
A Fully Structure-Driven Performance Analysis of Sparse
Matrix-VectorMultiplication

Prabhjot Sandhu
McGill University

School of Computer Science
Montréal, QC, Canada

prabhjot.sandhu@mail.mcgill.ca

Clark Verbrugge
McGill University

School of Computer Science
Montréal, QC, Canada
clump@cs.mcgill.ca

Laurie Hendren
McGill University

School of Computer Science
Montréal, QC, Canada
hendren@cs.mcgill.ca

ABSTRACT
Sparse matrix-vector multiplication (SpMV) is an important kernel
in many scientific, machine-learning, and other compute-intensive
applications. Performance characteristics, however, depend on a
complex combination of storage format, machine capabilities, and
choices in code-generation. A deep understanding of the relative
impact of these properties is important in itself, and also to better
understanding the performance potential of alternative execution
contexts such as web-based scientific computing, where the recent
introduction ofWebAssembly offers the potential for low-level, near-
native performance within a web browser.

In thisworkwe characterize the performance of SpMVoperations
for different sparse storage formats based on the sparse matrix struc-
ture and the machine architecture. We extract structural properties
from 2000 real-life sparsematrices to understand their impact on the
choice of storage format and also on the performance within those
storage formats for bothWebAssembly and native C.We extend this
with new matrix features based on a “reuse-distance” concept to
identify performance bottlenecks, and evaluate the effect of interac-
tion between the matrix structure and hardware characteristics on
SpMV performance. Our study provides valuable insights to scien-
tific programmers and library developers to apply best practices and
guide future optimization for SpMV in general, and in particular for
web-based contexts with abstracted hardware and storage models.

CCS CONCEPTS
•Mathematics of computing→Computations onmatrices; •Soft-
ware and its engineering→ Dynamic compilers.

KEYWORDS
SparseMatrix-VectorMultiplication, SpMV,Matrix Structure, Reuse-
Distance, WebAssembly, C, Performance, Scientific Computing

ACMReference Format:
PrabhjotSandhu,ClarkVerbrugge,andLaurieHendren.2020.AFullyStructure-
Driven Performance Analysis of Sparse Matrix-Vector Multiplication. In
Proceedings of the 2020 ACM/SPEC International Conference on Performance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6991-6/20/04. . . $15.00
https://doi.org/10.1145/3358960.3379131

Engineering (ICPE ’20), April 20–24, 2020, Edmonton, AB, Canada.ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3358960.3379131

1 INTRODUCTION
Recently, the performance capability of the web has been elevated
with the addition of WebAssembly [15] to the world of JavaScript.
It provides opportunities for the efficient execution of sophisticated
and compute-intensive applications on the web, such as image edit-
ing [7], computer-aided design [6], augmented reality [1, 2], text
classification [3, 5, 21] and deep learning [25]. A number of these
applications [32, 35] involve sparse matrix computations which are
considered important for their performance. Sparse matrix-vector
multiplication (SpMV) is one such critical operationwhich computes
y=Ax , where matrixA is sparse and vector x is dense. It dominates
the overall application run-time through its recurring nature which
makes it a good candidate for optimization. Since the matrices in
these applications are large and sparse with different sparsity char-
acteristics, a single sparse storage format is not appropriate for all of
them. The choice of storage format, however, can have a significant
impact on the SpMV performance based on the sparsity structure of
the matrix and the available code optimization opportunities. There-
fore, selecting anoptimal format to store the inputmatrix at run-time
is one way to optimize SpMV. Another way is to apply different data
structure optimizations and low-level code optimizations to a single
format. It sometimes results in the derivation of new formats tailored
for even more specific types of matrices [18, 22, 24, 27]. However,
both of these techniques require a thorough understanding of how
the performance of SpMV operation is affected by the structure of
the matrix and the machine characteristics.

Previous work on the performance and storage format choice
for SpMV has either focused on native languages like C or only
been able to highlight general differences between native C and
web languages, JavaScript andWebAssembly. In this paper we focus
on understanding the performance of the SpMV operation solely
based on the structural properties of the matrices for both C andWe-
bAssembly. We performed rigorous experiments on a set of almost
2000 real-life sparse matrices, storing them in the four most popular
storage formats (COO, CSR, DIA and ELL).

Our investigation is structured in terms of three main research
questions. Our first research question, RQ1, evaluates the impact
of the structure of the matrix on the choice of the storage format
for the SpMV operation for bothWebAssembly and C.We employ
an x%-affinity criteria [28] to obtain the set of matrices best suited
for each format category. We extract some useful sparse structure
features which contribute to build the affinity of our benchmark
matrices towards the given formats. The results fromRQ1 showed

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

108

https://www.acm.org/publications/policies/artifact-review-badging#available
https://www.acm.org/publications/policies/artifact-review-badging#reusable

that these structure features indeed govern the choice of storage for-
mat. However, one storage format can have a priority over the other
format due to the availability of some interesting code optimizations
in modern architecture.

Unanswered questions about the variation in SpMV performance
of the matrices with similar feature values led us to our second re-
search question, RQ2, which explores more structure features to
explain the effect of the sparse matrix structure on the SpMV perfor-
mance within each storage format for bothWebAssembly and C.We
modeled data locality for SpMV ELL and CSR execution using the
reuse-distance concept [12] and introduced some new features like
ELLLocality Index andCSRLocality Index to explain the performance
bottlenecks for the given matrices based on their structure.

Features fromRQ1 andRQ2 have their foundation in the hard-
ware architecture. This drives our final research question, RQ3,
aimed atmeasuring hardware performance properties to understand
the interaction between the sparse matrix structure and hardware
features. The results of this question validate our evaluations and
parameter choices fromRQ1 andRQ2.

2 BACKGROUNDANDRELATEDWORK
Our work requires background knowledge of the core sparse matrix
storage formats, as well as the basics of WebAssembly. After a brief
presentation of these concepts, we describe related work on SpMV
performance analysis.

2.1 SparseMatrix Formats
Sparse matrices are characterized by an abundance of 0-entries rel-
ative to a small number of non-zero values. Storage formats aim
to minimize space requirements, with different formats aimed at
different kinds of matrix structure. Figure 1 uses a small example to
illustrate encodings in the four core formats we address in this study,
with details discussed below.
Coordinate Format (COO) is the simplest storage format. It con-
sists of three arrays, row, col and val to store the row and column
indices and corresponding values of each non-zero entry.
Compressed Sparse Row Format (CSR) is the most widely used
format. It is the compressed version of COO format, using a row_ptr
array with only one entry per row. Each entry in this array gives the
offset in the col array of the first non-zero column index of that row.
DiagonalFormat (DIA) only stores thediagonals that includenon-
zeros. The data array stores the diagonal values, and the offset
stores the relative offset of each diagonal from the main diagonal.
ELLPACKFormat (ELL) stores afixed (maximum)number of non-
zeros per row. The data array stores the values for each row, with
corresponding column indices given by the indices array.

