
Performance Engineering for
Microservices and Serverless Applications:

The RADON Approach
Alim U. Gias,1 André van Hoorn,2 Lulai Zhu,1

Giuliano Casale,1 Thomas F. Düllmann,2 Michael Wurster2
1Imperial College London, UK

2University of Stuttgart, Germany

ABSTRACT
Microservices and serverless functions are becoming integral parts
of modern cloud-based applications. Tailored performance engi-
neering is needed for assuring that the applications meet their
requirements for quality attributes such as timeliness, resource effi-
ciency, and elasticity. A novel DevOps-based framework for devel-
oping microservices and serverless applications is being developed
in the RADON project. RADON contributes to performance engi-
neering by including novel approaches for modeling, deployment
optimization, testing, and runtime management. This paper summa-
rizes the contents of our tutorial presented at the 11th ACM/SPEC
International Conference on Performance Engineering (ICPE).
ACM Reference Format:
Alim U. Gias, André van Hoorn, Lulai Zhu, Giuliano Casale, Thomas F.
Düllmann, Michael Wurster. 2020. Performance Engineering for Microser-
vices and Serverless Applications: The RADON Approach. In ACM/SPEC
International Conference on Performance Engineering Companion (ICPE ’20
Companion), April 20–24, 2020, Edmonton, AB, Canada. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3375555.3383120

1 INTRODUCTION
Recent trends in cloud software technologies, such as microservices
and serverless functions, are rapidly changing the way companies
produce complex software architectures. When choosing to de-
liver business logic through serverless functions, microservices, or
monoliths, end-users will experience different trade-offs in terms
of non-functional properties such as performance, reliability, and
cost. The assessment of these trade-offs calls for the development
of specialized modeling, testing, and management techniques that
can take into account such differences.

To aid in this scenario, the RADON [1] project aims to develop an
advanced DevOps framework focusing on microservices and server-
less Function-as-a-Service (FaaS).1 A major challenge addressed by
the RADON project is quality assurance, particularly considering
non-functional properties like performance. Performance evalua-
tion is always a challenging aspect in software development, and
1http://radon-h2020.eu/

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’20 Companion, April 20–24, 2020, Edmonton, AB, Canada
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7109-4/20/04.
https://doi.org/10.1145/3375555.3383120

additional challenges arise for both microservices [8] and FaaS [18].
The objective of the tutorial is to demonstrate these challenges and
how they are addressed in different contributions in the RADON
context.

The tutorial will initially introduce the microservices and server-
less FaaS application architecture, and performance engineering
challenges in this context. The focus will then shift to how these
applications can be modeled using the Topology and Orchestration
Specification for Cloud Applications (TOSCA) [12] and how differ-
ent performance specifications can be integrated into such models.
After that, the tutorial will discuss how such models are utilized in
RADON to determine optimal decomposition strategies of server-
less functions. Once the application has been deployed, following
the DevOps practice, it is necessary to generate and maintain per-
formance test cases for continuous integration and deployment.
Finally, the tutorial focuses on runtime resource management by
demonstrating a fine-grained autoscaling approach.

This paper serves as a summary of the contents presented in
the tutorial, including the references for further details. The men-
tioned tools are available online [2], including more comprehensive
technical documentation and examples of use. The artifacts for the
tutorial, including slides and examples, are also provided online [6].

2 MODELING
Modeling in RADON builds on the OASIS TOSCA standard [12].
TOSCA allows to model so-called service templates (or blueprints)
that describe the topology— i.e., components and their relation-
ships— of an application to be deployed to a cloud infrastructure.
The core modeling concepts in TOSCA are nodes, relationships,
and policies, for which respective types are defined. Being based on
a YAML-based format, TOSCA models can, in principle, be edited

Figure 1: TOSCA model with RADON extensions in Winery

Tutorial ICPE ’20 Companion, April 20–24, 2020, Edmonton, AB, Canada

46

https://doi.org/10.1145/3375555.3383120
https://doi.org/10.1145/3375555.3383120


TOSCA model

System under Test (SUT) 
and Test Infrastructure (TI) 

augmented by test annotations

Continuous Testing Tool (CTT)

Test generation, selection, 
execution, and maintenance TOSCA-based

test deployment

TOSCA
Orchestrator

Test Deployment

SUT and TI 
Test resultsTest reportMonitoring data

Figure 2: Workflow of the CTT tool

in any text editor. However, with Winery,2 a web-based graphical
modeling environment for more convenient modeling of TOSCA
topologies and plans to manage these topologies is available. A
TOSCA-compliant orchestrator takes care of the deployment and
management of the application topology. One such orchestrator is
xOpera.3 Both Winery and xOpera are used and extended as part
of the RADON toolchain.

