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ABSTRACT
We investigate the duet measurement procedure, which helps im-
prove the accuracy of performance comparison experiments con-
ducted on shared machines by executing the measured artifacts in
parallel and evaluating their relative performance together, rather
than individually. Specifically, we analyze the behavior of the proce-
dure in multiple cloud environments and use experimental evidence
to answer multiple research questions concerning the assumption
underlying the procedure. We demonstrate improvements in accu-
racy ranging from 2.3× to 12.5× (5.03× on average) for the tested
ScalaBench (and DaCapo) workloads, and from 23.8× to 82.4×
(37.4× on average) for the SPEC CPU 2017 workloads.
ACM Reference Format:
Lubomír Bulej, Vojtěch Horký, Petr Tůma, François Farquet, and Aleksandar
Prokopec. 2020. Duet Benchmarking: Improving Measurement Accuracy in
the Cloud. In Proceedings of the 2020 ACM/SPEC International Conference on
Performance Engineering (ICPE ’20), April 20–24, 2020, Edmonton, AB, Canada.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3358960.3379132

1 INTRODUCTION
At the heart of various performance comparison activities is a mea-
surement experiment, whose statistical nature involves an inherent
trade off between execution time and sensitivity to differences in
performance. Longer experiment times average over noise in the
measurement data and provide more accurate results, but are also
expensive both in terms of time and computing resources. Con-
versely, shorter execution times may cause the loss of sensitivity
or report false alarms. This is a problem when automating perfor-
mance test execution and evaluation [14, 22].

Importantly, the resource requirements for performance test-
ing are not constant, but rather reflect the development activities,
the test scenarios, and the desired level of sensitivity. To satisfy
the changing resource requirements, it is therefore attractive to
consider offloading the performance testing activities to the cloud.
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Figure 1: Distribution of observed mean execution times of
the avrora benchmark, running on an otherwise idle bare-
metal server and on a public cloud machine. Note the min-
max range, which is about 16% of the mean on the bare-
metal server and about 150% in the cloud.

A specific hurdle in this context is the fact that the cloud does not
necessarily provide the performance stability required for perfor-
mance testing. Performance measurements in the cloud are noisy,
in part due to lack of control over hardware configuration, in part
due to overhead of virtualization, but most importantly due to in-
terference from colocated workloads of other tenants [15, 17, 18].
To illustrate this, Figure 1 shows the distribution of mean task ex-
ecution times for iterations of an example benchmark from the
DaCapo suite, both on a bare-metal server and on a virtual machine
running in a public cloud.

Our earlier work [5] introduced the idea of the duet measure-
ment procedure, which improves measurement accuracy in shared
resource environments, such as virtual machine instances in the
cloud. The procedure is based on the assumption that performance
fluctuations due to interference tend to impact similar tenants
equally, and attempts to maximize the likelihood of such equal
impact by executing the measured artifacts in parallel. The subse-
quent computation filters out the fluctuations by considering the
relative performance of the measured artifacts together.

The assumptions of the duet measurement procedure hinge on
detailed technical properties of both the measurement platform and
the executing workloads. In the cloud, such properties typically can-
not be controlled or guaranteed, we therefore subject the procedure
to a thorough experimental evaluation with the goal of analyzing
the overall behavior and documenting the observed accuracy. Based
on experimental evidence, we answer specific research questions

SESSION 3: Performance as Throughput and Concerns ICPE '20, April 20–24, 2020, Edmonton, AB, Canada

100

https://doi.org/10.1145/3358960.3379132
https://doi.org/10.1145/3358960.3379132


ICPE ’20, April 20–24, 2020, Edmonton, AB, Canada Lubomír Bulej, Vojtěch Horký, Petr Tůma, François Farquet, and Aleksandar Prokopec

concerning the assumption underlying the procedure and explain
the technical mechanisms behind the observations:

– We demonstrate improvements in accuracy that range from
2.3× to 12.5× (5.03× on average) for the tested ScalaBench [27]
(and DaCapo [3]) workloads, and from 23.8× to 82.4× (37.4×
on average) for SPEC CPU 2017 workloads [29].

– We show that the accuracy improvements are due to the
ability of the duet procedure to isolate synchronized interfer-
ence, and that this interference arises with resource sharing.