2.2 WebAssembly
WebAssembly [15] or wasm is a new virtual instruction set archi-
tecture. This binary code format for the web has been designed to
complement and run alongside JavaScript, overcoming the perfor-
mance limitationsof JavaScript byofferinga low-level, assembly-like
execution context that is simpler to optimize andmore directlymaps
to the instructions of common hardware architectures. The latter
also simplifies deployment of programs written in other, statically
typed languages such as C or C++, which can easily target wasm as

1 6 3 5 42 7

0 0 2 3 31 1

0 2 2 0 31 3

row

col

val

COO :

1 6 3 5 42 7

0 4 5 72

0 2 2 0 31 3

row_ptr

col

val

CSR :

data 1
6

- - -
2
7

3
-

5
4
-

offset 0 2-3

data
1
6

2
7

3
-

5
4

indices

DIA :

ELL :

0
2

1
3

2
-

0
3

1 60 0
0 02 7

30 0 0
5 40 0

A

Figure 1: A simple example for sparsematrix formats

another compilation architecture. Current versions provide some
low-level machine features, such as 128-bit SIMD support, with on-
going development aimed at extending this to longer SIMD types
and adding task parallelism through a thread model [4]. V8, the
open-source JavaScript engine for Chrome browser, is reusing its
top-tier optimizing JITs from JavaScript forWebAssembly [15].

In terms of performance, Haas et. al [15] reported a performance
within 2x of native C for all benchmarks in the PolyBenchC suite,
with 7 of themwithin 10% of native C. Further experiments by Her-
rera et. al [17] using the Ostrich Numerical Benchmark set showed
similar performance numbers across many devices, with one device
achieving better overall performance than nativeC. Recently, Jangda
et al. [19] analyzed the performance across the SPEC CPU bench-
mark suite and reported a mean slowdown factor less than 2x along
with the causes of these performance gaps.

2.3 RelatedWork
The feature-based aspect of ourwork of SpMVperformance analysis
onmodern systems and different execution environments is inspired
from the research which dates back to nearly three decades ago. In
the early 1990s, Agarwal et al. [8] presented a feature extraction
scheme for SpMVwith nearly dense submatrices, nearly dense di-
agonals and rows with a large number of non-zeros as its features to
examine sparsity structure in the pre-processing phase which could
be exploited during the computation phase. During the same time,
Temam and Jalby [29] analyzed the behaviour of cache for SpMV by
modelling the irregular references using probabilisticmethods.After
awhile, Heras et al. [16]modeled the data locality in the execution of
SpMV by taking into account the entry matches and block matches
between the pairs of rows of sparse matrices and experimented with
a set of 10 sparse matrices. This groundwork provided consider-
able evidence that the SpMV performance depends on the structure
of the sparse matrix and the memory system. Thenceforth, many
research contributions have been made towards accelerating the
SpMV performance which includes applying different optimization
strategies [26, 31, 36, 37] and proposing various new sparse storage
formats [18, 22, 24, 33]. Toledo [31] proposed reordering, blocking
and prefetching to improve SpMV performance on superscalar RISC
processors. Later, Pinar and Heath [26] proposed one-dimensional
blocking and also stated the reordering problem as the traveling
salesman problem, and used associated heuristics to permute the
non-zeros of the matrix into contiguous locations. Eun-Jin Im et

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

109

al. [18]proposedBCSR (BlockedCSR) format to take theadvantageof
the performance of dense blocks in a sparsematrix, and evaluated the
strategy over a set of 40matrices. Following this, Vuduc et al. [33] im-
provedBCSR toVBR (VariableBlockRow) to take advantage of dense
blockswithdifferent sizes andbuiltOSKI library to tuneblock size for
amatrix in VBR format. However, all of these techniqueswere tested
on quite small sets ofmatrices and used previous generationmicroar-
chitectures. In lightof that,Goumaset al. [14] conductedexperiments
on a suite of 100 matrices to understand the SpMVCSR performance
issues by looking into the interaction between architecture charac-
teristics and previously reported factors like indirect memory refer-
ences, irregular memory access for vector x and short row lengths.

Over the last decade aswell, several other attempts towards SpMV
performance optimizations have been testing their techniques only
on limited sets of matrices which may or may not cover a wide va-
riety of properties related to SpMV performance.Williams et al. [37]
presented several optimization strategies like cache blocking, TLB
blocking, register blocking, loop optimizations, software prefetching
andmore to show significant improvements on their set of 14 sparse
matrices which were collected from a variety of actual applications.
Kourtis et al. [22] developed CSX (Compressed Sparse eXtended) to
compress metadata by exploiting dense structures like dense blocks,
1-D bars and dense diagonals, and tested the technique on a set of
15 matrices from The SuiteSparse Matrix Collection. Liu et al. [24]
proposed a new storage format, CSR5, that has been claimed to be in-
sensitive to the sparsity structure of thematrix, andneeds some extra
space to store two more groups of data than classic CSR, and tested
it on the benchmark suite of 24 regular and irregular matrices. To
that extent, one of our objectives in this paper is to fully understand
the effect of matrix structure properties on SpMV performance on
modern architecture by conducting comprehensive experiments on
around 2000 real-life sparse matrices from The SuiteSparse Matrix
Collection for four different storage formats.

Recently, some interesting work has been proposed to predict the
best storage format and performance bottlenecks for SpMV compu-
tation using machine learning approaches. SMAT [23] focused on
automatically determining the best storage format amongCOO,CSR,
DIA and ELL by applying machine learning techniques which use
matrix structure and hardware features as their parameter values
with more than 2000 matrices from The SuiteSparse Matrix Collec-
tion for their testing and training set. Elafrou et al. [13] presented an
approach to identify some selected performance bottlenecks which
include memory-bandwidth bound, memory-latency bound, thread
imbalance and computation bottleneck for CSR format by leveraging
supervised learning technique to build a feature-guided classifier
with a training set of 210 matrices from The SuiteSparse Matrix Col-
lection. To enhance the feature selection process and achieve better
accuracy for suchmachine learningmodels, we provide a concise set
of structure features which indeed determine how the matrix struc-
ture affects the performance and the choice of the storage format.
We also introduce some new features and evaluate the interaction be-
tween the matrix structure and hardware features since they jointly
influence the SpMV performance.

In terms of web-based SpMV execution, Sandhu et al. [28] laid
the foundation by presenting serial SpMV performance numbers for
JavaScript andWebAssembly as compared to C for both single- and
double-precision floating point representations. They introduced

the notion of x%-affinity to identify with certainity that the best
storage format is at least x% better performing than all other for-
mats. They also highlighted the differences in the choice of storage
format between native C and web environments. Our paper extends
their study by understanding the influence of matrix structure and
machine characteristics on the performance and choice of optimal
storage format for Serial SpMV for web-based language, WebAssem-
bly in comparison to native language, C.

3 EXPERIMENTAL SETUP
In this section we describe our experimental layout which covers
information about our target languages, execution environments
and the set of matrices used and also provides some flavour of our
referenceWebAssembly SpMV implementations.

