
Transferring Pareto Frontiers across Heterogeneous Hardware
Environments

Pavel Valov
pvalov@uwaterloo.ca
University of Waterloo

Waterloo, Ontario, Canada

Jianmei Guo
guojianmei@gmail.com

Alibaba Group
Shanghai, China

Krzysztof Czarnecki
kczarnec@gsd.uwaterloo.ca

University of Waterloo
Waterloo, Ontario, Canada

ABSTRACT
Software systems provide user-relevant configuration options called
features. Features affect functional and non-functional system prop-
erties, whereas selections of features represent system configura-
tions. A subset of configuration space forms a Pareto frontier of
optimal configurations in terms of multiple properties, from which
a user can choose the best configuration for a particular scenario.
However, when a well-studied system is redeployed on a different
hardware, information about property value and the Pareto frontier
might not apply. We investigate whether it is possible to transfer
this information across heterogeneous hardware environments.

We propose a methodology for approximating and transferring
Pareto frontiers of configurable systems across different hardware
environments. We approximate a Pareto frontier by training an
individual predictor model for each system property, and by aggre-
gating predictions of each property into an approximated frontier.
We transfer the approximated frontier across hardware by training
a transfer model for each property, by applying it to a respective
predictor, and by combining transferred properties into a frontier.

We evaluate our approach by modeling Pareto frontiers as binary
classifiers that separate all system configurations into optimal and
non-optimal ones. Thus we can assess quality of approximated and
transferred frontiers using common statistical measures like sensi-
tivity and specificity. We test our approach using five real-world
software systems from the compression domain, while paying spe-
cial attention to their performance. Evaluation results demonstrate
that accuracy of approximated frontiers depends linearly on predic-
tors’ training sample sizes, whereas transferring introduces only
minor additional error to a frontier even for small training sizes.

CCS CONCEPTS
• Software and its engineering → Software performance; •
Computing methodologies→ Supervised learning by regression;
• Mathematics of computing → Combinatorial optimization.

KEYWORDS
Configurable software, Performance prediction, Pareto frontier,
Regression trees, Linear regression, Pareto frontier transferring

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6991-6/20/04. . . $15.00
https://doi.org/10.1145/3358960.3379127

ACM Reference Format:
Pavel Valov, Jianmei Guo, and Krzysztof Czarnecki. 2020. Transferring
Pareto Frontiers across Heterogeneous Hardware Environments. In Pro-
ceedings of the 2020 ACM/SPEC International Conference on Performance
Engineering (ICPE ’20), April 20–24, 2020, Edmonton, AB, Canada. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3358960.3379127

1 INTRODUCTION
Software systems provide configuration options for end users to
provide flexibility in meeting their requirements. Apart from having
a direct influence on a system’s functional behavior, configuration
options usually influence non-functional properties, like runtime
performance, memory consumption, and overall computational
cost. System’s configuration options that are available for tuning
to end users of the system are called features [7]. Specific choice
of feature values determines a system configuration. Thus for each
system configuration a user can acquire a set of measured properties
values. We regard a configuration as Pareto optimal one, if no other
configuration improves one ormore properties of the Pareto optimal
configuration without degrading at least one other property. All
Pareto optimal configurations of a system define a Pareto frontier
of this system. In other words, a Pareto frontier is a set of system
configurations each of which is optimal in its own specific way.

Identifying the Pareto frontier for a configurable system is chal-
lenging. First of all, building the exact Pareto frontier of a system’s
configuration space requires complete knowledge of properties’
values for each configuration. This might be infeasible since: (1) a
configuration space usually grows exponentially with the number
of features, (2) benchmarking time for a single configuration might
be high, (3) while a total benchmarking budget might be relatively
low. Secondly, if a user has to deploy a system across heteroge-
neous hardware, then benchmarking results previously acquired on
one hardware might be irrelevant for another hardware and new
measurements of a configuration space might be required.

The first problem of incomplete benchmarking information can
be solved by approximation of properties’ values for a particular
hardware environment. This topic has been thoroughly investi-
gated for various use cases [7, 9, 15, 16, 31–33, 37, 38]. For example,
some researchers investigate runtime performance prediction of
configurable software systems based on small random samples of
measured configurations, or in another data-efficient way [7, 8, 33].

The second problem of heterogeneous hardware environments
can be solved by transferring gained knowledge about system’s
properties across hardware platforms. This topic has also gained
attention in research community [2, 3, 9, 17, 18, 31, 32, 34]. For
example, researchers employ machine learning techniques to trans-
fer knowledge about system performance across a heterogeneous
computational cluster or for a simulated robotic system [17, 18, 34].

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

12

https://doi.org/10.1145/3358960.3379127
https://doi.org/10.1145/3358960.3379127

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Pavel Valov, Jianmei Guo, and Krzysztof Czarnecki

In this work we propose a novel approach for transferring Pareto
frontiers of optimal configurations of highly configurable software
systems across heterogeneous hardware environments. The main
goal of our research is to develop a pragmatic methodology that
could be applied in real-world scenarios. This goal resulted in sev-
eral major constraints that guided a development of our approach.

First of all, we do not assume that a user has any control over
the sampling process of a system’s configuration space and might
be restricted to historically benchmarked data only. Because of that,
to explore systems’ configuration spaces in our experiments we
employ pseudo-random sampling in order to imitate this worst-case
scenario of impossibility to make any sampling choices by a user.

Secondly, we assume that a practitioner might have a limited
information about actual system properties values, and it might
not cover a configuration space entirely. Therefore, we analyze
different sampling sizes in our experiments, in order to provide an
assessment of how accurate predictors and transferrers might be.

Thirdly, we assume that a user can be working with a closed-
source software and might not have any understanding about inter-
nal workings of a system, and won’t be able to use this knowledge
to improve predictors or transferrers. Consequently, our methodol-
ogy regards analyzed software systems as ‘black-boxes’ that output
particular properties’ values, given a configuration and a workload.

Finally, our goal to make the approach practical imposes some
restrictions on predictors and transferrers themselves. Users should
be able to: (1) train these models using minimal amount of training
data, (2) build and validate the models in a completely automatic
fashion, (3) visualize the models in an intuitive way, in order to
get additional insights from training data and to verify that the
models really work. All these requirements forced us to investi-
gate basic machine learning methods as candidate models for our
methodology, such as linear regression and regression tree models.

Taking into the account all previously described requirements,
we propose a practical black-box approach that uses machine learn-
ing methods for approximation and transferring of Pareto frontiers
of configurations across heterogeneous hardware environments.
This approach (1) builds a predictor model for each system prop-
erty of interest, based on a sample of configurations measured on a
source hardware platform, (2) combines predicted properties values
of all configurations into an approximated Pareto frontier, (3) builds
a transfer model for each system property of interest, based on a
sample of configurations measured on both source and destination
hardware, and (4) applies the transfer models to the approximated
Pareto frontier to transfer it to the destination hardware.

To sum up, in this work we make the following contributions:

• We proposed an approach for approximation and transfer-
ring of Pareto frontiers of optimal configurations across het-
erogeneous hardware environments, described previously.

• We comprehensively benchmarked five different configurable
software systems across a heterogeneous collection of 34
hardware environments based on Microsoft Azure cloud in-
frastructure, to acquire necessary data for our experiments.

• We implement the proposed approach and demonstrate its
generality by evaluating it using the benchmarked software
systems. We regard approximated and transferred Pareto

frontiers as binary classifiers that categorize all configura-
tions into Pareto optimal and non-optimal ones on a speci-
fied hardware. Thus we can assess quality of these frontiers
by using classification evaluation measures (e.g. sensitivity,
specificity, and Matthew’s correlation coefficient) and by
analyzing measures’ trends with changes in predictors and
transfer models. Our empirical results demonstrate that it
is possible to achieve high accuracy of transferred Pareto
frontiers, according to the classification measures and trends.

Source code and data to reproduce our experiments are available
online at https://bitbucket.org/valovp/icpe2020.