– We evaluate how the specific patterns of concurrent execu-
tion and uneven resource utilization impact the ability of the
duet procedure to measure performance differences.

As an essential overall contribution, our results indicate that
cloud-based virtual machines can provide a viable platform for
conducting an entire class of performance testing experiments
based on comparing task execution times of benchmark workloads.

Section 2 provides additional background and motivation for
performance regression testing as our specific application context.
Section 3 presents an overview of the duet measurement procedure
and the associated computations. Section 4 presents experimental
evaluation answering specific research questions that naturally
arise when using duet measurements and observing the effects on
measurement accuracy. We review related work in Section 5 and
conclude the paper in Section 6.

2 BACKGROUND AND MOTIVATION
The motivation for our work is performance regression testing, that
is, the task of detecting performance changes between two versions
of a software project. To this end, we use benchmark workloads to
exercise both versions of the project, measuring and comparing task
execution times of individual workloads between the two versions.

Essential to performance regression testing is robust perfor-
mance change detection. The task execution times observed on
a real system are influenced by different sources of variability at
different levels of granularity – the comparison therefore relies on
statistical hypothesis testing to accommodate the inherent variabil-
ity in the data, and the performance testing procedure must ensure
that significant sources of variability are sufficiently represented in
the data [2, 4, 9].

To provide sufficient variability, benchmarks repeatedly execute
the same task (in a single process) and measure the task execu-
tion time in each iteration. This captures variability caused by fac-
tors that can manifest at any time during benchmark execution,
and which can influence the execution time of any iteration, such
as scheduling, memory caches, or background load. In addition,
benchmarks are executed repeatedly to obtain execution times from
multiple benchmark runs (in multiple processes). This captures vari-
ability caused by factors that can change between runs, but rarely
change within a single run, such as process memory layout, or
decisions of managed platforms such as the Java Virtual Machine.

As a general rule, the variability in the observed execution times
determines the magnitude of performance changes that can be
reliably detected in a given time, or alternatively, the time needed
to detect performance changes of a given magnitude. For a quick
illustration of the computational resources needed for performance
regression testing, we use the open source GraalVM project [23],

where the developers contribute on average 5 merge commits per
day and want to test these commits for performance changes on a
selection of 60 workloads from multiple benchmark suites. When
using Java workloads for tests at the 99 % confidence level, we can
realistically assume to need data from 30 benchmark runs, each
executing for 10 minutes (to get past some of the warm up effects).
This sums up to 10 machine hours for a single experiment involving
one version pair and one benchmark, and becomes 3000 machine
hours per day for all experiments, which is an overwhelming figure.

To pare down the resource demands, we can limit the amount of
testing actually done [12, 22], however, that alone may not solve
the problem of infrastructure capacity limits. This is where cloud
resources come into consideration, yet it is unclear if they are of
any use for performance regression testing – the degree of control
over the experimental platform, which allows obtaining accurate
measurements on the local infrastructure, is not available in the
cloud. Furthermore, cloud providers offer abstract virtual machine
types that can run on different types of physical hosts [18], resulting
in different execution times even for the same code. Finally, cloud
virtual machines suffer from performance interference of neigh-
bor workloads, which the virtualization technology cannot entirely
eliminate. This also holds for continuous integration solutions exe-
cuting in the cloud, such as Travis [30] or GitLab Runner [10].

In summary, we need a procedure that takes the characteristics
of the cloud into account and makes it useful for performance
testing, even if it only allows to quickly process many versions and
flag suspect cases for more thorough measurements on dedicated
infrastructure.

3 DUET MEASUREMENT PROCEDURE
Measurements in the cloud are subject to performance interference,
which manifests as noise that may randomly affect any measured
data. To account for the probabilistic nature of the interference, we
have to repeat the measured operation enough times to obtain a
representative sample of measurements, and then calculate con-
fidence intervals for any values derived from the measurements.
In experiments involving multiple workloads there is a risk of a
systematic bias in the measured data if the probability of a work-
load being influenced by interference is not equal for all workloads.
The current best practice uses randomized interleaving of work-
loads [2], which—for a long enough experiment—avoids the bias
by equalizing the probability of interference for all workloads.