3.1 Target Languages and Runtime
We conducted our experiments on an Intel Core i7-3930K with 6
3.20GHz cores, 12MB last-level cache and 16GBmemory, running
Ubuntu Linux 16.04.2. We compiled our C implementations with gcc
version 7.2.0 at optimization level -O3. ForWebAssembly, used the
Chrome 74 browser (Official build 74.0.3729.108 with V8 JavaScript
engine 7.4.288.25) as the execution environment. We run Chrome
with a flag --experimental-wasm-simd to enable the use of SIMD
(Single Instruction Multiple Data) instructions for loop vectoriza-
tion optimizations in some of the SpMVWebAssembly implementa-
tions. We also enable two more flags, --wasm-no-bounds-checks
and--wasm-no-stack-checks toavoidmemoryboundschecksand
stack guards for performance testing. For C, we used the clock()
method from time.h, while forWebAssembly, we made use of the
Date.now(), a JavaScript method to measure the execution time.

3.2 InputMatrices
We used 1,979 real-life square sparse matrices from The SuiteSparse
Matrix Collection which served as the set of sparse matrix bench-
marks for our experiments [11].1 This collection provides matrices
in three external storage formats: MATLAB, Rutherford Boeing and
Matrix Market. We chose Matrix Market format as an input to our
programs, and used a library [10] for Matrix Market I/O. In order
to avoid SpMV performance degradation from the presence of sub-
normal floating point values, we substitute them with the normal
values for both C andWebAssembly.

3.3 ReferenceWebAssembly Implementation
We developed a hand-tuned reference set of single-precision sequen-
tial WebAssembly implementations of Sparse Matrix-Vector Multi-
plication (SpMV) for each of the four formats. Our implementations2
closely follow the conventional implementations of SpMVthat target
cache-based superscalar uniprocessor machines. OurWebAssembly
implementations algorithmically follow the reference C implemen-
tation versions from previous work [28] as illustrated in spmv_coo
in Listing 1 and 2. In order to demonstrate that the reference C imple-
mentation is reasonable, it was compared to two popular libraries,

1This is the complete set of squarematrices, with a few exceptionswhere amatrixwould
not fit into available browser memory, and thus was excluded from our study.
2The implementations can be found in the publicly available artifact –
https://doi.org/10.5281/zenodo.3646042

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

110

Listing 3: SIMDportion of single-precision SpMVDIA imple-
mentation inWebAssembly
(loop $inner_loop1

(local.get $this_y)
(f32x4.mul (v128.load (local.get $this_data)) (

v128.load (local.get $this_x)))
(v128.load (local.get $this_y))
(f32x4.add)
(v128.store)
(local.set $this_y (i32.add (local.get $this_y) (

i32.const 16)))
(local.set $this_data (i32.add (local.get $this_data) (

i32.const 16)))
(local.set $this_x (i32.add (local.get $this_x) (

i32.const 16)))
(local.tee $n (i32.add (local.get $n) (i32.const 4)))
(local.get $iend)
(i32.lt_s)
(br_if $inner_loop1)

)

Intel MKL [34] and Python SciPy [20] in [28] and shown that the
performance of reference C implementation is close to both of them.

For SpMVDIA implementations, we apply SIMD optimizations
using the newWebAssembly vector instructions as illustrated in the
portion of spmv_dia in Listing 3.

Listing 1: Single-precision SpMVCOO implementation in C
void spmv_coo(int *coo_row , int *coo_col ,

float *coo_val , int nnz , int N, float *x, float *y)
{ int i;

for(i = 0; i < nnz ; i++)
y[coo_row[i]] += coo_val[i] * x[coo_col[i]];

}

Listing 2: Single-precision SpMV COO implementation in
WebAssembly
(func $spmv_coo (export "spmv_coo ") (param

$coo_row i32) (param $coo_col i32) (param $coo_val
i32) (param $x i32) (param $y i32) (param $nnz i32)

(local $this_y i32)
(i32.add (local.get $coo_val) (i32.shl (i32.sub

(local.get $nnz) (i32.const 1)) (i32.const 2)))
local.tee $nnz
local.get $coo_val
i32.lt_s
if

(return)
end
(loop $top

((local.tee $this_y) (i32.add (local.get $y) (i32.shl
(i32.load (local.get $coo_row)) (i32.const 2))))

(f32.mul (f32.load (local.get $coo_val
)) (f32.load (i32.add (local.get $x) (i32.shl (
i32.load (local.get $coo_col)) (i32.const 2)))))

(f32.load (local.get $this_y))
f32.add
f32.store
(local.set $coo_row

(i32.add (local.get $coo_row) (i32.const 4)))
(local.set $coo_col

(i32.add (local.get $coo_col) (i32.const 4)))
(local.set $coo_val

(i32.add (local.get $coo_val) (i32.const 4)))
(local.get $nnz)
(br_if $top (i32.le_s))

)
)

4 RESULTS ANDANALYSIS
In a previous work [28], SpMV, which is usually evaluated in the tra-
ditional context of native implementations (often in C or C++), was
evaluated for the first time in the context of web-based engines for
JavaScript andWebAssembly. The objective of our experiments is to
extend their work by performing a matrix-structure based analysis
of the performance and the choice of storage format for serial SpMV
computation. We hope that these results will enhance the applica-
bility of the best practices for web-based SpMVwhile considering
the sparsity structure of the matrices and using modern web tech-
nologies for scientific, big data and deep learning web applications.

First, inRQ1, we analyzehow the best choice of storage format for
SpMV operation is related to the input sparse matrix structure. Next,
RQ2 further investigates the effect of sparse matrix structure on the
SpMV performance within each sparse storage format. Finally,RQ3
evaluates the interactionbetween the sparsematrix structure and the
machine characteristics which together influence the performance
of an SpMV operation.

4.1 RQ1:What is the Effect ofMatrix
Structure on the Choice of Storage Format?

In this section we evaluate the sparse matrix structure character-
istics to justify the best choice of sparse storage format for SpMV
operation for both C andWebAssembly. It has been shown in [28]
that there are similarities and differences between native C andWe-
bAssembly implementations for the choice of storage format for
SpMV operation. Therefore, we examine if the same matrix features
drive the storage format choice for both of them or not. We employ
an x%-affinity [28] criteria to obtain the set of matrices best suited
to each format category. An input matrix A has an x%-affinity for
storage format F, if the performance for F is at least x% better than
all other formats and the performance difference is greater than the
measurement error. In addition to single-format categories (COO,
CSR, DIA and ELL), there exist some cases where more than one
format fulfils the x%-affinity metric versus the other formats but
the performance between them cannot be distinguished, therefore
combination-format categories were introduced.

4.1.1 DIA. In DIA SpMV kernel implementation, the outer loop
iterates through each diagonal, and the inner loop iterates through
the elements of a specific diagonal. To represent the matrices in this
category, we analyze this feature called dia_ratiowhich is the ratio
of the number of elements in the diagonals, ndiag_elems to the total
number of non-zero elements in the sparse matrix, nnz.

dia_ratio= ndiaд_elems

nnz
(1)

The ndiag_elems doesn’t include the zeros padded around the diag-
onals to store them in a 2-dimensional array. These padded zeros
are never accessed or processed in the DIA sequential SpMV kernel
implementation because the starting point and the ending point of
the diagonal are easily evaluated from its offset.