In RADON, we extend the set of TOSCA types to allow TOSCA-
based modeling and deployment of microservices and serverless
applications. For instance, we have added new types for represent-
ing microservices and FaaS components that can be deployed to
state-of-the-art proprietary and open-source infrastructures such
as AWS, Google, Azure, and Apache OpenWhisk. Our extensions
are available as part of RADON’s particles repository [2]. Figure 1
shows a TOSCA topology for a FaaS-based application modeled in
Winery.

3 DEPLOYMENT OPTIMIZATION
FaaS compute services, for example, AWS Lambda,4 automatically
scale a function on demand at runtime. The function owner is
charged only for resources and time spent during invocations to
the function. These characteristics make existing deployment op-
timization approaches not applicable in the context of serverless
FaaS. To fill this gap, RADON introduces a novel model-driven ap-
proach to finding the optimal deployment scheme for a FaaS-based
application, which minimizes the operating costs while satisfying
the performance requirements on the target cloud platform.

Although the runtime resource management of serverless func-
tions is opaque from developers, one can control the autoscaling of
a function by adjusting its memory and concurrency. The former
determines the amount of resources available for each function in-
stance, while the latter specifies the maximum number of instances
that the function can have. These two parameters are both critical
to the operating costs and performance of a FaaS-based application.
The goal of the deployment optimization program is, therefore,
to find the optimal memory and concurrency configuration such
that the total operation cost of the application is minimal under
the performance requirements. A FaaS-based application typically
consists of serverless functions, object storages, and other types

2http://eclipse.org/winery/
3https://github.com/xlab-si/xopera-opera
4https://aws.amazon.com/lambda/

of nodes, whose behavior can normally be well captured by ap-
propriate structures in Layered Queueing Networks (LQNs) [4]. It
thus suffices to predict the performance of a FaaS-based application
using an LQN. However, creating a benchmark of the application
for parameterizing the LQN is sometimes difficult due to the lack
of ways to obtain accurate measurements of certain nodes.

With the extended definitions of TOSCA node, relationship, and
policy types, a RADON user can build an LQN tomodel the behavior
of their application and specify the performance requirements in a
TOSCA service template. The aforementioned approach has been
implemented by the RADON decomposition tool to consume such
a TOSCA service template for deployment optimization. As part of
the RADON toolchain, this tool is currently available on a public
access server with a RESTful API [2].

4 CONTINUOUS TESTING
The most common approach for quality assurance in practice is test-
ing. Hence, testing of functional and non-functional properties must
be part of any DevOps-based process and infrastructure. RADON
defines a continuous testing workflow that comprises the definition,
execution, and maintenance of functional and non-functional tests.

A RADON user defines tests by adding them to the TOSCA
service template for the application under test. We have extended
the set of TOSCA node types, relationship types, and policy types
for expressing different types of tests and including suitable test
drivers. For instance, this allows the definition of a load test to be
executed using a configured load driver such as JMeter. After being
deployed by a TOSCA orchestrator, the tests are executed and the
test results are made available to the RADON user.

Especially the testing of non-functional properties such as per-
formance imposes several challenges in the context of DevOps, mi-
croservices, and serverless. Example challenges include (i) frequent
changes of the application and its operational profile that require
frequent adoptions and executions of the tests, (ii) the desire for
fast deployment of changes that conflicts with the time-consuming
nature of testing, as well as the (iii) cloud-based deployment infras-
tructures that make it difficult to get reliable and repeatable test
results.

We address these challenges by (i) automatically extracting and
evolving performance tests using operational monitoring data and
API information [16, 19], (ii) the generation and selection of tailored

Tutorial ICPE ’20 Companion, April 20–24, 2020, Edmonton, AB, Canada

47

https://github.com/xlab-si/xopera-opera
https://aws.amazon.com/lambda/


tests based on current test concerns [14, 15], as well as (iii) exploit-
ing recommending test strategies suitable for testing in unreliable
infrastructures [3, 11].