The duet measurement procedure also avoids bias by equalizing
probability of interference, but is specifically tailored for experi-
ments comparing performance of two (related) workloads. The two
workloads are executed in parallel, inside a virtual machine with
two virtual cores, with each workload restricted to one virtual core.
The workloads are synchronized using a shared memory barrier, so
that their measured operations always start at the same time. This
setting ensures that any external interference on the virtual ma-
chine impacts both workloads simultaneously, which equalizes the
probability of interference between the workloads for each paired
measurement and thus avoids the bias immediately—rather than
only for a long enough experiment.
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We derive the confidence interval for the ratio of task execution
times, which describes the relative performance of the two work-
loads, using a Monte Carlo procedure based on standard bootstrap
confidence interval computation [13], explained in detail in [5]:

(1) For a pair of workloads x and y and an experiment with R
runs of I iterations each, we denote xr ,i and yr ,i the task
execution times of the respective workloads, measured in
iteration i ∈ 1 . . . I of run r ∈ 1 . . .R.

(2) For each r and i , we use the paired samples xr ,i and yr ,i
to calculate the corresponding (speedup) sample sr ,i of the
ratio between task execution times of workloads x and y:

∀r ∈ 1 . . .R,∀i ∈ 1 . . . I : sr ,i =
xr ,i
yr ,i

(3) For each run, we aggregate the speedup samples across iter-
ations in a run by computing the geometric mean:

∀r ∈ 1 . . .R : дmsr = I
√
sr ,1 · sr ,2 . . . sr ,I

(4) We aggregate the geometric means across all runs in an
experiment by computing the grand geometric mean:

ддms = R
√
дms1 · дms2 . . .дmsR

The value ддms represents a point estimate of the ratio of
task execution times between workloads x and y, i.e., the
relative performance of the two workloads.

(5) We use non-parametric bootstrap to estimate the percentile
confidence interval forддms , drawingwith replacement from
дms• and computing ддms∗ (step 4 applied on the sample
drawn from дms•) as Monte Carlo estimates for ддms .

When the confidence interval forддms (mean ratio of task execution
times) straddles 1.0, we consider the observed performance of the
two workloads equal, otherwise we report a performance difference.

4 EXPERIMENTAL EVALUATION
We examine the duet measurements using multiple experiments
designed to answer specific research questions. Before introducing
the research questions and the experiments, we outline the experi-
mental environment. For detailed information, please consult the
online appendix [1].

The duet measurements target shared resource environments
common in clouds, most of our measurements therefore execute
in clouds. As the main cloud platform, we use the Amazon Elas-
tic Cloud, specifically the t3.medium, t3a.medium, m5.large and
m5a.large instance types. As our second cloud platform, we use
the Travis CI infrastructure [30], which in turn uses otherwise un-
specified Google Compute Engine platform machine instances. As
our third cloud platform, we use the GitLab CI infrastructure [10]
backed by Digital Ocean machine instances. In addition to the three
public cloud platforms, we carry out measurements on a private
cloud running the Proxmox Virtual Environment. Finally, we run
bare metal measurements that are to represent the most stable
baseline for comparison.

To approximate realistic workloads, we use benchmark suites –
SPEC CPU 2017 [29] for statically compiled and optimized work-
loads, and ScalaBench [27] (with DaCapo [3]) for dynamically com-
piled and optimized workloads. From SPEC CPU 2017, we execute
the rate workload variants (23 workloads in total). From ScalaBench
and DaCapo, we execute all workloads except actors, batik, eclipse,
tomcat, tradebeans and tradesoap, which fail for various reasons

(20 workloads in total). We use the OpenJDK 1.8.0 JVM, run with
fixed heap size and disabled garbage collector ergonomics, other
virtual machine settings were left at their defaults.