2 EXAMPLE AND NOTATION
To formalize the problem of Pareto frontier approximation and
transferring, we need to introduce necessary definitions and nota-
tions. Configurable software system is a system that provides config-
uration options, e.g. compression utilities, video codecs, compilers,
etc. Configuration options influence functional properties (e.g. com-
pression or encoding algorithm, compilation heuristic, etc.) and non-
functional (e.g. performance, memory consumption, scalability, etc.)
of the respective configurable software system. Feature is a configu-
ration option that is pertinent to system consumers, e.g. developers,
system administrators, expert users, etc. We denote a particular
system feature by a binary variable fi ∈ B, whereB = {0, 1}, and all
system’s features by a set of variables F = { f1, f2, . . . fNf }, where
Nf ∈ N is a total number of features of the system. Configuration
is a unique set of actually assigned values to all Nf features. We
denote a configuration by ci ∈ BNf , and all configurations by a set
C = {c1, c2, . . . cNc }, where Nc ∈ N is a total number of valid con-
figurations. Each system has a set of functional or non-functional
properties that we denote by P = {p1,p2, . . .pNp }, where Np ∈ N

is a total number of such properties.
We perform our study on various hardware environments that we

denote by hk ∈ N which together form a heterogeneous hardware
cluster H =

{
h1,h2, . . . ,hNh

}
, where Nh ∈ N is a total number

of hardware environments. Each property pj from the set P is ex-
pected to vary when measured for the same configuration ci across
the cluster H. Thus each configuration ci has an actual measured
property value yci ,pj ,hk for each property pj on each hardware hk .
We view properties as functions that map hardware environments
and configurations to actual measured values:

pj : BNf × H→ R

pj (ci ,hk) = yci ,pj ,hk (1)

All actual properties’ values of a configuration ci on a hardware
hk form a vector that we denote by yci ,P,hk :

yci ,P,hk = [yci ,p1,hk ,yci ,p2,hk , . . . ,yci ,pNp ,hk] (2)

Actual properties’ values of all configurations ci of a sampleCS ⊂ C
and of the whole population C on a hardware hk form the corre-
sponding sets YCS ,P,hk and YC,P,hk :

YCS ,P,hk =
⋃

ci ∈CS

{yci ,P,hk } (3)

YC,P,hk =
⋃
ci ∈C

{yci ,P,hk } (4)

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

13

Transferring Pareto Frontiers across Heterogeneous Hardware Environments ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada

Since our primary goal is to transfer a Pareto frontier across
hardware environments, we need to be able to distinguish between
them. We call an environment a source hardware environment if we
use it to measure actual properties values of configurations, to train
predictors for each system property, and to approximate a Pareto
frontier.We call an environment a destination hardware environment
if we use it to train transferrers for each system property, and if we
transfer the approximated frontier to this environment. We denote
source and destination environments by hsrc and hdst respectively.

Before we can define what Pareto frontier is, we need to in-
troduce notions of preference and domination between different
configurations. We assume that each property pj has a preferred
direction of values that can be inferred from a system domain, e.g. a
compression software has a property ‘compression rate’ and higher
values of this property are preferred to lower ones. For the sake of
the example, let’s pretend that for all properties in P higher values
correspond tomore preferred values. Then properties in P are in fact
utility functions that describe a level of preference of a particular
configuration. Thus we can denote that a property value yc,pj ,hk
is preferred to or improves a property value yc′,pj ,hk simply by:
yc,pj ,hk > yc′,pj ,hk . We say that a configuration c dominates a con-
figuration c′ on a hardware hk , or c ≻hk c′ , if yc,pj ,hk > yc′,pj ,hk
for some pj ∈ P and yc,pj ,hk ≥ yc′,pj ,hk for all pj ∈ P.

Finally, we can introduce notions of Pareto optimality and Pareto
frontier.We call a configuration c a Pareto optimal configuration on a
hardware hk , if there is no other configuration c′ that improves one
or more properties values of c without worsening at least one other
property value, i.e. c is not dominated by any other configuration c′.
More formally, c is a Pareto optimal configuration on a hardware hk ,
if there is no other c′ such that yc′,pj ,hk > yc,pj ,hk for some pj ∈ P
and yc′,pj ,hk ≥ yc,pj ,hk for all pj ∈ P. Pareto frontier of a system
on a given hardware hk is a set of all Pareto optimal configurations
on this hardware that we denote by CPFhk . In other words, Pareto
frontier is a set of configurations that are not strictly dominated by
any other configuration, or more formally:

CPFhk
= {c ∈ C : {c′ ∈ C : c′ ≻hk c, c′ , c} = ∅} (5)

We have introduced all necessary definitions and notations, thus
we can summarize the problem statement in proper terms. We
deploy a configurable software system (e.g. XZ) on a hardware
platform hsrc . We select a random training sample of configura-
tions Ctrn ⊂ C and for each configuration ci ∈ Ctrn we acquire
an actual value yci ,pj ,hsrc of each property pj ∈ P thus forming
a set of measured values YCtrn,P,hsrc . Sets Ctrn and YCtrn,P,hsrc
together form a sample of measured configurations SCtrn,P,hsrc on
a hardware platform hsrc . Our goal is to build an approximated
Pareto frontier ĈPFhsrc based on the sample SCtrn,P,hsrc and to trans-
fer this frontier to all other hardware H \ {hsrc }. Thus we can use
the Pareto frontier as a binary classifier that separates all configu-
rations into optimal and non-optimal ones, and based on a small
random sample of measured configurations SCtrn,P,hsrc classify all
configurations C on all hardware platforms H.

3 TRANSFERRING PROCESS
The process of transferring Pareto frontiers can be divided into
several main steps: (1) training a predictor for each studied system

property (2) building an approximated Pareto frontier using trained
predictors (3) training a transferrer for each studied system property
(4) transferring the approximated Pareto frontier across hardware
platforms using transferrers.

3.1 Training Property Prediction Models
The process of training a property prediction model can be sepa-
rated into several steps: (1) selecting a data sampling method (2)
sampling training data (3) selecting a property predictor model (4)
training a property predictor (5) selecting an evaluation metric and
a validation strategy for the trained predictor.

First of all, we need to select a method for sampling training
data that will be used for training properties’ predictors. There
are many different ways in which one can generate a sample of
training configurations Ctrn from a system’s configuration space:
pseudo-random sampling, quasi-random sampling, experimental
design techniques, and custom sampling heuristics. In the current
work we use pseudo-random sampling of configurations in order to
mimic the worst-case scenario, when a practitioner does not have
any control over selection of training data and available measured
configurations might appear completely random. The same para-
digm was used in the previous work on performance prediction of
configurable software systems by Guo et al. [7] and Valov et al. [33].
However, in a practical scenario where a practitioner has control
over a sampling process, we would advise to use more sophisticated
sampling methods like quasi-random sampling and experimental
design techniques, since they provide a much more even coverage
of the configuration space and should improve quality of a trained
predictor. We leave a comparison of different sampling methods
for property prediction models’ training data for a future work.

Secondly, we need to perform actual data sampling. In the previ-
ous work [7, 33] researchers used sampling sizes that are multiples
of the number of features Nf of the respective system. During eval-
uation of our approach we’ve tried all possible sampling sizes in
range [2,NC−1] in order to provide smoother trends for presenting
regression and classification measures (see Section 4 for details).

Thirdly, we need to choose which model to use as property pre-
dictors. During preliminary evaluation of our approach we tried
two different regression models: regression trees and random forest.
We selected these models as candidates for our solution since they
have already showed good results for prediction of configurable
systems properties [7, 31–33, 37]. Our preliminary experiments
demonstrated that unpruned regression tree models provided bet-
ter prediction results than random forest models. We came to a
conclusion that this happens because we work with relatively small
training sample sizes. Although random forest model also generates
unpruned regression trees to average upon, it trains them using
observations resampled with replacement from an original sample
provided to the random forest model itself. This approach helps to
avoid overfitting when training samples are relatively large, but
when training samples are tiny, each individual tree ends up loosing
a lot of information. Therefore, in our case a single unpruned re-
gression tree (but trained on a full training sample) will outperform
an ensemble of trees that were trained on resampled data.

