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ABSTRACT

The growth of cloud services leads to more and more data centers

that are increasingly larger and consume considerable amounts

of power. To increase energy eiciency, both the actual server

equipment and the software themselves must become more energy-

eicient. It is the software that controls the hardware to a consid-

erable degree. In this work-in-progress paper, we present a irst

analysis of how compiler optimizations can inluence energy ei-

ciency. We base our analysis on workloads of the SPEC CPU 2017

benchmark. With 43 benchmarks from diferent domains, includ-

ing integer and loating-point heavy computations executed on a

state-of-the-art server system for cloud applications, SPEC CPU

2017 ofers a representative selection of workloads.

CCS CONCEPTS

· Hardware → Enterprise level and data centers power is-

sues; · Software and its engineering → Software develop-

ment techniques.
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1 INTRODUCTION

Cloud computing is a signiicant line of business with high growth

rates, leading to growing data centers. According to a study of the
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NRDC from 2014, data centers need large amounts of energy with

an estimated 140 billion kilowatt-hours annually by 2020 [18]. Yet,

cloud data centers can be made more eicient. For instance, by intel-

ligently placing or consolidating the workload [11] or minimizing

the number of resources to satisfy demands through auto-scaling.

The server hardware has also become more eicient with dynamic

voltage and frequency scaling (DVFS) and diferent C-states.

While the server hardware consumes the energy, it is the soft-

ware that, in most parts, controls how the server behaves, indirectly

controlling how much energy the equipment uses. Initial measure-

ments on storage servers show that the running workload inlu-

ences the power consumed by a server [13]. Nevertheless, energy

eiciency is sometimes seen as identical to the energy eiciency

of the hardware. Yet, Capra et al. show that two diferent ERP soft-

ware systems have little performance diferences (+5%) but deviate

widely in energy consumption (+50%) [3]. For a fair comparison of

software, it must perform the same task but with a diferent binary.

One option to achieve this is by using compiler optimizations to

improve performance or binary size without changing functionality.

The main contribution of this work is a irst work-in-progress

analysis of compiler optimizations on the SPEC CPU 2017 bench-

marks. With 43 benchmarks from diferent domains, organized in

four suites with integer and loating-point heavy computations, it

has a large variety of workloads that we see as representative. Heb-

bar et al. showed that diferent compilers, GNU and Intel compiler,

do inluence the energy eiciency measured by the SPEC CPU 2017

on a desktop system through better utilization of the hardware [6].

In contrast, we take a look at which factors, application domain, or

programming language, could be susceptible to compiler optimiza-

tions in terms of a change in energy eiciency. This work will act

as a basis for future work on which compiler optimizations impact

diferent applications running on modern state-of-the-art servers.

The remainder of this paper is structured as follows: First, we

review related work in Section 2. Afterward, we describe the SPEC

CPU 2017 in Section 3, followed by our analysis in Section 4. Finally,

the paper is wrapped up in Section 5.

2 RELATED WORK

Compilers usually target performance instead of energy eiciency

with the available optimizations. Hence, to optimize for energy

eiciency, the correct optimization settings must be known [16].
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The tool Socrates from [4] not only tries to ind suitable com-

piler optimizations and can change the number of used threads,

but also weaves in code for tuning the software to diferent tar-

gets, like power consumption or performance. Multiple binaries

are compiled and proiled to then optimize at runtime. Nobre et

al. [15] is changing the order of performance optimizations during

compilation. They have shown that while an increase in energy ei-

ciency is possible, the sequence of optimization is not independent

of the application. By looking at compiler optimizations for multi-

dimensional signal processing and video applications on embedded

devices, Kandemir et al. [12] targeted six speciic loop optimiza-

tions. Based on ive applications and simulation, they have achieved

mixed results, and most optimizations increased the power con-

sumed in the embedded system. Hsu et al. [10] insert instructions

to control the Dynamic Voltage Scaling (DVS). The approach se-

lects program parts suitable for running with lower voltage and

frequency without degrading performance above a user-selectable

value. They show in their work that energy savings of up to 28%

are possible at a performance degradation of 5%, increasing energy

eiciency. Gheorghita et al. argue that iterative compilation, gener-

ating diferent versions of source code with transformation patterns,

can be used to optimize for energy eiciency for mobile embed-

ded systems [5]. Trying to ind the Pareto optimal set of compiler

lags for performance, Hoste and Eeckhout used an evolutionary

algorithm to solve the multi-objective optimization problem that is

adaptable to energy eiciency [9]. Martins et al. used clustering to

ind the best order of optimization settings for performance on a

soft microprocessor inside an FPGA [14]. In our work, expert devel-

opers, instead of heuristics and machine learning, aim to maximize

performance through carefully picked optimization settings. Our

analysis is also broader by using a large variety of workloads instead

of limiting itself to speciic use cases. Most works in optimizing

energy eiciency with compiler options aim at embedded systems,

such as Pallister et al. [16]. We use a state-of-the-art server for cloud

data centers, a domain in which software energy eiciency is not

the main focus during development.