To provide information on result variance, we execute all bench-
marks multiple times (on average over 20 runs for each workload on
the Amazon t instances, over 40 runs on the Amazon m instances,
and over 100 runs on the other platforms), and use random samples
of 10 runs for all computations. On the faster execution platforms
(public cloud at full speed, private cloud, bare metal), we collect the
timing of the first 100 iterations or 10 first minutes of execution
within each run, whichever comes first. On the slower execution
platforms (public clouds with token bucket processor allocation), it
is 100 iterations or 60 minutes. We do not execute the SPEC CPU
2017 workloads on the Amazon t instances and on the Travis CI in-
frastructure, because both lack the computing power to execute the
benchmark in reasonable time. For the SPEC CPU 2017 workloads,
which exhibit virtually no startup artifacts, we use the timing of
all iterations. For the ScalaBench workloads, which exhibit startup
artifacts related to dynamic compilation, we discard the timing of
the first half of iterations. We apply outlier filtering with winsoriza-
tion in all computations, replacing at most one observation in a run
with its nearest neighbor when that observation is further than 20%
away from the min-max range of the remaining observations. Our
bootstrap computations use 10000 replicates.

The constants above were determined by informal experiments
to provide reasonable measurement time and reasonable stability
across the workload spectrum. In an actual performance testing
environment, the numbers would be chosen per platform and per
workload using established procedures such as [11, 20], however,
introducing this practice here would prevent us from comparing
different measurement procedures under similar conditions.

4.1 RQ1: Accuracy Improvements
The very purpose of the duet procedure is to improve the accuracy
of performance comparison experiments. Our first research ques-
tion directly addresses this purpose: Are the performance compar-
isons made with the duet procedure more accurate than performance
comparisons done using standard methods ? (RQ1)

The standard way to express the measurement accuracy is to
treat the individual measurements as observations of a random
variable with an unknown parameter of interest, such as the mean
value. The goal of the measurement is to estimate this unknown pa-
rameter, and the accuracy of this estimate characterizes the overall
measurement accuracy. An intuitive way to present the accuracy
of the estimate, which we also use in this paper, is with confidence
intervals [13]. For the duet measurements, we use the 99% confi-
dence intervals for the mean of ratios computed with the procedure
in Section 3. As a representative standard method that we compare
against, we use the common 99% bootstrap confidence intervals for
the difference of means, computed using the procedure in [4], with
random measurement interleaving, as recommended in [2].

We collect the accuracy information using A/A measurements,
that is, we compare two sets of measurements that use the same
workload and the same instance type. For each workload and in-
stance type, the comparison gives us two confidence intervals, one
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for the mean ratio of the workload execution times computed us-
ing the duet procedure, and one for the difference of the mean
workload execution times computed using the standard method. By
construction of the experiment, the two intervals must respectively
straddle 1.0 and 0.0, and the width of the two intervals expresses
the accuracy achieved by the two procedures.

A direct comparison of the two confidence intervals is hindered
by the fact that the intervals produced by the duet procedure are cen-
tered around 1.0 but the intervals produced by the standard method
are centered around 0.0. We therefore convert both types of confi-
dence intervals to a value expressing their width relative to mean
performance – for the mean of ratios interval (ддmslo,ддmshi )
we report ддmshi − ддmslo , and for a difference of means interval
(difflo, diffhi ) we report (diffhi − difflo )/mean, wheremean is the
sample mean computed from all samples (all samples concern the
same workload and can therefore be averaged).

Table 1: Average reduction in relative 99% confidence inter-
val width from the standard procedure to the duet proce-
dure, geomean.

Platform ScalaBench SPEC CPU 2017
Amazon m5.large 2.3× 26.6×
Amazon m5a.large 3.86× 82.4×
Amazon t3.medium 9.13× —
Amazon t3a.medium 3.99× —
GitLab CI 12.5× 23.8×
Travis CI 3.97× —
Average 5.03× 37.4×

Figure 2 shows the distribution of the 99 % confidence interval
widths on the public cloud platforms, aggregated across all work-
loads.1 The distribution indicates that the duet procedure generally
delivers more narrow confidence intervals and therefore better ac-
curacy. Table 1 aggregates the improvement in accuracy for each
platform and benchmark, expressed as the average reduction of the
relative confidence interval width. For the ScalaBench workloads,
the duet procedure computes on average 5.03 times more narrow
intervals than the standard method. For the SPEC CPU 2017 work-
loads, the duet procedure computes on average 37.4 times more
narrow intervals, in part because the workloads are much more
stable and even small measurement fluctuations due to resource
sharing are therefore more significant. Figure 3 provides more in-
sight into this behavior by plotting the individual measurement
samples for both the duet procedure and the standard method on
one arbitrarily selected workload and platform combination. While
the measurement fluctuations are always present, the samples col-
lected in parallel by the duet procedure move (vertically) very much
in tandem, almost perfectly matching the assumptions of the duet
procedure.