The aforementioned approach is implemented by the Continuous
Testing Tool (CTT), as a part of the RADON toolchain. Figure 2
shows the workflow of the CTT tool. Via its REST-based interface,
RADON users can execute the continuous testing on-demand or
include it as a part of the CI/CD process. CTT is designed as an
extensible framework that allows the definition of new test types,
metrics, and tools. CTT is publicly available under an open-source
license [2]. CTT will integrate and extend parts of the ContinuITy
approach and tools for performance testing in continuous software
engineering.5

5 RUNTIME MANAGEMENT
A runtime resource manager for microservices cannot be governed
by static rules only, like always scaling a microservice either hori-
zontally or vertically. Although these rule-based practices are com-
mon in the industry [13], recently it has been emphasized by re-
searchers that such resource allocations should be based on the sys-
tem architecture and current workload [5, 10]. This can be achieved
by a model-based resource manager that can ensure optimal re-
source allocation by analyzing multiple performance models for
the current workload. Designing such a resource manager involves
two major challenges—finding the appropriate modeling scheme
and quickly analyzing the model at runtime.

The first issue can be resolved with a Layered Queueing Net-
work (LQN) model, which can accurately represent different as-
pects of microservices like its fractional CPU share and working as a
server and client simultaneously. The LQNmodels can be generated
automatically using architectural to performance model transfor-
mation tools [7]. If such architectural models are not available, an
LQN can be constructed by monitoring the communications among
the microservices. An important parameter for an LQN model is
the service demand of the microservices. These demands can be
estimated using state-of-the-art techniques based on utilization [17]
or response time [9].

To address the second issue, a meta-heuristic like genetic algo-
rithm can be used that will suggest the optimal resource allocation
scheme for a specific workload without exhaustively searching
the sample space of different configurations. Considering that the
CPU is the bottleneck, the configurations include the CPU capacity
and the number of replicas of each microservice. Such configura-
tions can be evaluated using the estimates from the LQN model,
and the optimal configuration can be determined. If the resource
manager follows a conservative strategy, a new configuration is
only executed if the potential performance gain is significant. In
addition, since the decisions need to be provided at runtime, the
meta-heuristic algorithm can be time-bounded.

The overall methodology is presented in Figure 3. The model gen-
erator and the resource manager addresses the two discussed issues.
The system monitor complements both components by providing
necessary information like different system metrics and workload
patterns.

5https://continuity-project.github.io/

Host ServersHost ServersHost Servers
MicroservicesMicroservices

Architectural Pattern

Service 

Demand

Estimator

Model

Structure

Generator

Service 

Demand

Estimator

Model

Structure

Generator

System

Monitor

Controller

Optimizer

Controller

Optimizer

Metrics

Workload Pattern

Runtime Data

LQN Model

Configuration

Commands

Resource Manager

Model Generator

Figure 3: The methodology for runtime resource manage-
ment of microservices

6 CONCLUSION
This paper outlined RADON’s approach to performance engineer-
ing for microservices and serverless applications, which is com-
prised of TOSCA-based modeling, deployment optimization, con-
tinuous testing, and runtime management.

ACKNOWLEDGMENTS
This work is being supported by the European Union’s Horizon 2020
research and innovation programme (grant no. 825040, RADON).
Parts of this work are being conducted in collaboration with the
SPEC RG DevOps Performance Working Group.6

REFERENCES
[1] Giuliano Casale, Matej Artač,Willem-Jan van denHeuvel, André vanHoorn, Pelle

Jakovits, Frank Leymann, Mike Long, Vasilis Papanikolaou, Domenico Presenza,
Alessandra Russo, Satish N. Srirama, Damian A. Tamburri, Michael Wurster,
and Lulai Zhu. 2019. RADON: Rational Decomposition and Orchestration for
Serverless Computing. Software-Intensive Cyber-Physical Systems (2019).

[2] RADON consortium. 2020. RADON Tools. https://github.com/radon-h2020/
[3] Simon Eismann, Cor-Paul Bezemer, Weiyi Shang, André van Hoorn, and Dušan

Okanović. 2020. Microservices: A Performance Tester’s Dream or Nightmare?.
In Proceedings of the 11th ACM/SPEC International Conference on Performance
Engineering (ICPE 2020).

[4] Greg Franks, Tariq Al-Omari, Murray Woodside, Olivia Das, and Salem Derisavi.
2008. Enhanced modeling and solution of Layered Queueing Networks. IEEE
Transactions on Software Engineering 35, 2 (2008), 148–161.

[5] Alim Ul Gias, Giuliano Casale, andMurrayWoodside. 2019. ATOM:Model-Driven
Autoscaling for Microservices. In Proceedings of the International Conference on
Distributed Computing Systems (ICDCS 2019). IEEE, 1994–2004.