In [28], the unavailability of SIMD support forWebAssembly was
described as the potential reason for the difference in the choice
of storage format between C andWebAssembly for DIA matrices.
Therefore, our experiments with SIMD support find a lot of similar-
ities in the choice of storage format between C andWebAssembly.

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

111

Also, it is quite impressive to observe that the SpMVWebAssembly
performance for DIAmatrices demonstrated a geometricmean slow-
down of only 1.14x versus C. The scatter plots in Figure 2 present
the choice of storage format for each matrix, DIA, combination-DIA
and not-DIAwith its dia_ratio feature value marked on the x-axis,
and its SpMV performance marked on the y-axis for both C and
WebAssembly. To obtain these plots, we first categorize the matrices
by determining the set of matrices that have 10%-affinity towards
the DIA format illustrated as DIA in Figure 2. combination-DIA con-
stitutes the set of matrices that have 10%-affinity to the DIA format
as well as to some other formats. The not-DIA set of matrices are
the ones which do not have 10%-affinity to the DIA format. We then
extract the dia_ratio feature values for all the matrices. All the matri-
ces with dia_ratiomore than 5 belong to the not-DIA category, and
hence for simplicity, are not shown on the plot.

From these plots, we make the following observations. First, ma-
trices with dia_ratio value less than 3 show affinity towards the
DIA format, except for a few matrices. After careful evaluations,
we found that these exceptional matrices either in combination-DIA
and not-DIA sets are the matrices with small dimensions (Stranke94,
Trefethen_20b, cage4, to name a few). This makes the matrix di-
mension an important feature to consider especially for the small
matrices. They fail to perform the best for DIA format because of the
increased overhead of the inner loop of SpMVDIA implementation.
Second, the SpMVDIA performance decreases with an increase in
the dia_ratio feature which is as expected. However, the matrices
with the same dia_ratio value also have different SpMVperformance.
It means there exist other matrix features which drive performance.
This phenomenon will be studied in more depth when we explore
the effect of sparse matrix structure on SpMV performance within
the DIA format inRQ2.

4.1.2 ELL. To represent the matrices in this category, we extract
a feature we call ell_ratio, the ratio of nell_elems to the total number
of non-zero elements in the sparse matrix, nnz.

ell_ratio= nell_elems

nnz
(2)

nell_elems is the product of the maximum number of non-zeros
per row and the total number of rows in the matrix. Unlike DIA,
nell_elems includes the padded zeros since they are processed by the
ELL sequential SpMV kernel implementation.

In the scatter plots in Figure 3, we present the choice of storage
format for each matrix, ELL, combination-ELL and not-DIA-not-ELL,
with its ell_ratio feature value marked on the x-axis, and its SpMV
performance marked on the y-axis for both C andWebAssembly. To
obtain these plots, we categorize the matrices by determining the
set of matrices that have 10%-affinity to the ELL format illustrated
as ELL in Figure 3. We then extract the ell_ratio feature values for all
the matrices. Combination-ELL constitutes the set of matrices that
have 10%-affinity to the ELL format as well as to some other formats.
We found that a number of matrices inside not-ELL category had
a favourable ell_ratio feature value which could align the matrix
towards ELL format. But the promising values of dia_ratio for these
matrices pushed them to choose DIA as their best format. This high
priority of dia_ratio over ell_ratio comes from the fact that the SpMV
DIA implementation is a good candidate for loop-vectorization opti-
mization, and the machines with SIMD capabilities tend to perform

(a) C

(b)WebAssembly

Figure 2: Effect of dia_ratio on the choice of storage format
and perfomance for C andWebAssembly SpMVkernel using
the 10%-affinity

better for DIA format as compared to ELL format. Therefore, to show
the true impact of ell_ratio on thematriceswhicharenotDIA,weplot
not-DIA-not-ELL category instead of not-ELL. Also, all the matrices
with ell_ratiomore than 3 belong to the not-DIA-not-ELL category,
and hence for simplicity, are not shown on the plot.

It was found that a number of matrices which belong to ELL for C
associate themselveswith combination-ELL in the case ofWebAssem-
bly. We observe from these plots that the ell_ratio for all the ELL
matrices is always close to 1. However, it is also true for some of
the matrices from combination-ELL and not-DIA-not-ELL category.
It means ell_ratio being close to 1 is not a sufficient condition to
justify the affinity of amatrix towards the ELL format. Therefore, we
explored another feature,max_nnz_per_row which is the maximum
number of non-zeros per row in a sparsematrix as shown in Figure 3.

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

112

It is now clear from the plot that thematrices with ell_ratio close to 1
show affinity towards ELL format if their value ofmax_nnz_per_row
is very small. It increases the overhead of the inner loop in SpMV
CSR implementation. It is also noticed that the matrices with similar
ell_ratio and similarmax_nnz_per_row values have different SpMV
performance. Like DIA, this phenomenon will be studied in more
depth based on some more features inRQ2.

(a) C

(b)WebAssembly

Figure 3: Effect of ell_ratio and max_nnz_per_row on the
choice of storage format and perfomance for C and We-
bAssembly SpMV kernel using the 10%-affinity

4.1.3 COO. Sparse matrices tend to choose COO format over CSR
for a number of reasons. In order to demonstrate that, we extract a
feature called avg_nnz_per_row which is the ratio of the total num-
ber of non-zero elements in the sparse matrix, nnz to the number of
rows of the sparse matrix, N.

avд_nnz_per_row = nnz
N

(3)

(a) C

(b)WebAssembly

Figure 4: Effect of avg_nnz_per_row on the choice of storage
format and perfomance for C and WebAssembly SpMV ker-
nel using the 10%-affinity

In the scatterplots inFigure4,wepresent thechoiceof storage format
for each matrix, COO, combination-COO and not-COO-not-DIA-not-
ELL, with its avg_nnz_per_row feature value marked on the x-axis,
and its SpMV performance marked on the y-axis for both C andWe-
bAssembly.Toobtain theseplots,we categorize thematrices bydeter-
mining the set of matrices that have 10%-affinity to the COO format
illustrated as COO in Figure 4.We then extract the avg_nnz_per_row
feature values for all the matrices. Combination-COO constitutes the
set of matrices that have 10%-affinity to the COO format as well as
to some other formats. In order to exclude both the ELL and DIA
matrices which have promising value for avg_nnz_per_row feature,
we plot CSR category instead of not-COO-not-ELL-not-DIA. Also, all
the matrices with avg_nnz_per_row more than 15 belong to the CSR
category, and hence for simplicity, are not shown on the plot.

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

113

From these plots, we make the following observations. First, for
some of the COOmatrices, the number of non-zeros is less than the
number of rows; e.g., zeniosmatrix, with N = 2873 and nnz = 1314.
Such matrices choose COO format over CSR because in this case the
size of CSR format becomes greater than the size of COO format,
which is usually otherwise. Second, all of the COO matrices from
our benchmark set have small values of avg_nnz_per_row. The small
number of non-zeros per row increases the overhead of the inner
loop of sequential SpMV CSR kernel implementation. However, it
can also be observed that there are a number of CSRmatrices with
small values of avg_nnz_per_row. So, only based on this feature,
one cannot distinguish between CSR and COOmatrices. The large
variation in the number of non-zeros per row increases the chances
of branch mispredictions for the inner loop of the SpMV CSR kernel
implementation. Therefore, the COO matrices are mostly with a
small and uneven number of non-zeros per row. This phenomenon
will be explained more in-depth based on the hardware features in
RQ3. Also, due to the uneven number of non-zeros per row, ELL
alone is not a suitable format for such a matrix. This was essentially
the purpose of a new hybrid ELL/COO format proposed by Bell and
Garland [9] to store the fixed number of non-zeros per row in the
ELL format, and the rest of the non-zeros in the COO format.