To give an intuitive illustration of the improvement in accuracy,
we look at the associated measurement costs. The mean confidence
intervals tend to shrink with the square root of the sample counts –
1We use the 99% confidence level throughout the presentation, however, other confi-
dence levels provide reasonably similar results.

asymptotically, this holds due to the Central Limit Theorem, but
here we refer rather to empirical observations at small sample
counts, where we see similar behavior. A twofold improvement in
accuracy at constant sample count therefore roughly corresponds
to a fourfold reduction in sample count at constant accuracy. Note
that the measurement costs are also impacted by different platform
requirements – where the standard method requires sufficient re-
sources to run a single workload copy, the duet procedure requires
resources for two workloads executing concurrently.

4.2 RQ2: Synchronized Interference
At the core of the duet procedure is the idea to expose the compared
workloads to the same interference. To achieve that, the procedure
modifies the way the workloads are executed and the way the re-
sults are processed. We therefore need to determine whether the
observed accuracy improvements are due to the synchronized inter-
ference, rather than a side effect of the modifications in workload
execution and results processing. Can we attribute the improved
accuracy exhibited by the duet procedure to both workloads suffering
from synchronized interference ? (RQ2)

To isolate the contribution of synchronized interference from the
other modifications introduced by the duet procedure, we use the
existing measurements, but adjust the confidence interval computa-
tion from Section 3. Where the duet procedure normally computes
ratios from measurements collected at the same time, we now per-
form a random shuffle and use ratios from unrelated measurements.
That way, we preserve all other aspects of the duet procedure, but
obtain results that do not benefit from synchronized interference.

Figure 4 shows the impact of shuffling on the distribution of
the confidence interval widths. The distribution demonstrates that
the duet procedure indeed benefits particularly from synchronized
interference. We can also note that the confidence interval widths
obtained with shuffling are very similar to the confidence interval
widths from Figure 2 computed by the standard method. If we
compute the aggregate improvement in accuracy after shuffling –
an analogue of Table 1 but without synchronized interference – we
obtain a total of 1.02 for the ScalaBench workloads and 1.03 for the
SPEC CPU 2017 workloads, suggesting not only that the ability to
deal with synchronized interference is the major factor contributing
to improved accuracy, but also that other factors inherent to the
duet procedure, such as the concurrent workload execution, are
not a major detriment.

4.3 RQ3: Resource Sharing
The third aspect of the duet procedure we investigate is whether
the presence of synchronized interference is due to resource shar-
ing common in clouds, or whether some other property of our
experiments may account for the observed behavior. Is the presence
of synchronized interference associated with the existence of other
workloads that share the same computing platform ? (RQ3)

The only way to control other workloads on the same platform
in the public could is to rent an entire physical machine, however,
that option also removes the virtualization infrastructure, making
apples-to-apples comparison impossible. Instead, we therefore use
private cloud measurements and control the utilization of the phys-
ical servers backing the virtual machine instances. In one set of
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Figure 2: Accuracy expressed as relative 99% confidence interval width, 10 runs, aggregated across all workloads.

Figure 3: Individual measurement samples for the
503.bwaves_r workload on the Amazon m5a.large plat-
form. Colors in the duet procedure distinguish samples
collected in parallel.

measurements, we make sure each physical server runs only the
measured workload. In the other set of measurements, we add a
competing workload with the potential to saturate the physical
server. Our competing workload is the composite configuration of
the SPEC JBB 2015 benchmark, which generates a variable work-
load pattern across all cores of the physical server, moving between
zero and peak utilization with a period of about 150 minutes. The
workload approximates an enterprise business application and is
therefore relevant in the cloud context.

Figure 5 demonstrates the impact of resource sharing on con-
fidence intervals, again computed using either ratios from mea-
surements collected at the same time, or ratios from unrelated
measurements after a random shuffle. In the left-hand part of the
plot, where the measurements were performed with resource con-
tention, shuffling changes the confidence intervals significantly.
In the right-hand part of the plot, where the measurements were
without resource contention, shuffling has almost no effect. This
confirms our hypothesis that the synchronized interference we ob-
serve and tackle with the duet procedure is indeed due to resource
sharing.