3 THE SPEC CPU 2017 BENCHMARK SUITE

The SPEC CPU 2017 benchmark suite is a compute-intensive bench-

mark using real-world benchmarks of diferent code and problem

sizes. It is designed to stress a system’s processing unit, memory,

and compiler [2]. SPEC CPU 2017 is developed and maintained by

the SPEC OSG with deined submission, review, and publication

procedures [1]. It provides speciied run and reporting rules. The

report contains not only the results of a run but also the necessary

information to reproduce the results again. The report, therefore,

includes the system under test (SUT), the SUT’s operating system

and coniguration, and compiler lags for the benchmarks, as well

as additional information, increasing reproducibility. SPEC CPU

2017 benchmarks come from a wide variety of application domains,

ranging from pathinding algorithms and compression to complex

workloads such as artiicial intelligence and simulation. It has a

wide variety of implementation languages, consisting of compiled

machine-independent languages, C, C++, and Fortran. With the

variety of languages, diferent programming paradigms are cov-

ered, from functional programming and procedural programming

to object-oriented programming. The wide range of LOC from only

1000 lines up to over 1.5 million shows a broad spectrum of pro-

grams in terms of source code size. This large variety makes the

SPEC CPU 2017 relevant for our analysis to cover diferent real-

world workloads that can be inluenced by compiler optimizations.

The 43 benchmarks are organized in four suites. The SPECspeed

suites, Integer, and FloatingśPoint, use a time-based metric of a

single- or multi-threaded run and measures the time required to run

one task at a time. The SPECrate suites, also Integer and Floatingś

Point, use a throughput metric, a work per unit of time, in which

multithreading is not allowed according to the run rules. Without

multithreading, the tester running the benchmark still can decide

on the number of copies of each benchmark task that runs. The

number of copies is normally the number of logical processors.

Each suite reports a base and a peak result. Peak and base generally

use diferent compiler settings. In the base run, for each language,

C, C++, and Fortran, or a combination of those, a set of optimiza-

tions lags must be selected. All benchmarks using this language or

combination must use the same settings. In a peak run, the com-

piler settings are diferent for each of the benchmarks listed. An

overview of the benchmarks and suites is shown in [7].

The general setup for a SPEC CPU 2017 run, including power

measurements, is outlined in Figure 1. It consists of the SUT running

the benchmark and a controller system. The ambient temperature

of the SUT is measured as well (but not reported) to achieve reliable

and accurate power measurements as the temperature can inluence

the power consumption of the SUT. Both the power analyzer and

the temperature sensor are connected to the SPEC PTDaemon

tool [17], collecting the measurement data, and performing validity

checks (e.g., temperature does not exceed operational limits of the

SUT). PTDaemon must support and list the measurement devices

obtaining data as an accepted measurement device [2, 8].

Power Analyzer

Temperature Sensor

NICInterface

SPEC CPU 2017

NIC PSU

PTDaemon

Figure 1: General setup for SPEC CPU 2017 with power and

temperature measurements.

4 ANALYSIS

In our analysis, we irst describe our SUT and setup for the SPEC

CPU 2017 benchmark runs. We then compare the base and peak

benchmark runs for the SPECrate suites described in Section 3.

4.1 System Under Test and Setup

We use an HPE ProLiant DL385 Gen10 server as the state-of-the-art

SUT. The SUT is equipped with two AMD EPYC 7702 CPUs with a

total of 128 cores and 256 threads. Each is conigured with a 2.00

GHz base and 3.35 GHz maximum clock. The memory setup is 1 TB,

organized in 16 modules with 64 GB each. The OS is a SUSE Linux

Work-in-Progress ICPE ’20 Companion, April 20–24, 2020, Edmonton, AB, Canada

39



Enterprise Server 15 SP1 with kernel version 4.12.14-195-default.

Binaries are generated with the AOCC 2.0.0 compiler. The opti-

mization lags for the oicial result that we are using can be found

in the SPEC CPU 2017 result database1, together with additional

information on the SUT and test environment. The binaries are

cross-compiled on a Fedora 26. According to the SPEC CPU 2017

run and reporting rules, each benchmark was executed three times

in base and peak conigurations.

Each system’s energy consumption consists of two parts, the

static energy, and the dynamic energy. The dynamic energy is due

to the software running. The static energy for our case is equal

to the idle power times the time-to-result of the benchmark. For

energy eiciency, only the dynamic energy is considered as the

static energy is not afected by the running software. Hence, we

subtract the idle energy from the total energy consumption. We

deine energy eiciency as the ratio of work to the energy consumed.

For the throughput metric of the SPECrate suites, the amount of

work is the number of copies for a benchmark run. We average

all three runs to compute the energy eiciency. It expresses the

number of copies executed per 1000 Joule.

For our analysis, we also group the benchmarks into four appli-

cation domains. The four categories are language transformation,

artiicial intelligence, modeling and simulation, and others that do

not it in the mentioned categories. The grouping allows us to an-

alyze if a particular application domain is susceptible to compiler

optimizations. Each group consists of at least three benchmarks.