Fourthly, we have to train property predictors. The only thing
left to do, is to select a parameter tuning strategy. We work with

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

14

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Pavel Valov, Jianmei Guo, and Krzysztof Czarnecki

unpruned regression trees, i.e. we ‘grow’ our tree models to a maxi-
mal possible size, when each tree has only one observation in each
leaf and all available features are used in construction of the tree.
We can regard regression tree predictor as a function RT , that is
generated by a fitting function fitRT . Fitting function, given a small
random training sample of configurations Ctrn and their measured
values YCtrn,pj ,hk of a property pj on a hardware hk , produces
corresponding predictors for the property pj on the hardware hk :

fitRT (Ctrn ,YCtrn,pj ,hk , ci) = RTCtrn,pj ,hk (6)

Predictor RTCtrn,pj ,hk , given a sample of configurations CS , can
predict their values for the property pj on the hardware hk :

RTCtrn,pj ,hk (CS) = ŶCS ,pj ,hk (7)

Finally, we need to select an evaluation metric and a validation
strategy for trained predictors. We have selected mean absolute
percentage error (MAPE) as a metric for evaluation of RT models
since it provides a simple and intuitive measure that is robust to
outliers. MAPE can be thought of as a mean of multiple absolute
percentage errors (APE). If APE can be expressed as a function that
consumes actual yci ,pj ,hk and predicted ŷci ,pj ,hk property values:

APE(yci ,pj ,hk , ŷci ,pj ,hk) =
|yci ,pj ,hk −ŷci ,pj ,hk |

yci ,pj ,hk
× 100% (8)

then MAPE can be expressed as a function that consumes sets of
actual YCS ,pj ,hk and predicted ŶCS ,pj ,hk property values:

MAPE(YCS ,pj ,hk , ŶCS ,pj ,hk) =

∑NCS
i=1 APE(yci ,pj ,hk , ŷci ,pj ,hk)

NCS

(9)

where NCS is a number of configurations in the set CS .
We have selected leave-one-out cross-validation (LOOCV) as a

validation strategy for predictors, since it is especially suitable in a
scenario, when the cost of measuring properties for a single con-
figuration is very high and a practitioner wants to minimize the
measurement effort. Imagine that a practitioner acquired a sam-
ple of configurations CS of size NCS along with their measured
values YCS ,pj ,hk of a property pj on a hardware hk . LOOCV is
going to generate out of CS sample: NCS testing samples Citst =
{ci } that consist of a single configuration and NCS training sam-
ples Citrn = CS \ {ci } that consist of all other configurations.
Thus LOOCV generates NCS pairs of training and testing samples

{(C1trn ,C
1
tst), . . . , (C

NCS
trn ,C

NCS
tst)}. Then by training a predictor, e.g.

a regression tree RT , on each training sample Citrn and by testing
the predictor on the corresponding testing sample Citst , we can
acquire a column vector of predicted property values:

ŶCS ,pj ,hk =

RTC1trn,pj ,hk (C
1
tst)

RTC2trn,pj ,hk (C
2
tst)

...

RT
C
NCS
trn ,pj ,hk

(C
NCS
tst)

(10)

We can use YCS ,pj ,hk and ŶCS ,pj ,hk to calculate MAPE in order to
assess the predictor quality.

3.2 Building an Approximated Frontier
The process of building an approximated Pareto frontier consists of
the following main steps: (1) approximating all system properties P
for all configurations C using trained predictors from Section 3.1,
(2) calculating a Pareto frontier ĈPFhsrc based on the approximated
configurations’ properties.

First of all, we need to acquire all properties’ values P for all
configurations C, i.e. ŶC,P,hsrc , to assess which configurations are
in fact Pareto optimal on a hardware hsrc , and thus to generate
a Pareto frontier. However, we know properties’ values only for
a small training sample of configurations Ctrn , i.e. YCtrn,P,hsrc .
Therefore, we need to approximate the properties’ values for re-
maining unmeasured configurations Cr em = C \ Ctrn , i.e. acquire
ŶCr em,P,hsrc . We can obtain ŶCr em,P,hsrc by systematically pre-
dicting all properties in P for Cr em using corresponding predictors
and combining resulting column vectors into a matrix:

ŶCr em,P,hsrc =[
RTCtrn,p1,hsrc (Cr em), · · · , RTCtrn,pNp ,hsrc (Cr em)

] (11)

We can obtain ŶC,P,hsrc by combining matrices of measured and
approximated properties’ values:

ŶC,P,hsrc =
[
YCtrn,P,hsrc
ŶCr em,P,hsrc

]
(12)

Finally, based on the resulting matrix of all properties’ values
ŶC,P,hsrc we can build the approximated Pareto frontier ĈPFhsrc
using any of the known algorithms for exact frontier construction:

ĈPFhsrc
= PF(C, ŶC,P,hsrc) (13)

3.3 Training Property Transferring Models
The process of training a property transferring model can be sepa-
rated into the following steps: (1) sampling training data, (2) select-
ing a property transferrer model, (3) training a property transferrer,
(4) selecting an evaluation metric and validation strategy for the
trained transferrer.

First of all, to train a property transferrer we need a training
sample of configurations Cboth that are measured on both source
hsrc and destination hdst hardware. In Section 3.1 we’ve already
defined a procedure for acquiring a training sample Ctrn measured
on hsrc . Naturally, we can measure configuration from Ctrn on
hdst as well, thus forming the necessary sample Cboth ⊆ Ctrn .

Secondly, we have to select a model to be used as a property
transferrer. During our preliminary evaluation, we have tested mul-
tiple machine learning models as property transferrers, and two
of them provided the best results overall: simple linear regression
model (SLR) and unpruned regression tree model (RT), discussed
previously. We used SLR, since it has been already studied in the
previous work [18, 34] and has demonstrated good results. However,
during preliminary evaluation we noticed that SLR underperforms
for some studied systems, and especially multithreaded ones. On
the contrary, RT demonstrated better performance overall and sig-
nificantly better performance for parallel systems. Therefore, unlike
previous work [18, 34] we recommend using RT as transferrers,
especially when working with multithreaded software.

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

15

Transferring Pareto Frontiers across Heterogeneous Hardware Environments ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada

Thirdly, we have to train the selected transferring models using
the measured training sampleCboth . SLRmodel is a line that is fit to
the training data using classical ordinary least squares (OLS)method-
ology. OLS performs fitting byminimizing the sum of squared differ-
ences between configurations in Cboth and the linear model. Thus,
for each system property pj we can acquire a corresponding linear
transferrer that given property values on a source hardware will
produce corresponding property values on a destination hardware:

SLRpj (ŶC,pj ,hsrc) = α + β × ŶC,pj ,hsrc
= ŶC,pj ,hdst (14)

SLR training process is completely automatic and doesn’t require
any parameter tuning. Training process for unpruned regression
trees was discussed previously (see Section 3.1).

Finally, we need to select an evaluation metric and a validation
strategy for trained property transferring models. Since transferrers
might be built using even smaller samples than property prediction
models, the most practical validation strategy would still be leave-
one-out cross-validation (LOOCV). As for an evaluation metric, we
again recommend using mean absolute relative error (MAPE).

3.4 Transferring a Pareto Frontier
During the previous steps of the process (see Section 3.1 – Sec-
tion 3.3) we have: (1) selected a source hsrc and a destination hdst
hardware environments, (2) sampled training configurations Ctrn
and measured all their properties’ values YCtrn,P,hsrc on hsrc , (3)
trained predictors RTpj for each property pj ∈ P on hsrc , (4) pre-
dicted all properties’ values onhsrc and acquired ŶC,P,hsrc , (5) built
an approximated Pareto frontier ĈPFhsrc based on ŶC,P,hsrc , (6) sam-
pled configurations Cboth and measured all their properties’ values
on both hsrc and hdst , (7) trained transferrers for each property
pj ∈ P to transfer properties’ values from hsrc to hdst .

To transfer the Pareto frontier from hsrc to hdst we need to
perform two steps: (1) approximate all properties P for all con-
figurations C on hdst , i.e. acquire ŶC,P,hdst , and (2) calculate the
transferred Pareto frontier ĈPFhdst on hdst based on ŶC,P,hdst .