4.4 RQ4: Measuring Differences
The duet procedure does not always utilize the computing resources
evenly. Assume A/B measurements where the duet workloads differ
in length, with A shorter and B longer. The concurrent workload ex-
ecution phase, as long as A, will be followed by an isolated workload
execution phase, as long as the remaining part of B. This makes the
execution conditions for the two workloads differ – while A always

competes for the shared resources, B executes partially with and
partially without such competition. It may therefore finish faster
than if the computing resources were utilized evenly, making the
duet procedure underestimate the workload execution time ratio.

An underestimated workload execution time ratio is not nec-
essarily a serious issue. Our motivation is the ability to detect
performance changes during regression testing. In this context,
it is enough to use the cloud to reliably detect the presence of a
change, additional measurements to assess the magnitude can be
performed in a controlled environment. We should, however, still
seek to understand the impact of uneven resource on the measure-
ments. How does uneven resource utilization impact the estimated
workload execution time ratio ? (RQ4)

We answer the research question by arranging workloads with
known execution time ratio in an A/B measurement and looking
at the actual ratio measured and reported by the duet procedure.
We do this first in the private cloud, where we have more control
over the workload duration and resource utilization, and next in
the public cloud, where we can use previous measurements.

Private cloud. To get sufficient control over workload duration
and resource utilization, we move from the benchmarks to four
entirely artificial workloads, designed to utilize a given resource
for a given operation count. We refer to the four workloads as
integer (an integer loop running entirely from level 1 caches), float
(a floating point computation also running entirely from level 1
caches), cache (a linear memory walk over 4MiB of data that mostly
hits in the last level cache), and memory (a random memory walk
over 64MiB of data that mostly misses in the last level cache). The
integer and float workloads are sensitive mostly to hyperthreading
and power management, while the cache and memory workloads
add sensitivity to competition on the memory resources.

We first calibrate the artificial workloads on the private cloud
platform, obtaining operation counts that yield roughly 100ms
executions. For each artificial workload, we then execute A/B mea-
surements where A executes the workload using the calibrated
operation count and B executes the same workload using twice
the count of A. For the artificial workload, the operation count
translates directly into execution time, we would therefore desire
to observe iteration times with the ratio of 2.0.2

As Figure 6 illustrates, the observed ratio of iteration times for
the two workloads is indeed very close to 2.0. We can observe the

2Note that the relationship between operation count and execution time does not hold
for the benchmark workloads, one reason why artificial workloads are used here.
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Figure 4: Impact of random shuffling on relative 99% confidence interval width, 10 runs, aggregated across all workloads.

Figure 5: Impact of resource sharing on random shuffling
in private cloud, idle vs busy with competing workload, ex-
pressed as relative 99% confidence interval width, 10 runs,
aggregated across all workloads.

Figure 6: Distribution of observedmean iteration time ratios
for individual artificial workloads in private cloud, idle vs
busy with competing workload, 10 runs.

ratio decreasing slightly when the platform suffers from additional
resource contention, generated again using the composite configu-
ration of the SPEC JBB 2015 benchmark running across all cores
of the physical server. This is most visible with the memory work-
load, which makes practical sense because out of the four artificial
workloads, memory is most sensitive to memory bandwidth, which
is shared across the entire physical server. We can conclude that
on the local cloud, the impact of uneven resource utilization is
negligible.

Public cloud. We can also assess the impact of uneven resource
utilization using the previous A/A measurements on the public
cloud. In the private cloud, we have constructed an A/B measure-
ment where B was twice as long as A, and examined the ratio. Each
A/B duet measurement had two phases, a concurrent phase where
both A and B executed, and an isolated phase, where A already
finished and B executed in isolation. Here, we observe that the
concurrent phase of the A/B duet measurement resembles an A/A
duet measurement, and the isolated phase of the A/B duet mea-
surement resembles a standard isolated measurement of B. Both
are measurements we have collected previously, we can therefore
use the resemblance to construct a hypothetical A/B measurement
scenario.

