on
a wider experimentation, we intend to identify peculiar charac-
teristics of degradation patterns, possibly system-specific, so to
proactively provide recommendations to system designers before
a performance degradation appears. We intend to generalize the
approach to trace attributes other than RPC execution time (e.g.
request size), thus addressing the issue defined in Section 5. We
also plan to put effort on the improvement of the efficiency and
scalability of our approach, as we believe that precomputed informa-
tion can be further exploited to reduce the amount of computation
needed to identify latency degradation patterns.
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