First of all, we obtain ŶC,P,hdst by systematically transferring
column vectors of properties’ values from hsrc to hdst , using pre-
viously trained property transferrers:

ŶC,P,hdst =[
RTp1 (ŶC,p1,hdst), · · · , RTpNp (ŶC,pNp ,hdst)

] (15)

Then, we can calculate the approximated Pareto frontier ĈPFhdst
using any known algorithm for exact Pareto frontier construction:

ĈPFhdst
= PF(C, ŶC,P,hdst) (16)

4 PROCESS EVALUATION
To comprehensively evaluate the proposed process of Pareto fron-
tier approximation and transferring, we have formulated the fol-
lowing research questions:
RQ1 How accurate are properties’ predictionmodels? (Section 4.2.1)
RQ2 How accurate are properties’ transferringmodels? (Section 4.2.1)

RQ3 How accurate are approximated Pareto frontiers ĈPFhsrc com-
pared to actual Pareto frontiersCPFhsrc onhsrc ? (Section 4.2.3)

RQ4 How accurate are transferred Pareto frontiers ĈPFhdst com-
pared to actual Pareto frontiersCPFhdst onhdst ? (Section 4.2.4)

4.1 Experimental Setup
4.1.1 Subject Hardware Environments. To enhance external validity
of our work, we had to perform our experiments on a wide variety
of hardware environments. Moreover, we wanted to run our experi-
ments on real-world production hardware environments that could
be used by other research or development teams, what would make
our research even more applicable to other practitioners. We came
to a conclusion that the best hardware choice for our experiments
would be a public enterprise-level cloud computing solution that
provides server infrastructure as a service (IaaS). Because of that,
we acquired access to Microsoft Azure cloud computing service.

Microsoft Azure is a cloud computing service that provides in-
frastructure as a service (IaaS), platform as a service (PaaS), and
software as a service (SaaS). Microsoft provided Azure Sponsorship
for our team, thus allowing us to use Azure infrastructure to run
our experiments. Azure provides cloud infrastructure through a set
of dedicated international data centers. After performing a thor-
ough analysis of all virtual machines on all data centres that were
available for our sponsorship, we selected 34 virtual machines that
had different CPU model, RAM size, etc. We provide a summary
of all selected virtual machines in Table 1 and a detailed summary
of unique CPUs available on these machines in Table 2. All virtual
machines ran Linux Ubuntu Xenial 16.04 LTS operating system.

4.1.2 Subject Software Systems. We build, approximate, and trans-
fer Pareto frontiers for five different software systems: BZIP2 [26],
GZIP [5], XZ [29], FLAC [19], x264 [35]. BZIP2 is a general-purpose
data compression program which utilizes the Burrows-Wheeler al-
gorithm. GZIP is a general-purpose data compression utility which
employs the DEFLATE lossless compression algorithm. XZ is a
multi-threaded general-purpose data compression software which
uses the LZMA2 lossless compression algorithm. FLAC (Free Loss-
less Audio Codec) is an audio compression software that uses
homonymous lossless audio coding format. x264 is a video en-
coding software that uses lossy H.264/MPEG-4 AVC format. We
focus on systems from compression and multimedia transforma-
tion domains, since these systems are intuitive, have large userbase,
and provide a variety of features. Moreover, these systems share
common properties, what allows straightforward comparison of
how well our approach works for different use cases.

We performed a comprehensive benchmarking of each selected
software system. For each software systemwe selected a benchmark
in order to test the generated configurations upon.We benchmarked
BZIP2, GZIP, and XZ using large text compression benchmark [22],
which represents first 109 bytes of Wikipedia XML archive. We
benchmarked FLAC using Ghosts I-IV [23] music album of a band
‘Nine Inch Nails’, that contains 36 tracks of improvisation music,
released under Creative Commons license. We benchmarked x264
using a trailer of Sintel [1] open-content film created and released
under Creative Commons license by Blender Foundation.

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

16

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Pavel Valov, Jianmei Guo, and Krzysztof Czarnecki

Table 1: Summary of all Azure-based virtualmachines; CRS – number of CPU cores that are specifically allocated to the virtual
machine, RAM – amount of RAM allocated to the VM (GiB), RPC – amount of RAM allocated per CPU core of the VM (GiB),
STR – amount of storage allocated to the VM (GiB), STP – storage type allocated to the VM

General Server Info Server Architecture Benchmarked Systems

Name Azure Type Deployment Region CPU Model Name CRS RAM RPC STR STP BZIP2 GZIP XZ FLAC X264
BscA0-4171HE BasicA0 South Brazil AMD Opteron 4171 HE 1 0.75 0.75 20 HDD ✓ ✓
BscA0-2660 BasicA0 East Japan Intel Xeon E5-2660 1 0.75 0.75 20 HDD ✓ ✓ ✓ ✓
BscA0-2673v3 BasicA0 West US Intel Xeon E5-2673 v3 1 0.75 0.75 20 HDD ✓ ✓ ✓ ✓

BscA1-4171HE BasicA1 South Brazil AMD Opteron 4171 HE 1 1.75 1.75 40 HDD ✓ ✓ ✓ ✓
BscA1-2660 BasicA1 East Japan Intel Xeon E5-2660 1 1.75 1.75 40 HDD ✓ ✓ ✓ ✓ ✓
BscA1-2673v3 BasicA1 West US Intel Xeon E5-2673 v3 1 1.75 1.75 40 HDD ✓ ✓ ✓ ✓ ✓

BscA2-4171HE BasicA2 South Brazil AMD Opteron 4171 HE 2 3.5 1.75 60 HDD ✓ ✓ ✓ ✓
BscA2-2660 BasicA2 East Japan Intel Xeon E5-2660 2 3.5 1.75 60 HDD ✓ ✓ ✓ ✓ ✓
BscA2-2673v3 BasicA2 West US Intel Xeon E5-2673 v3 2 3.5 1.75 60 HDD ✓ ✓ ✓ ✓ ✓

StdA0-2673v3 StandardA0 Central Canada Intel Xeon E5-2673 v3 1 0.75 0.75 20 SSD ✓ ✓ ✓ ✓
StdA0-2660 StandardA0 East Japan Intel Xeon E5-2660 1 0.75 0.75 20 SSD ✓ ✓ ✓ ✓

StdA1-2673v3 StandardA1 Central Canada Intel Xeon E5-2673 v3 1 1.75 1.75 70 SSD ✓ ✓ ✓ ✓ ✓
StdA1-2660 StandardA1 East Japan Intel Xeon E5-2660 1 1.75 1.75 70 SSD ✓ ✓ ✓ ✓
StdA1v2-2660 StandardA1 v2 South Central US Intel Xeon E5-2660 1 2 2 10 SSD ✓ ✓ ✓ ✓
StdA1v2-2673v3 StandardA1 v2 West Central US Intel Xeon E5-2673 v3 1 2 2 10 SSD ✓ ✓ ✓ ✓ ✓

StdA2-2673v3 StandardA2 Central Canada Intel Xeon E5-2673 v3 2 3.5 1.75 135 SSD ✓ ✓ ✓ ✓ ✓
StdA2-2660 StandardA2 East Japan Intel Xeon E5-2660 2 3.5 1.75 135 SSD ✓ ✓ ✓ ✓ ✓
StdA2v2-2660 StandardA2 v2 South Central US Intel Xeon E5-2673 v3 2 4 2 20 SSD ✓ ✓ ✓ ✓
StdA2v2-2673v3 StandardA2 v2 West Central US Intel Xeon E5-2673 v3 2 4 2 20 SSD ✓ ✓ ✓ ✓ ✓

StdD1-2660 StandardD1 South East Australia Intel Xeon E5-2660 1 3.5 3.5 50 SSD ✓ ✓ ✓ ✓ ✓
StdD1v2-2673v3 StandardD1 v2 Central US Intel Xeon E5-2673 v3 1 3.5 3.5 50 SSD ✓ ✓ ✓ ✓ ✓
StdD1v2-2673v4 StandardD1 v2 South India Intel Xeon E5-2673 v4 1 3.5 3.5 50 SSD ✓

StdD2-2660 StandardD2 South East Australia Intel Xeon E5-2660 2 7 3.5 100 SSD ✓ ✓ ✓ ✓ ✓
StdD2v2-2673v3 StandardD2 v2 Central US Intel Xeon E5-2673 v3 2 7 3.5 100 SSD ✓ ✓ ✓ ✓ ✓
StdD2v2-2673v4 StandardD2 v2 South India Intel Xeon E5-2673 v4 2 7 3.5 100 SSD ✓
StdD2v3-2673v4 StandardD2 v3 South East Australia Intel Xeon E5-2673 v4 2 8 4 50 SSD ✓ ✓ ✓ ✓ ✓
StdD2v3-2673v3 StandardD2 v3 South East Asia Intel Xeon E5-2673 v3 2 8 4 50 SSD ✓ ✓ ✓ ✓ ✓
StdE2v3-2673v4 StandardE2 v3 West Europe Intel Xeon E5-2673 v4 2 16 8 50 SSD ✓ ✓ ✓ ✓ ✓