4.1.4 CSR. This format tends to become the best format for the
matrices which are highly unsuitable for DIA, ELL and COO formats
for the reasons highlighted in Table 1.

Table 1: Summary of relationship between storage format
and structure features

Format Feature(s) Priority
DIA dia_ratio ≤ 3 and large N 1
ELL ell_ratio ≃ 1 and smallmax_nnz_per_row 2

COO nnz < N or small avg_nnz_per_row and
uneven number of non-zeros per row 3

Overall, it is interesting to observe for all the formats that the
SpMVperformance in the case of C is slightly better thanWebAssem-
bly despite our efficient and equivalent WebAssembly implemen-
tations. Hence, we compared the x86 code generated by the V8’s
TurboFan compiler and the gcc compiler, and noticed a difference in
their code generation strategy: gcc uses memory addressing modes
available for x86-64 instruction set architecture, while the V8 com-
piler uses registers. For the latter this leads to more load and store
instructions, and also high register pressure. On top of that, for every
array access from linear memory, an extra operation is performed
to calculate the effective address using a fixed offset.

4.2 RQ2:What is the Effect ofMatrix Structure
on SpMV Performance within a Storage
Format?

In this section we evaluate the effect of the sparse matrix structure
on the SpMVperformance for the different categories of thematrices
based on the storage format from the previous section.

4.2.1 DIA. The inherent diagonal structure of the DIAmatrices al-
lows toaccess thevaluesof inputvectorxandoutputvectorycontigu-
ously providing both the spatial and temporal locality. So, thismakes
thedia_ratio amain featurewhichdrives theperformance alongwith
the DIA Working Set for the matrices having affinity towards this
format, where DIAWorking Set is ndiag_elems + num_diags + 2 * N,
ndiag_elems is the number of elements in the diagonals, num_diags
is the number of diagonals, and N is the size of the input vector x or
output vector y. A good performance is expected if the input vector
x and output vector y fit into the cache, and the dia_ratio is close to 1.

The scatter plots in Figure 5 shows the combined impact ofDIA
Working Set and dia_ratio on the SpMV performance for both C
andWebAssembly. It is quite evident that for a set of matrices with
similar dia_ratio, the SpMV performance decreases with an increase
in the working set size.

(a) C

(b)WebAssembly

Figure 5: Performance of the SpMV kernel in relation to the
working set size for the DIAmatrices using the 10%-affinity

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

114

4.2.2 ELL. As observed inRQ1, ELLmatrices always have ell_ratio
close to 1 and smallmax_nnz_per_row. Therefore, we evaluate other
features in this section to understand how the structure of an ELL
matrix affects its SpMV performance. Figure 6 shows the impact of
ELLWorking Set on the SpMV performance for the matrices having
10%-affinity towards this format for both C andWebAssembly. ELL
Working Set is 2 * nell_elems + 2 * N, where nell_elems is the product
of the maximum number of non-zeros per row and the total number
of rows in thematrix, andN is the size of the input vector x or output
vector y. It is clear that most of the matrices perform reasonably
well, especially the matrices whose ELLWorking Set is below the L3
cache size. For others, a potential reason for the performance degra-
dation comes from the irregularity in their structure. We describe
this irregularity via a metric called ELL Locality Index.

ELLLocalityIndex =

15∑
p=0

ELLReuseDistance[p]

nnz
×100 (4)

The matrices with high ELL Locality Index tend to perform better
than the matrices with low ELL Locality Index. The column index of
each non-zero of the sparse matrix A is used to calculate this feature.
Basically, it is based on the access pattern of the input vector x.

Figure 6: Performance of the SpMV kernel in relation to the
working set size and ELL Locality Index for the ELLmatrices
using the 10%-affinity

Figure 7 shows the calculation of ELL Locality Index feature for an
example matrix. First of all, the Reuse Distance is calculated for each
non-zero. Reuse Distance is defined for each non-zero as the distance
from the last non-zero whose column index corresponds to the same
cache line of the input vector x. The distance here is measured in
the unit of data accesses. In modern systems, the cache line size is
typically 64 bytes. We thus determine the number of elements in a
cache line for a given floating-point precision. For example, for a
single-precision SpMV computation, each cache line consists of 16
x-vector elements, assuming the elements from index 0 to 15 belong
to the same cache line and so forth. For simplification in Figure 7
we assume the cache line size to be 2 (the same-coloured squares

0 5

0 1 2

0 0 2

0 0 3

4 8 0

0

1

2

3

Reuse Distance for each data value based on
the corresponding column index value

ELL Reuse
Distance

using
frequency
distribution

Index 0 1 2 3

Frequency 3 1 1 1

ELL Locality Index using
cumulative percentage

1 5

2 6

3 7

1 x[0] x[2]

x[2] x[3]

x[2] x[3]

data x-vector
access pattern

Reuse Distance

0

3

6

7

0 4 8 x[0] x[1]

-- 1

-- 0

0 0

2 3

Figure 7: An example for ELL Locality Index calculation

in the x-vector access pattern belong to the same cache line). It is
important that the Reuse Distance is calculated in the same order as
the non-zeros are accessed (vertically) in the ELL SpMVcomputation.
Therefore, it is straightforward to measure it on the indices array
of the sparse matrix in the ELL format which directly indicates the
x-vector access pattern.

For the input vector x, if an element from a cache line is accessed,
and this cache line is accessed for the first time, then the Reuse Dis-
tance is not calculated for this access and illustrated as ’--’ in Figure 7
since this cache line has not been reused at all. However,we label this
cache linewith the position of the respective non-zero forwhich this
x element was used. Thereafter, the Reuse Distance will be measured
for all the following accesses to this cache line by subtracting the
cache line label from the position of the corresponding non-zero,
with the corresponding cache line label updating with each non-
zero access to keep track of the position at which this cache line
was previously used. Following the calculation of Reuse Distance for
all the non-zeros, ELL Reuse Distance is calculated using frequency
distribution. It means the ELL Reuse Distance[p] is the number of
non-zeros of sparse matrix A stored in the ELL format which access
the input vector xwith p Reuse Distance. This feature counts both
temporal and spatial locality for the input vector x. The matrices
with a more regular structure will have low values of Reuse Distance
for most of its non-zeros, while the matrices with irregular structure
will have a few non-zeros in the lower range of ELL Reuse Distance.
Finally, the ELL Locality Index is calculated from ELL Reuse Distance
using cumulative percentage where Reuse Distance is from 0 to Best
ReuseDistance.We chose theBest ReuseDistance to be 15basedonour
experiments. This data locality based irregular structure is observed
for a matrix called wing, whose working set lies between L2 and L3
cache, and its SpMV performance is around 1600 MFLOPS in the
case of C, which is substantially lower than other matrices with the
regular structure in the same working set range.