The ratios of mean iteration times for the public cloud platforms
are in Figure 7. On GitLab CI, the ratios are close to 1.0, suggesting
that the uneven resource utilization is not an issue. On the other
public cloud platforms, the ratios are larger – in other words, the
same workloads take longer when executed as A/A duet measure-
ment than when executed using a standard isolated measurement.
In the hypothetical A/B measurement scenario, this translates into
an underestimated workload execution time ratio.

We attribute the difference between the platforms to two factors
– hyperthreading and token bucket processor allocation. On the
Travis CI and Amazon m platforms, the ratios range between 1.0 and
2.0, which corresponds to hyperthreading splitting the computing
power of a single hardware core between two virtual cores for the
duet workloads.3 On the Amazon t platforms, the ratios exceed 2.0,
likely because the token bucket processor allocation throttles the
concurrent workloads executing on two virtual cores more than
the isolated workloads executing on one virtual core.4

Returning to the research question, our results put an upper
bound on how much we can underestimate the workload execution
time ratio. For example, if an A/A execution takes 3 times as much
time as A executing alone, and B executing alone takes 2 times as
much as A, the desired ratio of 2.0 would instead be measured as
(3 + 1)/3 ≈ 1.3. Figure 7 suggests this would be an extreme case.

At the same time, our experiments provide a way to address
this concern if required. Because the underestimated workload

3Although the Proxmox private cloud also uses hyperthreading, it does not have
the same impact. This is because the private cloud schedules virtual cores across all
physical cores, unlike the Amazon public cloud, which likely binds the virtual cores to
the hardware threads of one physical core.
4Somewhat surprisingly, this would suggest that it is more cost efficient to use Amazon
t instances as single-core rather than dual-core machines.
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Figure 7: Distribution of observed ratios of mean iteration times between A/A duet procedure measurements and standard
isolated measurements.

execution time ratio is associated with uneven resource utilization,
we can simply adjust the duet procedure to continue (repeatedly)
executing the shorter workload until the longer workload finishes,
rather than leaving the resources of the shorter workload idle. This
measure obviously removes the uneven resource utilization.

4.5 Discussion
The combined answers to the four research questions prove that
the duet procedure improves performance comparison accuracy on
shared resource platforms by relying on the synchronized nature of
resource sharing interference. Our experiments suggest the assump-
tion of synchronized interference is safe to make onmany platforms
– although it hinges on a multitude of technical details, these boil
down to expecting that the platforms treat similar workloads in
symmetrical situations equally.

On the flip side of the same argument, the duet procedure may
not improve accuracy when comparing workloads with very dif-
ferent bottleneck resources, such as a CPU-bound workload and
an I/O-bound workload. There is no reason to expect any resource
sharing interference to impact most different resources equally.
This is a threat to external validity of our results.

We can also argue that comparing workloads with different
bottleneck resources is inherently fraught with issues. The relative
performance of the workloads is more likely to change between
platforms with different resource parameters, making comparison
results less portable and therefore less useful.

A very general threat to both external and internal validity con-
cerns the complex and diverse nature of public cloud platforms.
Because cloud performance characteristics may vary significantly
across platforms, our conclusions are potentially restricted to the
platforms and workloads we use. Also, some of the effects we ob-
serve may be due to internal mechanisms we do not analyze. While
characterizing every platform and workload is clearly not possible,
we do use multiple platforms and workloads to at least partially
address this concern.

We have mostly limited our experiments to the application of
the duet procedure for change detection in the cloud, however,
we do see more application opportunities both in the cloud and
on bare metal systems. One interesting challenge is integration
into CI/CD pipelines without dedicated virtual machine instances.
Such platforms can possibly use fine-grained processor-scheduling

policies in place of binding workloads to cores, and still achieve a
reasonable comparison accuracy.

5 RELATEDWORK
Our related work section includes a condensed version of an earlier
analysis in [5]. We start with the paper by Laaber et al. [17], which
investigates the accuracy achievable in the cloud with standard
measurement methods, that is, when executing the evaluated work-
loads one after another with randomization as recommended by [2].
Laaber et al. demonstrate that when using the standard confidence
interval overlap test with 95% confidence intervals for the mean,
A/A testing needs fairly high experiment repetition counts to re-
duce the false alarm rate below 5%. The authors conclude that for
most of their workloads, “small slowdowns (less than 5%) cannot
reliably be detected in the cloud, at least not with the maximum
number of instances (they) tested (20)” [17]. Our duet procedure
improves on this result.