StdF1-2673v3 StandardF1 East US Intel Xeon E5-2673 v3 1 2 2 16 SSD ✓ ✓ ✓ ✓ ✓
StdF1-2673v4 StandardF1 South India Intel Xeon E5-2673 v4 1 2 2 16 SSD ✓

StdF2-2673v3 StandardF2 East US Intel Xeon E5-2673 v3 2 4 2 32 SSD ✓ ✓ ✓ ✓ ✓
StdF2-2673v4 StandardF2 South India Intel Xeon E5-2673 v4 2 4 2 32 SSD ✓
StdF2sv2-8168 StandardF2 v2 West US 2 Intel Xeon Platinum 8168 2 4 2 16 SSD ✓ ✓ ✓ ✓ ✓

StdG1-2698Bv3 StandardG1 East US 2 Intel Xeon E5-2698B v3 2 28 14 384 SSD ✓ ✓ ✓ ✓ ✓

Table 2: Summary of all CPUs used in the experiment; TCH – technology node (nm), FRQ – CPU core frequency (MHz), FBS
– front-side bus frequency (MHz), CM – clock multiplier, CRS – number of CPU cores, TRD – number of threads, L1i – Level 1
instruction cache size (KB), L1d – Level 1 data cache size (KB), L2 – Level 2 cache size, L3 – Level 3 cache size, PMC – PassMark
CPU benchmark score (higher is better), PMT – PassMark single thread benchmark score (higher is better), PMR – PassMark
overall CPU rank in PassMark database (lower is better)

General Architecture Caches per CPU Caches per core PassMark Scores

CPU Model Name First Seen Type TCH FRQ FBS CM CRS TRD L1i L1d L2 L3 L1i L1d L2 PMC PMT PMR

AMD Opteron 4171 HE Q4 2010 K10 45 2100 3200 6 6 384 384 3072 6144 64 64 512 36641 7321 11471

Intel Xeon E5-2660 Q2 2012 Sandy Bridge 32 2200 4000 22 8 16 256 256 2048 20480 32 32 256 11048 1387 265
Intel Xeon E5-2673 v3 Q2 2015 Haswell 22 2400 4800 24 12 24 384 384 3072 30720 32 32 256 16383 1666 116
Intel Xeon E5-2698B v3 Q2 2014 Haswell 22 2000 4800 20 16 32 512 512 4096 40960 32 32 256 210422 18462 512

Intel Xeon E5-2673 v4 Q4 2016 Broadwell 14 2300 4800 23 20 40 640 640 5120 51200 32 32 256 21474 1792 46
Intel Xeon Platinum 8168 Q4 2017 Skylake 14 2700 5200 27 24 48 768 768 24576 33792 32 32 1024 29131 2073 3
1 PassMark Scores are provided for AMD Opteron 4170 HE
2 PassMark Scores are provided for Intel Xeon E5-2698 v3

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

17

Transferring Pareto Frontiers across Heterogeneous Hardware Environments ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada

Figure 1: Compression time metric distributions for each software system. Each line represents the metric’s distribution on a
particular hardware.

Figure 2: MAPE error distributions when predicting compression time metric using regression trees as predictors. Each line
represents the error’s distribution on a particular hardware.

Figure 3: MAPE error distributions when transferring compression time metric using using linear models as transferrers. Each
line represents the error’s distribution on a particular hardware.

Figure 4: MAPE error distributions when transferring compression time metric using regression trees as transferrers. Each line
represents the error’s distribution on a particular hardware.

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

18

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Pavel Valov, Jianmei Guo, and Krzysztof Czarnecki

Figure 5: Classification measures’ distributions, applied to evaluation of Pareto frontiers, approximated using regression trees.
Each line represents a particular measure: TPR (green), TNR (red), PPV (blue), NPV (orange), MCC (violet).

Figure 6: Classificationmeasures’ distributions, applied to evaluation of Pareto frontiers, transferred using linearmodels. Each
line represents a particular measure: TPR (green), TNR (red), PPV (blue), NPV (orange), MCC (violet).

Figure 7: Classification measures’ distributions, applied to evaluation of Pareto frontiers, transferred using regression trees.
Each line represents a particular measure: TPR (green), TNR (red), PPV (blue), NPV (orange), MCC (violet).

Figure 8: Distributions of deltas between classification measures of approximated and transferred (using regression trees)
Pareto frontiers. Each line represents a particular measure: TPR (green), TNR (red), PPV (blue), NPV (orange), MCC (violet).

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

19

Transferring Pareto Frontiers across Heterogeneous Hardware Environments ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada

Table 3: Summary of benchmarked configurable software
systems; Nf – Number of varied system features; NC – Num-
ber of benchmarked system configurations; NS – Number of
servers on which systems were benchmarked.

Name Nf NC NS

BZIP2 2 18 33
GZIP 3 36 28
XZ 4 160 27
FLAC 5 144 29
x264 8 256 30

For each software system we selected a set of configurable fea-
tures that had demonstrated the strongest influence on studied
systems’ metrics during our preliminary experiments. We vary two
different BZIP2 features: n and small (see [27] for description). We
vary three different GZIP features: n, rsyncable, and synchronous [6].
We vary four different XZ features: n, no-sparse, extreme, check [30].
We vary five different FLAC features: n, verify, lax, replay-gain,
and p [20]. We analyze eight different X264 features: b-adapt, me,
no-mbtree, no-scenecut, rc-lookahead, ref, subme, and trellis [36].

Using the selected features, we generated a set of all possible
valid configurations for each system. To improve internal validity,
we measured each configuration on all hardware environments 10
times, what is the largest number that our Azure budget allowed.

For each configuration we measured two properties: compres-
sion time and compressed size. We selected these properties because
they are intuitive, easy to measure, and are universal to all studied
systems. It is worth to notice that compressed size property doesn’t
change it’s value for a single configuration across hardware. Never-
theless, since our approach works using small samples of measured
configurations, it has to approximate this property for the whole
configuration space. Therefore, compressed size property still has a
strong influence on approximated and transferred Pareto frontiers.
We leave analysis of multiple varying properties for a future work.

Comprehensive benchmarking allowed us to perform and an-
alyze the overall Pareto transferring process for each software
system across all possible pairs of source and destination environ-
ments. Moreover, we exhaustively analyzed all possible training
sample CS sizes [2,NC − 1] (see Section 3.1) and transferring sam-
ple Cboth sizes [2,NCboth − 1] (see Section 3.3). However, since
internal Azure infrastructure is being constantly updated, not all
hardware environments were available for benchmarking of all
software systems. Table 1 highlights which hardware environments
we used for benchmarking of each particular software system. Ta-
ble 2 shows specifications for each unique CPU that appeared in
different hardware environments. Finally, Table 3 provides general
information about system benchmarking process.

4.2 Experimental Results
4.2.1 Predictors and Transferrers Accuracy. In order to answer RQ1,
we performed a comprehensive evaluation of properties’ predic-
tors for all configurable software systems and hardware environ-
ments. As mentioned in Section 3.1, after preliminary evaluation

we selected regression trees RT as our property prediction mod-
els, and we assessed quality of predictors using MAPE, acquired
using LOOCV validation. Figure 2 presents evaluation results by
displaying distributions of property predictors’MAPEwith increase
of predictors’ training sample size. For all software and hardware
we observe a strong decreasing trend of MAPE with increase of
training sample size. For all software and hardware regression trees
could achieve MAPE less than 10%, and for majority of combina-
tions less than 5%. This observation agrees with previous research
and demonstrates that regression trees are well fit for predicting
properties of configurable software systems.

In order to answer RQ2, we performed a comprehensive evalua-
tion of properties’ transferrers for all configurable software systems
and hardware environments. As we mentioned previously in Sec-
tion 3.3, although after preliminary experiments we again selected
regression trees RT as our property transferring models, we also
performed a comprehensive evaluation of simple linear regression
models SLR, since linear regression displayed high transferring
performance in previous research [17, 34]. We assessed quality of
transferrers using MAPE and LOOCV validation.

Evaluation shows that performance of linear transferrers highly
varies from one system to another. Figure 3 presents evaluation re-
sults by displaying distributions of linear-based transferrers’ MAPE
with increase of transferrers’ training sample size. While for some
systems, e.g. BZIP2 and GZIP, linear transferrers achieve MAPE
smaller than 5%, for FLAC linear transferrers can barely achieve
20% for majority of hardware platforms. Linear transferrers also
exhibit poor performance for XZ parallel compression software.