4.2.3 CSR. InRQ1we described CSR as being chosen as the fall-
back method when no other specialized format can be employed for
a given sparse matrix. In short, no structural feature seems to play

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

115

a role in making CSR as the best choice. However, the structure of
a given CSRmatrix indeed governs its SpMV performance. Figure 8

(a) C

(b)WebAssembly

Figure 8: Performance of the SpMV kernel in relation to the
working set size andCSRLocality Index for theCSRmatrices
using the 10%-affinity

shows the impact of CSRWorking Set on the SpMV performance for
the matrices having 10%-affinity towards this format for both C and
WebAssembly. TheCSRWorking Set is : (N +1) + 2 *nnz +2 *N, where
nnz is the number of non-zeros in the matrix, andN is the number
of rows/columns. Regardless of the increasing working set size, it is
observed that the SpMV performance remains consistently good for
most of the matrices, although there exists a set of matrices which
do not perform equally well. In order to understand this peculiar
behavior, we investigated the difference between the structure of the
matrices in these two sets. LikeELLmatrices, onepotential reason for
thisperformancedifferencecomes fromthe irregularity in their struc-
ture. Therefore,we introduce anew feature calledCSRReuseDistance

which finally contributes to the calculation of CSR Locality Index.
The purpose of this feature is to formally define the irregularity or
regularity in the matrix structure. The design of this feature is based
on the reuse distance concept and the two aspects of regularity in
the structure of thematrix: spatial locality for the non-zeros in a row,
and temporal locality for the non-zeros in the neighbouring rows.

CSRLocalityIndex =

15∑
p=0

CSRReuseDistance[p]

nnz
×100 (5)

Figure 9 shows the calculation of CSR Locality Index feature for an
example matrix. First of all, the Row Reuse Distance is calculated for
each non-zero.RowReuseDistance is defined for each non-zero as the
distance from the last non-zero whose column index corresponds to
the same cache line of the input vector x. Like ELL, the size of a cache
line of input vector x is determined based on the cache line size of
the given system. Unlike in ELL, the distance here is measured in
the unit of rows. It is important to note that the Row Reuse Distance
is calculated on the input vector x for each non-zero.

1 0 2 3 4 0 5 0 0 0

0 1 2 30 31 32 33 N-3 N-2 N-1

0 0 0 0 0 6 7 0 0 0

0 8 9 10 0 0 0 11 0 12

0 0 0 0 0 0 0 0 13 0

0

1

2

N-1

Row Reuse Distance for
each non-zero based on

the corresponding column
index value

CSR Reuse Distance using
frequency distribution

Index 0 1 2 ... N-3

Frequency 5 1 2 ... 1

CSR Locality
Index using
cumulative
percentage

1 2 3 4 5 6 7 8 9 10 11 12 13

0 2 30 31 33 32 33 1 2 30 N-3 N-1 N-2

0 5 7 13row_ptr

col

val

-- 0 -- 0 -- 1 0 2 0 2 -- 0 N-3
Row

Reuse
Distance

x[0] x[2] x[30] x[31] x[33] x[32] x[33] x[1] x[2] x[30]
x-vector
access
pattern

X[N-3] X[N-1] X[N-2]

12

Figure 9: An example for CSR Locality Index calculation

For the input vector x, if an element from a cache line is accessed,
and this cache line is accessed for the first time, then the Row Reuse
Distance is not calculated for this access. However, we label this
cache linewith the row number of the respective non-zero for which
this x elementwas used. TheRowReuseDistancewill bemeasured for
all the following accesses to the same cache line by subtracting the
cache line label from the row number of the corresponding non-zero.

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

116

Also, the corresponding cache line label keeps on updating to keep
track of the row in which this cache line was previously used. If
two elements from the same cache line are accessed in a given row,
then the second access will have a zero Row Reuse Distance because
the first access will set the cache line label to the same row number.
The first access could be the first access of this cache line which in
that case will not count towards the CSR Reuse Distance. Another
possibility is that this cache line was accessed previously in another
rowwhich will result in a non-zero Row Reuse Distance for the first
access. Following the calculation of Row Reuse Distance for all the
non-zeros,CSR Reuse Distance is calculated using frequency distribu-
tion. It means the CSR Reuse Distance[p] is the number of non-zeros
of sparse matrix A stored in the CSR format which access the input
vector xwith p Row Reuse Distance. Finally, the CSR Locality Index is
calculated from CSR Reuse Distance using a cumulative percentage
where Row Reuse Distance is from 0 to Best Row Reuse Distance. We
chose the Best Row Reuse Distance to be 15 based on our experiments.

With the CSR Locality Index feature in place on Figure 8, we can
clearly follow the effect of irregularity based on data locality on the
SpMV performance. The power of this parameter is evident from
the fact that it makes it easy to identify the reason for the difference
in SpMV performance of two sparse matrices of similar working set
size. Heras et al. [16] also modeled the data locality for SpMV CSR
execution. Itwas based on the number of entrymatches and the num-
ber of block matches between the pairs of consecutive rows which
only accounted for limited locality between the pairs of consecutive
rows. Therefore, it was generalized on the pairs of consecutive group
of rows by selecting the best window size ranging between 1 to
64. However, the whole process of calculating the number of entry
matches and the number of block matches needs to be repeated for
eachwindow size to finally select the bestwindow size. In contrast to
that, we proposed a simpler and more efficient approach where the
Row Reuse Distance is calculated for each non-zero access, and the
Best Row Reuse Distance that corresponds to twice the best window
size is chosen at the end after the calculation of CSR Reuse Distance
which finally leads to the evaluation of CSR Locality Index with just
a simple summation. Another factor that affects the SpMV perfor-
mance of CSRmatrices is the irregular number of non-zeros per row
which is studied in more detail inRQ3.

4.2.4 COO. Figure 10 shows the impact of COO Working Set on
the SpMV performance for the matrices having affinity towards this
format for both C and WebAssembly. The COO Working Set is 3 *
nnz + 2 * N, where nnz is the number of non-zeros in the matrix,
andN is the number of rows/columns. It is clear from the plot that
the SpMV performance of the COOmatrices is directly affected by
the working set of the problem.We investigated the performance of
COOmatrices in relation to the COO Locality Index (calculated the
same as CSR Locality Index). However, we found that a number of
matrices have amediocre value of this feature but their performance
is as good as the ones with the higher value of this feature. It means
that the COO Locality Index doesn’t have the same impact on the
COOmatrices as the CSR Locality Index has on the CSRmatrices. It
is likely due to the higher number of rows with no elements in the
COOmatrices than CSRmatrices. It is also reasonable to point out
that at any point of time in COO SpMV computation, there is more
memory traffic as compared to other formats.

