
Acceleration Opportunities in Linear Algebra Applications via
Idiom Recognition

João P. L. de Carvalho
IC-UNICAMP

University of Campinas
Campinas, Brazil

joao.carvalho@ic.unicamp.br

Braedy Kuzma
Dept. of Computing Science

University of Alberta
Edmonton, Canada
braedy@ualberta.ca

Guido Araujo
IC-UNICAMP

University of Campinas
Campinas, Brazil

guido@ic.unicamp.br

ABSTRACT
General matrix-matrix multiplication (GEMM) is a critical opera-
tion in many application domains [1]. It is a central building block
of deep learning and computer graphics algorithms and is also a
core operation for most scientific applications based on the dis-
cretization of systems of differential equations. Due to this, GEMM
has been extensively studied and optimized, resulting in libraries of
exceptional quality such as BLAS, Eigen, and other platform specific
implementations such as MKL (Intel’s x86) and ESSL (IBM’s Pow-
erPC) [3, 5]. Despite these successes, the GEMM idiom continues to
be reimplemented by programmers without consideration for the
intricacies already accounted for by the aforementioned libraries.
To this end, this project aims to provide transparent adoption of
high-performance implementations of GEMM through a novel op-
timization pass implemented within the LLVM framework using
idiom recognition techniques.

CCS CONCEPTS
• Software and its engineering → Compilers.

KEYWORDS
GEMM, idiom recognition, LLVM
ACM Reference Format:
João P. L. de Carvalho, Braedy Kuzma, and Guido Araujo. 2020. Acceleration
Opportunities in Linear Algebra Applications via Idiom Recognition. In
ACM/SPEC International Conference on Performance Engineering Companion
(ICPE ’20 Companion), April 20–24, 2020, Edmonton, AB, Canada. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3375555.3383586

1 APPROACH
The approach makes use of idiom recognition to find opportunities
for optimization. Idioms are recurrent constructs in programming
languages that express a specific computation, can be easily recog-
nized (by humans), and are simple to compose [4]. For example, a
> b ? a : b is a common idiom in the C language to express a
binary maximum operation.

This concept is applied to create an LLVM pass capable of finding
code patterns representing naïve implementations of the GEMM

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’20 Companion, April 20–24, 2020, Edmonton, AB, Canada
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7109-4/20/04.
https://doi.org/10.1145/3375555.3383586

idiom and replacing themwith calls to high performance implemen-
tations. The process proceeds as shown in Figure 1. First, the clang
frontend is executed to produce LLVM’s intermediate representa-
tion (IR). This IR is put through our pass, using an idiom recognizer
to determine if and where a GEMM idiom exists. If the GEMM
does not exist, compilation proceeds as normal with no chance of
harming performance. When an opportunity is discovered, the IR
is passed to a rewriter pass which will isolate the idiom if possible
and then replace the code with a library call.

Clang
frontend

C, C++, ...

No - Compile

Detects
GEMM?

Binary

Matcher
LLVM IR

Yes - Rewrite

Compile

LLVM IR +
calls to libary

Figure 1

The presented matcher is a tree-based pattern matcher capable
of finding complex patterns of IR code. A simplified example given
in Figure 3b shows the basis of a matcher for the GEMM reduction
equation. When applied to the IR code in Figure 3a, the tree matcher
would discover two matching instances, one rooted at %44 and a
second rooted at %48.

It is possible for more complicated matchers to be polymorphic
in design through the use of disjunction nodes in order to match
varying code patterns. For example, accesses to a two dimensional
array or a one dimensional, linearized array are possible when
implementing GEMM and a pattern matcher must account for this.
Without disjunction nodes, a variation like this would require a
new pattern to be written, creating a greater burden on developers.

The matcher is able to capture the input and output matrices,
their dimensions and their access orders. Moreover, polymorphic in-
stances of the target idiom (e.g. with optional alpha or beta scaling)
are also recognized. This information is used to construct calls to a
variety of libraries from open-source projects and vendor-specific
implementations. The replacement mechanism provided through
the transformation pass can be easily extended to enable any li-
braries that implement GEMM.

Most importantly, the proposed pass can more robustly detect
these patterns than other state-of-the-art idiom recognition tools.

POSTERS & EXHIBITS ICPE ’20 Companion, April 20–24, 2020, Edmonton, AB, Canada

34

https://doi.org/10.1145/3375555.3383586
https://doi.org/10.1145/3375555.3383586

STEP1
0

500

1000

1500

Sp
ee
du

p
(o
ve
rn

oP
as
s)

STEP2
0

200

400

600

STEP3
0

100

200

300

400

STEP4
0.0

0.2

0.4

0.6

0.8

1.0

BLAS
EIGEN

MKL
POLLY

(a) Intel’s x86

STEP1
0

100

200

300

STEP2
0

50

100

150

STEP3
0

20

40

60

80

STEP4
0.0

0.2

0.4

0.6

0.8

1.0

BLAS
EIGEN

BLIS
POLLY

(b) AMD’s x86

STEP1
0

100

200

300

STEP2
0

20

40

60

80

100

STEP3
0

25

50

75

100

125

STEP4
0.0

0.2

0.4

0.6

0.8

1.0

BLAS
EIGEN

ESSL
POLLY

(c) IBM’s PowerPC

Figure 2: Speedup over varying levels of hand optimization.