On the contrary, tree-based transferrers displayed much more
stable performance. Figure 4 presents evaluation results by display-
ing distributions of tree-based transferrers’ MAPE with increase of
transferrers’ training sample size. Regression trees provide signifi-
cantly better results for transferring FLAC, x264, and XZ software
systems, and comparable results for BZIP2. Although regression
trees provide slightly worse results for GZIP than linear models
when assessing them using LOOCV on a training sample, regres-
sion trees still outperform linear models when assessing actually
transferred Pareto frontiers for GZIP systems.

4.2.2 Assessing Pareto Frontiers Accuracy. Before we can compare
actual, approximated, and transferred Pareto frontiers, we have
to select a way of assessing their prediction quality. We regard a
Pareto frontier as a binary classifier that separates all system’s con-
figurations into optimal and non-optimal ones on a given hardware.
Therefore, to assess quality of a Pareto frontier we can use any of
classical statistical measures for binary classifiers.

Researchers use different statistical measures when assessing
binary classifiers in their works. We decided to include several
basic measures in order to provide a comprehensive and intuitive
description of how well do approximated and transferred Pareto
frontiers classify configurations. Table 4 presents all statistical mea-
sures used in our work in a form of a confusion matrix. We selected
matrix representation since it shows all measures in a concise and
structured way. To make statistical measures more intuitive, we
indicate their preferred values using special symbols. (−→) indicates
that higher values of a respective measure are preferred to lower
ones, while (

−→

) indicates that lower values are preferred instead.

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

20

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Pavel Valov, Jianmei Guo, and Krzysztof Czarnecki

Table 4: Statistical measures for assessing a Pareto frontier,
represented as a confusion matrix

Condition
Positive:

P = TP + FN

Condition
Negative:

N = FP +TN

Predicted
Condition Positive:
PCP = TP + FP

True
Positive:
TP −→

False
Positive:
FP

−→

Positive Predictive
Value:

PPV −→ = TP/PCP

False Discovery
Rate:

FDR

−→

= FP/PCP

Predicted
Condition Negative:
PCN = FN +TN

False
Negative:
FN

−→

True
Negative:
TN −→

False Omission
Rate:

FOR

−→

= FN /PCN

Negative Predictive
Value:

NPV −→ = TN /PCN

True Positive
Rate:

TPR −→ = TP/P

False Positive
Rate:

FPR

−→

= FP/N

F1 score:
F1 −→ = 2 × (PPV ×TPR)/(PPV +TPR)

False Negative
Rate:

FNR

−→

= FN /P

True Negative
Rate:

TNR −→ = TN /N

Matthews correlation coefficient:
MCC −→ =

√
PPV × NPV ×TPR ×TNR−

−
√
FDR × FOR × FPR × FNR

A core of a confusion matrix is formed by a contingency table,
showing frequency distributions of optimal and non-optimal con-
figurations. These are the most basic classification metrics, from
which all other metrics can be derived. True positive TP −→ (negative
TN −→) is an amount of actually optimal (non-optimal) configura-
tions correctly classified as such by a Pareto frontier. False positive
FP

−→

(negative FN

−→

) is an amount of actually non-optimal (optimal)
configurations misclassified as optimal (non-optimal) by a frontier.

The following measures allows a practitioner to answer specific
questions about efficiency of a frontier in general. True positive
rate (TPR −→) shows a probability that a frontier contains all actually
optimal configurations. True negative rate (TNR −→) shows how likely
will a frontier leave out all actually non-optimal configurations.

The next block of measures allows a practitioner to answer ques-
tions about classification results by a Pareto frontier. Positive pre-
dictive value (PPV −→) represents a probability that a configuration,
classified as optimal by a Pareto frontier, is truly optimal. Nega-
tive predictive value (NPV −→) shows how likely a configuration,
classified as non-optimal by a Pareto frontier, is truly non-optimal.

Although previously presented statistical measures provide in-
formation about a Pareto frontier quality, these measures are best
regarded together in groups, since this way they provide a more
comprehensive understanding of a frontier’s performance. There-
fore, we also included an ‘integral’ measure of a binary classification
behavior. Matthews correlation coefficient (MCC) is considered to
be one of the best measures for working with data that has strong
quantitative differences between classes of observations.MCC takes
values in [−1,+1], where −1 corresponds to a completely misclassi-
fying frontier, 0 to a random frontier, and +1 to a perfect frontier.

4.2.3 Approximated Frontiers Accuracy. To answer RQ3 we assess
accuracy of Pareto frontiers, approximated using our methodol-
ogy. We calculate an approximated Pareto frontier ĈPFhsrc based on
system properties P approximated for all configurations C using
tree-based predictors that we train using samples of measured con-
figurations Ctrn (see Section 3.2). We regard approximated Pareto
frontiers as binary classifiers and evaluate them using presented
statistical measures (see Section 4.2.2). Figure 5 shows evaluation
results of Pareto frontiers of all software systems for ‘BscA1-2660’
hardware environment (see Table 1), approximated using tree-based
predictors that are trained using samples Ctrn of different sizes.

We observe that TNR and NPV demonstrate high values almost
instantly, and provide almost perfect results for FLAC, x264, and XZ
systems. This means that a frontier can very efficiently and with
high certainty catch non-optimal configurations. However, this
happens because classification categories are highly unbalanced
in our case, since a number of optimal configurations is generally
much smaller than a number of non-optimal ones. Because of that,
even if a frontier classify all configurations as non-optimal, TNR
and NPV might demonstrate high values in some cases. This effect
becomes more apparent with a larger system’s configuration space.
Therefore, we cannot claim that approximated frontiers exhibit
high classification accuracy based on TNR and NPV values only.

TPR and PPV exhibit a gradual growth with increase of predic-
tors’ training sample sizes. This means that ability of a frontier
to capture optimal configurations and certainty that an optimally-
classified configuration is truly optimal, both highly depend on a
training sample size. We can explain this behavior by several major
factors. First of all, classes of optimal and non-optimal configura-
tions are highly unbalanced in our case. Since our approach cannot
impose any restrictions on a sampling process and has to work
with randomly-sampled data, truly optimal configurations on aver-
age become significantly underrepresented in predictors’ training
samples. Thus, TPR and PPV gradually improve with availability of
new truly optimal configurations. Secondly, inability to accurately
capture optimal configurations by an approximated frontier based
on small random samples of measured configurations lies in a struc-
ture of regression trees. Regression trees are limited by sampled
property values and cannot output any value that is smaller than a
minimal or larger than a maximal sampled value. Therefore, when
regression trees are limited by a min-max interval of a random
sample, they will be limited to a subinterval of possible values and
consequently only to a part of an actual frontier, making accurate
approximation of the whole frontier not possible.

Finally, we observe that MCC demonstrates almost linear growth
approximately from 0 to 1, while avoiding negative values. This
means that the presented Pareto frontier overall starts as a nearly-
random classifier, but with increase of predictors’ training samples
improves into an almost-perfect classifier, while avoiding complete
misclassification of configurations.

To sum up, we evaluated our approach for approximating fron-
tiers that works by individually predicting system’s properties using
general-purpose machine-learning models trained using random
samples of measured configurations. We demonstrated that in gen-
eral our approachworks, but its overall quality is linearly dependent
on a training sample’s size. In order to improve accuracy of our
approach in future work, we might need to relax some initial as-
sumptions like ability to control a sampling process.

4.2.4 Transferred Frontiers Accuracy. To answer RQ4 we assess
accuracy of Pareto frontiers, transferred using our approach. We
acquire a transferred Pareto frontier ĈPFhdst by transferring approx-
imated values of all properties P using transferrers that we train
using samples of configurationsCboth measured on both source and
destination hardware (see Section 3.4). Figure 6 and Figure 7 present
evaluation results of transferred Pareto frontiers of all software sys-
tems for linear-based and tree-based transferrers respectively. The
analyzed Pareto frontiers were transferred from ‘BscA1-2660’ to

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

21

Transferring Pareto Frontiers across Heterogeneous Hardware Environments ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada

‘StdF2sv2-8168’ hardware environments (see Table 1 for compari-
son). We present results for these hardware environments, because
out of all servers for which we could acquire full benchmarking
data for all software systems, these environments differ the most.
Thus, Figure 6 and Figure 7 present the most difficult available
scenario for evaluation of our methodology.