(a) C

(b)WebAssembly

Figure 10: Performance of the SpMVkernel in relation to the
working set size and COO Locality Index for the COOmatri-
ces using the 10%-affinity

4.3 RQ3:What is the Effect of Interaction
betweenMatrix Structure andHardware
Characteristics on the SpMV Performance?

In this section we evaluate the relationship between the sparse ma-
trix structure and the hardware features which together influence
the SpMV performance. We count the true hardware performance
counters throughaperformanceAPI tool (PAPI) [30]while executing
SpMV on our benchmark set for C.

4.3.1 Caches and Main Memory. In RQ2, the features designed
based on the data locality model have their roots in the hardware
features like data cache misses. In order to validate our evaluations,
we measure the cache misses for L1, L2 and L3 cache levels using
PAPI_L1_DCM, PAPI_L2_DCM and PAPI_L3_TCM PAPI events per
SpMV operation. The percentage of the number of cache misses for

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

117

an SpMV operation over the total number of non-zeros in the sparse
matrix provides a good measure for representing data locality.

Index =
PAPI_L1_DCM∨PAPI_L2_DCM∨PAPI_L3_TCM

nnz
×100

(6)
It is important to note here that cache misses from a specific cache
level are considered for calculating this percentage index based on
the dimension of the sparse matrix. For example, if double the size
of the vector x fits the L3 cache but it doesn’t fit in L2 cache, then
the number of cache misses from L2 cache is used. A low percentage
number means fewer cache misses for vector x, and hence a good
data locality. In contrast, a high percentage numbermeans poor data
locality for a sparse matrix as shown in Figure 11.

Figure 11: Performance of the SpMVkernel in relation to the
working set size and cache misses percentage index for the
CSRmatrices using the 10%-affinity

4.3.2 Branch Prediction Unit. InRQ1, the branch mispredictions
are described as the potential reason for some of the matrices to
choose COO format over the CSR format for the SpMV computation.
When the number of non-zeros per row are uneven, it increases the
chances of incorrectly predicting the direction of the conditional
branch if thematrices are stored in the CSR format. In order to verify
this, we store both COO and CSR matrices in the CSR format and
measure the correct branch predictions and branch mispredictions
using PAPI_BR_PRC and PAPI_BR_MSP events per SpMVoperation.
We then compute the percentage of branch mispredictions over the
total conditional branch predictions.

Index =
PAPI_BR_MSP

PAPI_BR_PRC+PAPI_BR_MSP
×100 (7)

Figure 12 shows the SpMV performance of COO and CSR matri-
ces with respect to their avg_nnz_per_row and the calculated index.
Also, in RQ2, the branch misprediction rate in combination with
CSR Locality Index affects the SpMV performance within the CSR
matrices as shown in Figure 13. It is quite clear that a high percentage
index value, potentially due to the irregular number of non-zeros
per row, leads to SpMV performance slowdown.

Figure 12: Performanceof the SpMVkernel forCOOandCSR
matrices in relation to the avg_nnz_per_row and branchmis-
prediction percentage index using the 10%-affinity

Figure 13: Performance of the SpMVkernel in relation to the
working set size and branchmisprediction percentage index
for the CSRmatrices using the 10%-affinity

5 CONCLUSIONAND FUTUREWORK
Ourwork provides valuable insights about the factors which control
the SpMV performance. First, we found that somematrices which
indeed belong to a single-format category canhave favourable values
formultiple structure features that can indicate their affinity towards
more than one format. This is especially true for DIAmatrices which
have feature values that also fit ELL format criteria. However, the
application of SIMD vectorization optimization for SpMVDIA im-
plementation prioritized DIA to be selected as the optimal format.
This supports the argument that the optimal choice of storage for-
mat is governed both by the structure of the matrix and the code
optimization opportunities available for the given programming lan-
guage and themachine architecture. Second, the SpMVperformance

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

118

suffers in the case ofWebAssembly for Chrome browser. V8’s code
generation currently does not utilize the advantageous memory ad-
dressing modes available in the x86 instruction set. Therefore, some
of the matrices, which belong to the single-format category based
on the 10%-affinity criteria in the case of C, show affinity towards
the combination-format category when executed forWebAssembly.
Third, our structure features modeled based on the data locality,
provide the capability of estimating if the SpMV performance for a
particular matrix is affected by the irregular memory accesses for
vector x or not. Lastly, we validate our evaluations and parameter
choices using hardware performance counters.

In our future work we wish to further explore how the impact of
additional hardware features on SpMV performance can be quan-
tified via matrix structure features. The future improvements to V8
TurboFan’s code generation strategies, and the addition of some new
instructions like gather/scatter to theWebAssembly instruction set
will provide new optimization opportunities for web-based sparse
computations. We also intend to use the methodology established
in this paper along with the upcoming browser-based technologies
like web workers to examine parallel versions of web-based SpMV.

6 ACKNOWLEDGMENTS
This research work was partially supported by Natural Sciences and
Engineering Research Council of Canada (NSERC).

REFERENCES
[1] 2018. argon.js - A javascript framework for adding augmented reality content

to web applications. https://www.argonjs.io
[2] 2018. AR.js - Augmented Reality for theWeb. https://github.com/jeromeetienne/

ar.js
[3] 2018. brain.js - Neural networks in JavaScript. https://github.com/BrainJS/brain.js
[4] 2018. Features to add after theMVP. http://webassembly.org/docs/future-features
[5] 2018. ml.js - A k-nearest neighbour classifier algorithm. https:

//github.com/mljs/knn
[6] 2019. AutoCADWeb App. https://web.autocad.com/
[7] 2019. Photo Editor | Online Photoshop Lightroom. https://lightroom.adobe.com
[8] R. C. Agarwal, F. G. Gustavson, and M. Zubair. 1992. A High Performance

Algorithm Using Pre-processing for the Sparse Matrix-vector Multiplication.
In Proceedings of the 1992 ACM/IEEE Conference on Supercomputing (Super-
computing ’92). IEEE Computer Society Press, Los Alamitos, CA, USA, 32–41.
http://dl.acm.org/citation.cfm?id=147877.147901

[9] Nathan Bell and Michael Garland. 2009. Implementing Sparse Matrix-vector Mul-
tiplication on Throughput-oriented Processors. In Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis (SC ’09). ACM,
NewYork, NY, USA, Article 18, 11 pages. https://doi.org/10.1145/1654059.1654078

[10] Ronald F Boisvert, Roldan Pozo, Karin Remington, Richard F Barrett, and Jack J
Dongarra. 1997. Matrix market: a web resource for test matrix collections. In
Quality of Numerical Software. Springer, 125–137.

[11] Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix
collection. ACM Transactions on Mathematical Software (TOMS) 38, 1 (2011), 1.

[12] Chen Ding and Yutao Zhong. 2003. PredictingWhole-program Locality Through
Reuse Distance Analysis. In PLDI ’03. ACM, New York, NY, USA, 245–257.
https://doi.org/10.1145/781131.781159

[13] A. Elafrou, G. Goumas, and N. Koziris. 2017. Performance Analysis and
Optimization of Sparse Matrix-Vector Multiplication on Intel Xeon Phi. In 2017
IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). 1389–1398. https://doi.org/10.1109/IPDPSW.2017.134

[14] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris. 2008.
Understanding the Performance of Sparse Matrix-Vector Multiplication. In 16th
Euromicro Conference on Parallel, Distributed and Network-Based Processing (PDP
2008). 283–292. https://doi.org/10.1109/PDP.2008.41

[15] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the
web up to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation. ACM, 185–200.