Benchmarks that reported base as peak values are omitted be-

cause they used identical compiler settings. For the Integer suite,

502.gcc_r, 541.leela_r, 548.exchange_r and 557.xz_r, and for the

FloatingśPoint suite, the 507.cactuBSSN_r, 519.lbm_r and 527.cam4_r

benchmarks are excluded.

4.2 Energy Eiciency Analysis

Figure 2a shows the energy eiciency for the evaluated bench-

marks in 1
k J

. While the energy eiciency for the 500.perlbench_r,

505.mcf_r, 523.xalancbmk_r and 531.deepsjeng_r benchmarks ex-

hibit a visible increase, others (520.omnetpp_r, 525.x264_r and

531.deepsjeng_r) do not. The performance for the 500.perlbench_r

has 15% less runtime (899.33s for the base run compared to 784.33s

for the peak run) but only an increase in the energy eiciency of

5.5% due to an increase in average power. The higher average power

partially negates the beneit in energy eiciency that results from a

faster time-to-result shown in Figure 2b. The FloatingśPoint suite

results also show similar behavior but are not shown for brevity.

We take a look at the benchmarks that display an improvement

in energy eiciency and their implementation language. From 23

benchmarks in the Floating-Point and Integer suites that ran, 7

are excluded due to reporting peak as base values (see Section 4.1).

From the remaining 16 benchmarks, 12 achieved a higher energy

eiciency in the peak runs, listed in Table 1. Of those 12, only one is

written in Fortran. We, therefore, suspect that C or C-like languages

can be optimized better. We ran Fisher’s exact test (see Table 2) with

the null hypothesis H0 that both C-like and functional languages

are equally likely to show better energy eiciency. We selected

Fisher’s exact test in favor of the χ2 test due to the small number

1https://www.spec.org/cgi-bin/osgresults?conf=cpu2017
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Figure 2: SPECrate Integer suite base and peak comparison.

Table 1: Implementation language of eicient benchmarks.

Three benchmarks are implemented in two languages and

are counting towards each implementation language.

Implementation Benchmarks

Language More Eicient Total Percentage

C 8 8 100%

C++ 6 7 85.7%

Fortran 1 4 25.0%

of observations. We must reject H0 in favor of the alternative hy-

pothesis at the 5% signiicance level with p = 1.57 · 10−2. H0 cannot

be rejected at the 1% level.

This outcome could have three reasons: 1) it is due to the compiler

that allows fewer optimizations for Fortran programs, 2) it is the

functional programming paradigm that provides an already energy-

eicient programming style, or 3) the results are outliers. In all cases,

additional observations should be made in the future to verify or

reject our indings that the C-like languages are more susceptible

to compiler optimizations in terms of energy eiciency.

We also test if the application area from which the benchmarks

are taken can play a role in increasing energy eiciency. As men-

tioned in Section 4.1, we group each benchmark in one of four

application domains. Table 3 lists the percentage of how many
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Table 2: Fisher’s exact test contingency table.

Improved e f f

Language Yes No Sum

C-like 14 1 15

Functional 1 3 4

Sum 15 4 19

Table 3: App. domain and ratio of eicient benchmarks.

Application Benchmarks

Domain More Eicient Total Percentage

Language Transf. 2 2 100%

Modelling and Sim. 3 7 42.8%

Artiicial Intelligence 1 1 100%

Others 6 6 100%

benchmarks that reported a higher energy eiciency in peak came

from which application area. The results suggest that modeling and

simulation workloads cannot be optimized well by a compiler. Yet,

it must be taken into consideration that the application areas are

not equally distributed.

Conclusively, the impact of the application area needs additional

measurements to be able to reach a clear verdict. The relation

of implementation language to energy eiciency already shows

promising results towards improving the energy eiciency for C-

like languages, but we also recommend additional measurements.

5 CONCLUSION AND FUTUREWORK

Conserving energy is an important aspect of data centers that needs

to be addressed and is achievable in two diferent ways, either by

hardware or by software. We selected the SPEC CPU 2017 perfor-

mance benchmark on a state-of-the-art server, to see if and what

characteristics of software plays a role in using compiler optimiza-

tions for energy eiciency. SPEC CPU 2017 allowed us to compare

compiler optimizations tuned by experts to speciic applications

and the particular programming language and evaluate their impact.

While the application domain did not show an obvious connection

to energy eiciency, we would argue that further measurements

on diferent application areas should be made to reach an answer.

Other options for improving the analysis and evaluation of the ap-

plication domain could be an altered grouping of benchmarks. The

proposed groups could be too skewed towards modeling and simu-

lation, the largest group of all four. Investigating the programming

language showed more promising results. A irst test concluded

that C and C-like languages are more prone to achieve better energy

eiciency and performance through compiler optimizations. Still,

we suggest additional measurements that also could include other

functional languages. We propose to identify if diferent compiler

optimizations impact diferent programming paradigms, languages,

and application domains in contrasting ways. Finally, we further

aim to research if an increase in energy eiciency through software

optimizations can be hardware independent.
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