Although linear regression demonstrated strong results for trans-
ferring prediction models across heterogeneous hardware previ-
ously [18, 34], comparison of Figures 6 and 7 clearly demonstrates
that regression trees completely outperform linear models for ma-
jority of studied software systems. This difference is especially
strong for FLAC and XZ software systems where MCC for linear-
based transferring barely reaches 0.5 and 0.3 respectively.

To visually represent how much distortion to the approximated
frontier does the transferring process add, we calculate difference
between approximated and transferred frontiers for all statistical
measures and present them on Figure 8. Thus, we can observe that
the transferring process has a very limited impact on distortion of
an approximated frontier even for small training samples sizes.

To sum up, we have demonstrated that transferring of approx-
imated Pareto frontiers across heterogeneous hardware environ-
ments using unpruned regression trees is possible and doesn’t
significantly affect the resulting frontier’s accuracy. However, a
transferred frontier cannot demonstrate a high quality if an origi-
nal approximated frontier doesn’t show high classification results.
Therefore, in future work we plan to improve our approach for
minimalistic practical approximation of Pareto frontiers.

5 THREATS TO VALIDITY
To increase internal validity of our research, during evaluation of
our methodology, we trained properties’ predictors and transferrers
using random samples of measured configurations, and for each
training size we generated 10 different random samples. Thus, all
statistical measures that describe predictors, transferrers, and fron-
tiers, are averaged over 10 different instances. Therefore, we avoid
bias caused by random variations in models’ training samples.

To increase external validity of our research, we performed evalu-
ation of our approach using five configurable software systems with
different code bases, features, configuration space sizes, paralleliza-
tion capabilities, and application domains. We benchmarked the
selected software systems on 34 heterogeneous hardware platforms
with different CPU models, available CPU cores, RAM sizes, and
storage types. When benchmarking software systems, we measured
each configuration 10 times and averaged over these measurements
to get final properties’ values. This allowed us to avoid bias induced
by random aberrations during a benchmarking process.

We tried to address the most obvious threats to internal and
external validity of our work, but we acknowledge that this might
not be enough. Although we explored a variety of general-purpose
software systems including parallelized ones, we suspect that there
might be other configurable systems with different features, archi-
tectures, or application domains, whose properties might exhibit
completely different unsystematic behavior across variable hard-
ware. Moreover, we expect this behavior to occur when a practi-
tioner redeploys a particular software system that is optimized for
a specific hardware architecture. For example, when a system that

supports GPU-acceleration is redeployed to a hardware without
a dedicated graphical unit. We plan to investigate such software-
hardware interaction in a future work.

6 RELATEDWORK
This work is mostly related to two topics: (1) black-box model-based
performance prediction of highly configurable software systems
and (2) transferring of performance models across hardware en-
vironments. However, approaches presented in related work are
usually different in philosophy, what leads to investigation of dif-
ferent software and hardware systems, and to usage of different
sampling strategies, prediction and transferring models, etc.

We begin by highlighting differences of our work with the
most related research on model-based performance prediction. To
make our research practical and reproducible, we analyze general-
purpose open-source software, whereas some other work investigates
highly specialized systems like: AI planners [10, 24], SAT & MIP
solvers [12], search algorithms [14], or custom scientific software
for supercomputers [2, 3]. Moreover, some research [9] doesn’t ana-
lyze configurations, what simplifies the prediction problem. We use
pseudo-random sampling to explore configuration spaces, assuming
that a practitioner might not control the sampling process. However,
some researchers do not make this assumption and use a variety
of sampling strategies like: n-wise sampling heuristics [28], break-
down algorithms [37], collection of microarchitecture-independent
metrics across hardware [9], or expectation that a practitioner com-
pletely controls the sampling process [25]. Finally, majority of re-
lated work utilizes different models as performance predictors,
such as: artificial neural networks [21], Fourier analysis [38, 39],
Gaussian Processes [13, 14, 18, 24, 37], logistic regression [24], pro-
jected processes [13], regression splines [4, 21, 37], modified re-
gression trees [24], ensembles of regression trees [12, 33], ridge
regression [11], and support vector regression [33].

We continue by highlighting differences of our research with
the most related work on transferring of performance prediction
models. First of all, to make our work reproducible and practical, we
use general-purpose hardware based on AMD and Intel processors,
while some researchers analyze supercomputing hardware [2, 3, 21]
or robotic systems [18]. Secondly, after performing a comparison
of different models, we selected regression trees as our transfer-
rers. However, some researchers prefer using different approaches
for their use cases like: Gaussian processes [17], custom transfer-
ring models that are based on extensive software instrumentation
and profiling [31, 32], or upfront measurements of a collection of
benchmarking software across studied hardware environments [9].

7 CONCLUSION AND FUTUREWORK
We proposed and evaluated a practical, easy-to-use, and black-box
approach based on general-purpose machine-learning models for
approximation and transferring of Pareto frontiers of optimal con-
figurations. We perform approximation of a frontier by (1) building
an unpruned regression tree model for each property to act as a
predictor, and then (2) combining properties’ predictions into an
approximated frontier. Our evaluation shows a strong decreasing
trend in predictors’ error and a linearly increasing trend of an over-
all classification accuracy of a resulting approximated frontier, with

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

22

ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Pavel Valov, Jianmei Guo, and Krzysztof Czarnecki

increase of predictors’ training sample sizes. We perform transfer-
ring of a frontier by (1) building an unpruned regression tree model
for each property to act as a transferrer, and then (2) combining
transferred values of the approximated frontier. Our evaluation
shows a strong decreasing trend in transferrers’ error and a linearly
increasing trend of a transferred frontier accuracy, with increase of
transferrers’ training sample sizes. Moreover, an overall accuracy of
a transferred Pareto frontier mostly depends on the approximated
Pareto frontier’s accuracy than on the transferring process itself.

In future work we plan to make a substantial improvement to our
approach for approximation and transferring of Pareto frontiers.
First of all, we might relax some initial assumptions and assume
that a practitioner has control over a configuration space’s sampling
process. This would allow us to use more sophisticated sampling
approaches like quasi-random sampling or experimental design
techniques, in order to cover a configuration space more evenly
and improve prediction accuracy. Secondly, we plan to investigate
more advanced machine learning techniques than regression trees
that are not inherently limited by a min-max interval of a studied
system’s property and can extrapolate beyond already seen values.

REFERENCES
[1] Blender Foundation. Sintel Trailer. https://media.xiph.org/.
[2] E. A. Brewer. Portable High-performance Supercomputing: High-level Platform-

dependent Optimization. PhD thesis, Cambridge, MA, USA, 1994.
[3] E. A. Brewer. High-level optimization via automated statistical modeling. In

Proceedings of the 5th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPOPP ’95, pages 80–91, New York, NY, USA, 1995. ACM.

[4] M. Courtois and M. Woodside. Using regression splines for software perfor-
mance analysis. In Proceedings of the 2nd International Workshop on Software and
Performance, WOSP ’00, pages 105–114, New York, NY, USA, 2000. ACM.

[5] Gailly, J.-l. and Adler, M. GNU Gzip, free, open source, and patent free data
compressor. https://www.gnu.org/software/gzip/.

[6] Gailly, J.-l. and Adler, M. GNU Gzip Manual. https://www.gnu.org/software/
gzip/manual/gzip.html#Invoking-gzip.

[7] J. Guo, K. Czarnecki, S. Apel, N. Siegmund, and A. Wasowski. Variability-aware
performance prediction: A statistical learning approach. In Proceedings of the 28th
IEEE/ACM International Conference on Automated Software Engineering, ASE’13,
pages 301–311, Piscataway, NJ, USA, November 2013. IEEE Press.

[8] J. Guo, D. Yang, N. Siegmund, S. Apel, A. Sarkar, P. Valov, K. Czarnecki, A. Wa-
sowski, and H. Yu. Data-efficient performance learning for configurable systems.
Empirical Software Engineering, 23(3):1826–1867, June 2018.

[9] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. K. John, and K. De Bosschere.
Performance prediction based on inherent program similarity. In Proceedings
of the 15th International Conference on Parallel Architectures and Compilation
Techniques, PACT ’06, pages 114–122, New York, NY, USA, 2006. ACM.