[16] D.B. Heras, J.C. Cabaleiro, and F.F. Rivera. 2001. Modeling data locality for the
sparse matrix-vector product using distance measures. Parallel Comput. 27, 7
(2001), 897 – 912. https://doi.org/10.1016/S0167-8191(01)00089-8

[17] DavidHerrera, Hanfeng Chen, Erick Lavoie, and Laurie Hendren. 2018. Numerical
Computing on theWeb: Benchmarking for the Future. In Proceedings of the 14th
ACM SIGPLAN International Symposium on Dynamic Languages (DLS 2018). ACM,
New York, NY, USA, 88–100. https://doi.org/10.1145/3276945.3276968

[18] Eun-Jin Im, Katherine Yelick, and Richard Vuduc. 2004. Sparsity: Optimization
framework for sparse matrix kernels. The International Journal of High
Performance Computing Applications 18, 1 (2004), 135–158.

[19] Abhinav Jangda, Bobby Powers, Emery D. Berger, and Arjun Guha. 2019.
Not So Fast: Analyzing the Performance of Webassembly vs. Native Code.
In Proceedings of the 2019 USENIX Conference on Usenix Annual Technical
Conference (USENIX ATC ’19). USENIX Association, Berkeley, CA, USA, 107–120.
http://dl.acm.org/citation.cfm?id=3358807.3358817

[20] Eric Jones, Travis Oliphant, Pearu Peterson, et al. 2001–. SciPy: Open source
scientific tools for Python. http://www.scipy.org/ [Online; accessed <today>].

[21] Andrej Karpathy. 2014. ConvNetJS: Deep learning in your browser (2014). URL
http://cs. stanford. edu/people/karpathy/convnetjs (2014).

[22] Kornilios Kourtis, Vasileios Karakasis, Georgios Goumas, and Nectarios Koziris.
2011. CSX: An Extended Compression Format for Spmv on Shared Memory
Systems. In Proceedings of the 16th ACM Symposium on Principles and Practice
of Parallel Programming (PPoPP ’11). ACM, New York, NY, USA, 247–256.
https://doi.org/10.1145/1941553.1941587

[23] Jiajia Li, Guangming Tan, Mingyu Chen, and Ninghui Sun. 2013. SMAT: An Input
Adaptive Auto-tuner for Sparse Matrix-vector Multiplication. In PLDI’13. ACM,
117–126.

[24] Weifeng Liu and Brian Vinter. 2015. CSR5: An Efficient Storage Format for
Cross-Platform Sparse Matrix-Vector Multiplication. In ICS’15. ACM, 339–350.

[25] Nikhil Thorat, Daniel Smilkov, and Charles Nicholson. [n.d.]. TensorFlow.js - A
WebGL accelerated browser based JavaScript library for training and deploying
MLmodels. https://js.tensorflow.org [Online; accessed <today>].

[26] Ali Pinar and Michael T. Heath. 1999. Improving Performance of Sparse
Matrix-vector Multiplication. In Proceedings of the 1999 ACM/IEEE Con-
ference on Supercomputing (SC ’99). ACM, New York, NY, USA, Article 30.
https://doi.org/10.1145/331532.331562

[27] Yousef Saad. 1994. SPARSKIT: a basic tool kit for sparse matrix computations.
[28] Prabhjot Sandhu, David Herrera, and Laurie Hendren. 2018. Sparse Matrices

on the Web: Characterizing the Performance and Optimal Format Selection
of Sparse Matrix-vector Multiplication in JavaScript and WebAssembly. In
Proceedings of the 15th International Conference on Managed Languages &
Runtimes (ManLang ’18). ACM, New York, NY, USA, Article 6, 13 pages.
https://doi.org/10.1145/3237009.3237020

[29] O. Temam andW. Jalby. 1992. Characterizing the Behavior of Sparse Algorithms
on Caches. In Proceedings of the 1992 ACM/IEEE Conference on Supercomputing
(Supercomputing ’92). IEEE Computer Society Press, Los Alamitos, CA, USA,
578–587. http://dl.acm.org/citation.cfm?id=147877.148091

[30] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. 2010. Collecting
Performance Data with PAPI-C. In Tools for High Performance Computing 2009,
Matthias S. Müller, Michael M. Resch, Alexander Schulz, andWolfgang E. Nagel
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 157–173.

[31] S. Toledo. 1997. Improving the memory-system performance of sparse-matrix
vector multiplication. IBM Journal of Research and Development 41, 6 (Nov 1997),
711–725. https://doi.org/10.1147/rd.416.0711

[32] K. R. Townsend, S. Sun, T. Johnson, O. G. Attia, P. H. Jones, and J. Zambreno.
2015. k-NN text classification using an FPGA-based sparse matrix vector multi-
plication accelerator. In 2015 IEEE International Conference on Electro/Information
Technology (EIT). 257–263. https://doi.org/10.1109/EIT.2015.7293349

[33] Richard Vuduc, JamesWDemmel, and Katherine A Yelick. 2005. OSKI: A library
of automatically tuned sparse matrix kernels. In Journal of Physics: Conference
Series, Vol. 16. IOP Publishing, 521.

[34] EndongWang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, QingWu,
and YajuanWang. 2014. Intel math kernel library. InHigh-Performance Computing
on the Intel® Xeon Phi. Springer, 167–188.

[35] Y. Wang, H. Yan, C. Pan, and S. Xiang. 2011. Image editing based on
Sparse Matrix-Vector multiplication. In 2011 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP). 1317–1320.
https://doi.org/10.1109/ICASSP.2011.5946654

[36] James B.White, III and P. Sadayappan. 1997. On Improving the Performance of
Sparse Matrix-Vector Multiplication. In Proceedings of the Fourth International
Conference on High-Performance Computing (HIPC ’97). IEEE Computer Society,
Washington, DC, USA, 66–. http://dl.acm.org/citation.cfm?id=523991.938962

[37] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick, and
James Demmel. 2007. Optimization of Sparse Matrix-vector Multiplication on
EmergingMulticore Platforms. In Proceedings of the 2007 ACM/IEEE Conference
on Supercomputing (SC ’07). ACM, New York, NY, USA, Article 38, 12 pages.
https://doi.org/10.1145/1362622.1362674

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

119

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Sparse Matrix Formats
	2.2 WebAssembly
	2.3 Related Work

	3 Experimental Setup
	3.1 Target Languages and Runtime
	3.2 Input Matrices
	3.3 Reference WebAssembly Implementation

	4 Results and Analysis
	4.1 RQ1: What is the Effect of Matrix Structure on the Choice of Storage Format?
	4.2 RQ2: What is the Effect of Matrix Structure on SpMV Performance within a Storage Format?
	4.3 RQ3: What is the Effect of Interaction between Matrix Structure and Hardware Characteristics on the SpMV Performance?

	5 Conclusion and Future Work
	6 Acknowledgments
	References