The work of Abedi and Brecht [2] shows how the ordering of
trials can impact the experiment conclusions. Utilizing A/A testing,
the authors show that possible regularity in performance inter-
ference can be incorrectly interpreted as actual difference in per-
formance between alternatives. Randomized ordering of trials is
proposed as a remedy. Our duet measurements similarly randomize
the assignment of workloads to processors.

Existing research also often deals with the question of howmany
measurements to collect to achieve certain measurement accuracy,
examples of recent work include He et al. [11] for virtual machine
instances or Maricq et al. [20] for bare metal instances. Applying
this work alongside our duet procedure is not necessarily straight-
forward, because the measurement accuracy metrics may not work
with performance expressed as a ratio. Other than this, the work is
complementary to our duet procedure.

In a broader sense, our work is connected to research on cloud
performance characteristics. A study by Leitner and Cito [18] col-
lects previously published observations on cloud performance and
tests these observations with experiments. Especially relevant to
our work are their conclusions on the performance stability of in-
dividual instances – this is shown to depend on the workload, with
I/O-bound workload performance being sensitive to noisy neigh-
bors, and CPU-bound workload performance depending mostly on
actual allocated hardware.
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Among studies that show significant performance variability
in the cloud, many attribute that variability mainly to hardware
heterogeneity. Cerotti et al. [6] investigate the effects of hardware
heterogeneity on instance performance in the Amazon public cloud,
showing that instances of the same type can be backed by different
CPU types and differ in performance by 20% to 30%. Farley et
al. [8] also examine the effects of hardware heterogeneity in the
Amazon public cloud. Different CPU types are shown to differ
in performance by as much as 280%. Differences of around 15%
are observed among different instances with the same CPU types,
similar differences are observed for the same instance across time.
Ou et al. [24] report similar findings. For Amazon public cloud and
performance differences between instances of the same type, CPU
performance variability ranges between 10% and 20% and memory
performance variability reaches as much as 270%. Other studies that
concern various aspects of cloud performance variability include [7,
15, 19, 25, 26, 28]. Often, the purpose of the studies is to work
towards efficient strategies of cloud resource allocation.

Although performance variability in public cloud is an accepted
fact, the actual numbers observed in individual studies can rarely be
compared directly due to differences in experimental settings. In our
experiments, we have observed very little processor heterogeneity,
and are mostly concerned with variability in time. If this were not
the case, strategies to reduce processor heterogeneity in allocated
instances can be utilized during testing.

Some authors propose mechanisms that help detect the presence
of performance interference. Joshi et al. [16] measure an application
in controlled conditions, constructing a throughput-vs-utilization
curve. In real deployment, significant departure from that curve is
interpreted as a sign of performance interference. Similarly,Mukher-
jee et al. [21] measure the performance characteristics of a light-
weight probe deployed together with an application, and detect
interference when the workload of the application cannot account
for the changes in performance of the probe. Both strategies require
some prior knowledge of the application to be deployed, and are
therefore difficult to combine with performance testing of the type
we consider.

6 CONCLUSION
Our experimental evaluation on 23 SPEC CPU 2017 workloads
and 20 ScalaBench and DaCapo workloads suggests that duet mea-
surement in the cloud is significantly more accurate than existing
methodologies based on sequential measurements. Furthermore,
our evaluation confirms that the improved accuracy is because the
paired workloads are subjected to synchronized external interfer-
ence. This external interference is an inherent property of running
the workloads in the cloud, where the underlying resources are
shared with the workloads of other users – whereas earlier tech-
niques provide the same accuracy as duet measurement when there
is no resource sharing, their accuracy deteriorates considerably in
the presence of sharing.

The duet measurement procedure can introduce competition on
the resources between the paired workloads and uneven resource
utilization patterns. We show that these effects are either negli-
gible or bounded and therefore do not prevent the detection of
performance regressions.

Our observations imply that duet measurement is a viable tech-
nique for performance regression testing on both bare metal sys-
tems and in public cloud environments that support dedicated
virtual machine instances. An interesting question is whether this
technique can also improve accuracy of CI/CD pipelines without
dedicated instances—we leave the answer to future work.
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