[6] Alim U. Gias, André van Hoorn, Lulai Zhu, Giuliano Casale, Thomas Fred-
erik Düllmann, and Michael Wurster. 2020. Performance Engineering for Mi-
croservices and Serverless Applications: The RADON Approach — Artifacts.
https://dx.doi.org/10.5281/zenodo.3670013

[7] Gordon P Gu and Dorina C Petriu. 2005. From UML to LQN by XML algebra-
based model transformations. In Proceedings of the International Workshop on
Software and Performance (WOSP 2005). 99–110.

[8] Robert Heinrich, André van Hoorn, Holger Knoche, Fei Li, Lucy Ellen Lwakatare,
Claus Pahl, Stefan Schulte, and Johannes Wettinger. 2017. Performance engineer-
ing for microservices: research challenges and directions. In Companion of the
ACM/SPEC on International Conference on Performance Engineering (ICPE 2017).
223–226.

6https://research.spec.org/devopswg

Tutorial ICPE ’20 Companion, April 20–24, 2020, Edmonton, AB, Canada

48

https://continuity-project.github.io/
https://github.com/radon-h2020/
https://dx.doi.org/10.5281/zenodo.3670013
https://research.spec.org/devopswg


[9] Stephan Kraft, Sergio Pacheco-Sanchez, Giuliano Casale, and Stephen Dawson.
2009. Estimating service resource consumption from response time measure-
ments. In Proceedings of the International ICST Conference on Performance Evalua-
tion Methodologies and Tools (VALUETOOLS 2009). 1–10.

[10] Anthony Kwan, Jonathon Wong, Hans-Arno Jacobsen, and Vinod Muthusamy.
2019. HyScale: Hybrid and Network Scaling of Dockerized Microservices in
Cloud Data Centres. In Proceedings of the International Conference on Distributed
Computing Systems (ICDCS 2019). IEEE, 80–90.

[11] Dusan Okanovic, Samuel Beck, Lasse Merz, Christoph Zorn, Leonel Merino,
Andre van Hoorn, and Fabian Beck. 2020. Can a Chatbot Support Software
Engineers with Load Testing? Approach and Experiences. In Proceedings of the
11th ACM/SPEC International Conference on Performance Engineering (ICPE 2020).

[12] Organization for the Advancement of Structured Information Standards (OASIS).
2019. TOSCA Simple Profile in YAML Version 1.3. http://docs.oasis-open.org/
tosca/

[13] Chenhao Qu, Rodrigo N Calheiros, and Rajkumar Buyya. 2018. Auto-scaling web
applications in clouds: A taxonomy and survey. ACM Computing Surveys (CSUR)
51, 4 (2018), 1–33.

[14] Henning Schulz, Tobias Angerstein, Dušan Okanović, and André van Hoorn. 2019.
Microservice-tailored Generation of Session-based Workload Models for Repre-
sentative Load Testing. In Proceedings of the 27th IEEE International Symposium

on the Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS 2019).

[15] Henning Schulz, Dusan Okanovic, André van Hoorn, Vincenzo Ferme, and Cesare
Pautasso. 2019. Behavior-driven Load Testing Using Contextual Knowledge—
Approach and Experiences. In Proceedings of the ACM/SPEC International Confer-
ence on Performance Engineering (ICPE 2019). ACM, 265–272.

[16] Henning Schulz, André van Hoorn, and Alexander Wert. 2020. Reducing the
Maintenance Effort for Parameterization of Representative Load Tests Using
Annotations. Software Testing, Verification & Reliability 30, 1 (2020).

[17] Simon Spinner, Giuliano Casale, Fabian Brosig, and Samuel Kounev. 2015. Eval-
uating approaches to resource demand estimation. Performance Evaluation 92
(2015), 51–71.

[18] Erwin Van Eyk, Alexandru Iosup, Simon Seif, and Markus Thömmes. 2017. The
SPEC cloud group’s research vision on FaaS and serverless architectures. In
Proceedings of the International Workshop on Serverless Computing (WoSC 2017).
1–4.

[19] Christian Vögele, André van Hoorn, Eike Schulz, Wilhelm Hasselbring, and Hel-
mut Krcmar. 2018. WESSBAS: Extraction of Probabilistic Workload Specifications
for Load Testing and Performance Prediction—A Model-Driven Approach for
Session-Based Application Systems. Journal on Software and System Modeling
(SoSyM) 17, 2 (2018), 443–477.

Tutorial ICPE ’20 Companion, April 20–24, 2020, Edmonton, AB, Canada

49

http://docs.oasis-open.org/tosca/
http://docs.oasis-open.org/tosca/

	Abstract
	1 Introduction
	2 Modeling
	3 Deployment Optimization
	4 Continuous Testing
	5 Runtime Management
	6 Conclusion
	Acknowledgments
	References