[10] A. E. Howe, E. Dahlman, C. Hansen, M. Scheetz, and A. von Mayrhauser. Ex-
ploiting competitive planner performance. In S. Biundo and M. Fox, editors,
Proceedings of the 5th European Conference on Planning: Recent Advances in AI
Planning, ECP ’99, pages 62–72, Berlin, Heidelberg, 1999. Springer-Verlag.

[11] F. Hutter, Y. Hamadi, H. H. Hoos, and K. Leyton-Brown. Performance prediction
and automated tuning of randomized and parametric algorithms. In F. Benhamou,
editor, Proceedings of the 12th International Conference on Principles and Practice of
Constraint Programming, CP’06, pages 213–228, Berlin, Heidelberg, 2006. Springer-
Verlag.

[12] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In C. A. C. Coello, editor, Proceedings of the
5th International Conference on Learning and Intelligent Optimization, LION’05,
pages 507–523, Berlin, Heidelberg, 2011. Springer-Verlag.

[13] F. Hutter, H. H. Hoos, K. Leyton-Brown, and K. Murphy. Time-bounded sequential
parameter optimization. In C. Blum and R. Battiti, editors, Proceedings of the 4th
International Conference on Learning and Intelligent Optimization, LION’10, pages
281–298, Berlin, Heidelberg, 2010. Springer-Verlag.

[14] F. Hutter, H. H. Hoos, K. Leyton-Brown, and K. P. Murphy. An experimental
investigation of model-based parameter optimisation: SPO and beyond. In Pro-
ceedings of the 11th Annual Conference on Genetic and Evolutionary Computation,
GECCO ’09, pages 271–278, New York, NY, USA, 2009. ACM.

[15] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown. Algorithm runtime prediction:
Methods & evaluation. Artificial Intelligence, 206:79–111, January 2014.

[16] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown. Algorithm runtime prediction:
Methods & evaluation (extended abstract). In Q. Yang and M. Wooldridge, editors,
Proceedings of the 24th International Joint Conference on Artificial Intelligence,
IJCAI’15, Palo Alto, California, USA, July 2015. AAAI Press.

[17] P. Jamshidi, N. Siegmund, M. Velez, C. Kästner, A. Patel, and Y. Agarwal. Transfer
learning for performance modeling of configurable systems: An exploratory anal-
ysis. In Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, ASE 2017, pages 497–508, Piscataway, NJ, USA, 2017. IEEE
Press.

[18] P. Jamshidi, M. Velez, C. Kästner, N. Siegmund, and P. Kawthekar. Transfer
learning for improving model predictions in highly configurable software. In
Proceedings of the 12th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS ’17, pages 31–41, Piscataway, NJ,
USA, 2017. IEEE Press.

[19] Josh Coalson, Xiph.Org Foundation. FLAC – Free Lossless Audio Codec. https:
//xiph.org/flac/.

[20] Josh Coalson, Xiph.Org Foundation. FLAC Manual. https://xiph.org/flac/
documentation_tools_flac.html.

[21] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz, K. Singh, and S. A. McKee.
Methods of inference and learning for performance modeling of parallel appli-
cations. In Proceedings of the 12th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’07, pages 249–258, New York, NY, USA,
2007. ACM.

[22] Mahoney, M. Large Text Compression Benchmark. http://mattmahoney.net/dc/
text.html.

[23] Nine Inch Nails. Ghosts I-IV. https://archive.org/details/nineinchnails_ghosts_I_
IV.

[24] M. Roberts, A. Howe, and L. Flom. Learned models of performance for many
planners. In ICAPS 2007 Workshop AI Planning and Learning, pages 36–40, 2007.

[25] A. Sarkar, J. Guo, N. Siegmund, S. Apel, and K. Czarnecki. Cost-efficient sampling
for performance prediction of configurable systems (t). In Proceedings of the
2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE), ASE ’15, pages 342–352, Washington, DC, USA, November 2015. IEEE
Computer Society.

[26] Seward, J. and Mena F. Bzip2, free, open source, and patent free data compressor.
https://sourceware.org/bzip2/.

[27] Seward, J. and Mena F. Bzip2 Manual. https://sourceware.org/bzip2/manual/
manual.html#options.

[28] N. Siegmund, S. S. Kolesnikov, C. Kästner, S. Apel, D. Batory, M. Rosenmüller, and
G. Saake. Predicting performance via automated feature-interaction detection.
In Proceedings of the 34th International Conference on Software Engineering, ICSE
’12, pages 167–177, Piscataway, NJ, USA, 2012. IEEE Press.

[29] The Tukaani Project. XZ Utils. http://tukaani.org/xz/. Accessed April. 17th, 2016.
[30] The Tukaani Project. XZ Utils Manual. https://linux.die.net/man/1/xz. Accessed

April. 17th, 2016.
[31] E. Thereska, B. Doebel, A. X. Zheng, and P. Nobel. Practical performance models

for complex, popular applications. ACM SIGMETRICS Performance Evaluation
Review, 38(1):1–12, June 2010.

[32] E. Thereska, B. Doebel, A. X. Zheng, and P. Nobel. Practical performance mod-
els for complex, popular applications. In Proceedings of the ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’10, pages 1–12, New York, NY, USA, 2010. ACM.

[33] P. Valov, J. Guo, and K. Czarnecki. Empirical comparison of regressionmethods for
variability-aware performance prediction. In Proceedings of the 19th International
Conference on Software Product Line, SPLC ’15, pages 186–190, New York, NY,
USA, 2015. ACM.

[34] P. Valov, J.-C. Petkovich, J. Guo, S. Fischmeister, and K. Czarnecki. Transferring
performance prediction models across different hardware platforms. In Proceed-
ings of the 8th ACM/SPEC on International Conference on Performance Engineering,
ICPE ’17, pages 39–50, New York, NY, USA, 2017. ACM.

[35] VideoLANOrganization. x264, the best H.264/AVC encoder. http://www.videolan.
org/developers/x264.html. Accessed April. 15th, 2016.

[36] VideoLAN Organization. x264, the best H.264/AVC encoder. http://www.chaneru.
com/Roku/HLS/X264_Settings.htm. Accessed April. 15th, 2016.

[37] D.Westermann, J. Happe, R. Krebs, and R. Farahbod. Automated inference of goal-
oriented performance prediction functions. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2012, pages
190–199, New York, NY, USA, 2012. ACM.

[38] Y. Zhang, J. Guo, E. Blais, and K. Czarnecki. Performance prediction of config-
urable software systems by fourier learning (t). In Proceedings of the 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
ASE ’15, pages 365–373, Washington, DC, USA, November 2015. IEEE Computer
Society.

[39] Y. Zhang, J. Guo, E. Blais, K. Czarnecki, and H. Yu. A mathematical model of
performance-relevant feature interactions. In Proceedings of the 20th International
Systems and Software Product Line Conference, SPLC ’16, pages 25–34, New York,
NY, USA, 2016. ACM.

SESSION 1: Performance Portability ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

23

https://media.xiph.org/
https://www.gnu.org/software/gzip/
https://www.gnu.org/software/gzip/manual/gzip.html#Invoking-gzip
https://www.gnu.org/software/gzip/manual/gzip.html#Invoking-gzip
https://xiph.org/flac/
https://xiph.org/flac/
https://xiph.org/flac/documentation_tools_flac.html
https://xiph.org/flac/documentation_tools_flac.html
http://mattmahoney.net/dc/text.html
http://mattmahoney.net/dc/text.html
https://archive.org/details/nineinchnails_ghosts_I_IV
https://archive.org/details/nineinchnails_ghosts_I_IV
https://sourceware.org/bzip2/
https://sourceware.org/bzip2/manual/manual.html#options
https://sourceware.org/bzip2/manual/manual.html#options
http://tukaani.org/xz/
https://linux.die.net/man/1/xz
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html
http://www.chaneru.com/Roku/HLS/X264_Settings.htm
http://www.chaneru.com/Roku/HLS/X264_Settings.htm

	Abstract
	1 Introduction
	2 Example and Notation
	3 Transferring Process
	3.1 Training Property Prediction Models
	3.2 Building an Approximated Frontier
	3.3 Training Property Transferring Models
	3.4 Transferring a Pareto Frontier

	4 Process Evaluation
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Threats to validity
	6 Related Work
	7 Conclusion and Future Work
	References