1 %41 = phi [%53 , %40], [0, %25]

2 %42 = phi [%52 , %40], [0.0, %25]

3 %43 = mul %41 , %17

4 %44 = add %43 , %23

5 %45 = getelementptr %4 , %44

6 %46 = load %45

7 %47 = mul %41 , %16

8 %48 = add %47 , %26

9 %49 = getelementptr %6 , %48

10 %50 = load %49

11 %51 = fmul %46 , %50

12 %52 = fadd %42 , %51

13 %53 = add %41 , 1

14 %55 = icmp eq %53 , %21

15 br %55 , %30 , %40

(a) Hello

m_FAdd

AddLHS m_FMul

MulLHS MulRHS

(b) Hello

Figure 3

Special care is made to ensure that access order is respected, an
aspect which is often ignored by other tools resulting in incorrect
code. It is shown in Section 2 that the pass continues to recognize the
idiom in various states of hand optimization, providing significant
speedups.

2 PRELIMINARY RESULTS
Figure 2 compares speedups (y-axis) enabled through idiom recog-
nition. The figure’s x-axis shows results of four source-level op-
timizations: transposition of matrix A (STEP1); loop interchange
(I, J, K) → (J, K, I) (STEP2); loop interchange as in STEP2 with
tiling (STEP3); and interchange and tiling as in STEP3 with the
addition of packing (STEP4). The first three bars, left to right, use
our replacement strategy to transparently enable a different high-
performance backend library: BLAS via OpenBLAS, Eigen, and a
platform specific library (MKL on Intel x86, BLIS on AMD x861,
ESSL on IBM PowerPC). The final bar (Polly) are the results of a

1BLIS is not platform specific though it is officially promoted by AMD.

state-of-the-art polyhedral tool in LLVM [2]. The speedup shown is
against the source code with the indicated hand optimization and
then compiled with -O3 and native tuning (march, mtune, mcpu).

Preliminary results show that the platform specific library per-
forms best among all evaluated alternatives. Moreover, the hand
optimized code, even after significant optimization effort, is out-
performed by all three libraries enabled via the proposed compiler
transformation. In fact, even after rescheduling the loops and im-
proving the matrices’ access pattern (STEP3), platform specific
libraries are still over 100 times faster. These results indicate that
programmers should rely on the knowledge and expertise encoded
into domain-specific libraries instead of rewriting known idioms.

The proposed approach recognizes the target idiom in each ex-
ample despite increasingly complex code. However, the final stage
(STEP4) is matched but not immediately transformable due to alias-
ing issues introduced by the packing optimization. Nevertheless, in
such cases, a customwarningmessage can still inform programmers
about potential opportunities to adopt domain-specific libraries.

ACKNOWLEDGMENT
The authors would like to thank FAPESP (grants 2013/08293-7,
2016/15337-9, and 2019/01110-0) and Center for Computational
Engineering and Sciences (CCES) for supporting this work.

REFERENCES
[1] Kazushige Goto and Robert VanDeGeijn. 2008. High-Performance Implementation

of the Level-3 BLAS. ACM Trans. Math. Softw. 35, 1, Article Article 4 (July 2008),
14 pages. https://doi.org/10.1145/1377603.1377607

[2] Tobias Christian Grosser. 2011. Enabling polyhedral optimizations in llvm. Ph.D.
Dissertation.

[3] Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
[4] Perlis, Alan J. and Rugaber, Spencer. 1979. Programming with Idioms in APL.

SIGAPL APL Quote Quad 9, 4-P1 (May 1979), 232–235. https://doi.org/10.1145/
390009.804466

[5] Field G. Van Zee, Tyler M. Smith, Bryan Marker, Tze Meng Low, Robert A. Van De
Geijn, Francisco D. Igual, Mikhail Smelyanskiy, Xianyi Zhang, Michael Kistler,
Vernon Austel, and et al. 2016. The BLIS Framework: Experiments in Portability.
ACM Trans. Math. Softw. 42, 2, Article Article 12 (June 2016), 19 pages. https:
//doi.org/10.1145/2755561

POSTERS & EXHIBITS ICPE ’20 Companion, April 20–24, 2020, Edmonton, AB, Canada

35

https://doi.org/10.1145/1377603.1377607
https://doi.org/10.1145/390009.804466
https://doi.org/10.1145/390009.804466
https://doi.org/10.1145/2755561
https://doi.org/10.1145/2755561

	Abstract
	1 Approach
	2 Preliminary Results
	References

