
Kubernetes: Towards Deployment of Distributed IoT
Applications in Fog Computing

[Demonstration Paper]

Paridhika Kayal
paridhika.kayal@mail.utoronto.ca

University of Toronto

ABSTRACT
Fog computing has been regarded as an ideal platform for dis-
tributed and diverse IoT applications. Fog environment consists
of a network of fog nodes and IoT applications are composed of
containerized microservices communicating with each other. Distri-
bution and optimization of containerized IoT applications in the fog
environment is a recent line of research. Our work took Kubernetes
as an orchestrator that instantiates, manages, and terminates con-
tainers in multiple-host environments for IoT applications, where
each host acts as a fog node. This paper demonstrates the industrial
feasibility and practicality of deploying andmanaging containerized
IoT applications on real devices (raspberry pis and PCs) by utilizing
commercial software tools (Docker, WeaveNet). The demonstration
will show that the application’s functionality is not affected by the
distribution of communicating microservices on different nodes.

CCS CONCEPTS
• General and reference→ Experimentation; • Networks→
Network architectures.

KEYWORDS
Fog computing, IoT, fog nodes, microservices, Kubernetes, Docker

ACM Reference Format:

Paridhika Kayal. 2020. Kubernetes: Towards Deployment of Distributed
IoT Applications in Fog Computing: [Demonstration Paper]. In ACM/SPEC
International Conference on Performance Engineering Companion (ICPE ’20
Companion), April 20–24, 2020, Edmonton, AB, Canada. ACM, Edmonton,
AB, CA, 2 pages. https://doi.org/10.1145/3375555.3383585

1 INTRODUCTION
The objective of fog computing, as described in a reference archi-
tecture presented by the OpenFog consortium [9], is the dynamic
pooling of unused local resources from participating end-user de-
vices which are referred as fog nodes. Fog nodes are the computa-
tional, networking, storage and acceleration devices that establish a
communication network, which we refer to as fog network. Instead
of developing large monolithic applications, companies are now
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’20 Companion, April 20–24, 2020, Edmonton, AB, Canada
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7109-4/20/04.
https://doi.org/10.1145/3375555.3383585

delivering applications in small discrete pieces, called microservices,
by adopting the microservice architecture [6]. Microservices can
be installed in application containers, which are lightweight and
portable runtime environments provided by operating systems.
These containerized microservices communicate with each other to
achieve application functionality. Docker [1] containers are quickly
becoming the go-to technology for building and running distributed
applications. The limited capacities and heterogeneity of fog nodes
demand efficient orchestration mechanisms for resource manage-
ment in fog environments. Although containers already provide a
high level of abstraction, they still need to be properly managed,
specifically in terms of resource scheduling, load balancing, and
server distribution, and this is where integrated solutions like Ku-
bernetes come into their own.

Kubernetes [2], the Google-incubated open-source container or-
chestration tool, is quickly becoming the de facto standard for
managing large container deployments. Companies like Red Hat,
Microsoft, IBM, Amazon, Mirantis and VMWare have integrated
Kubernetes into their cloud platforms. Despite the increasing recog-
nition of fog computing in industrial environments, container or-
chestration in fog environment is less explored. Thus the analysis
of the performance and usability of Kubernetes for the deployment
of containerized applications in the fog computing environment is
a new direction of research. This paper aims to establish the feasi-
bility and industrial practicality of deployment and management
of containerized applications in fog computing. The demonstration
confirms that even if communicating containers are distributed on
different fog nodes, the application functionality can be kept intact
without a significant penalty in terms of the application’s QoS and
time delay. It also establishes the future scope of integrating other
user devices like smartphones and smart cameras as fog nodes.

2 BACKGROUND
We consider the model of distributing IoT applications on the net-
work of fog nodes from [7, 8]. Figure 1 shows an example of a
containerized IoT application consisting of five microservices, in-
dicated by cubes, distributed over a network of four fog nodes
depicted by hexagons. The arrows between the containers indicate
that they exchange data with each other. The bidirectional edges
between the fog nodes indicate the communication links. The allo-
cation of applications in fog computing can be done in two ways as
shown in Figure 1. In Figure 1(a), the entire application is placed on
a single fog node, similar to the cloud deployments. This approach
not only reduces latency but also improves the application QoS.
However, in a fog computing environment, due to limited resources

POSTERS & EXHIBITS ICPE ’20 Companion, April 20–24, 2020, Edmonton, AB, Canada

32

https://doi.org/10.1145/3375555.3383585
https://doi.org/10.1145/3375555.3383585


of fog nodes, it is often not possible to deploy the entire application
on a single fog node. Therefore, the application needs to be dis-
tributed over the network of communicating fog nodes as shown
in Figure 1(b). Deploying communicating containers on different
fog nodes leads to data exchange between the fog nodes over the
network which may incur some latency.

A B

C

D

E
Node 1

Node 2

Node 3

Node 4

Pod 1
10.10.10.1

(a) Application on a single fog node.

A

B

C

D

E

Node 1

Node 2

Node 3

Node 4

Pod 1
10.10.10.2

Pod 2
10.10.10.3

Pod 4
10.10.10.5

Pod 3
10.10.10.4

(b) Application distributed over fog network.

Figure 1: Distribution of IoT Application.
We implement the design by utilizing the feasibility results from
[5], where authors used raspberry pi devices to implement a fog
network and deployed Docker containers for IoT applications. We
use a video streaming IoT application that requires real-time, low
latency services. Further, we use Kubernetes as an orchestration
and monitoring tool to automate the deployment of application
containers across a cluster of raspberry Pis. pods and nodes are
two features of Kubernetes that are essential to the comprehension
of our work. A pod is the basic control and management unit of
Kubernetes consisting of one or more containers. Each pod is as-
signed a unique IP address. Kubernetes nodes are physical devices
and run services like Docker, kubelet, and kube-proxy, necessary
to run pods. Kubernetes architecture has a master node and worker
nodes. The master node manages the Kubernetes cluster, and it
is the entry point for all the administrative tasks. A worker node
runs the application pods and is controlled by the master node.
Next, we describe our experimental environment that compares
the performance results in two scenarios shown in Figure 1.

3 IMPLEMENTATION DETAILS
Our testbed consists of a PC (Intel x86 architecture) serving as
Kubernetes master node and four raspberry pi 3 (32-bit arm archi-
tecture) acting as worker nodes and forming a network as shown

in Figure 1. All devices have Ubuntu 18.04 LTS as the operating
system and run Kubernetes v1.17.3 and Docker-engine v19.03.6.
The installation instructions for configuring raspberry Pis are avail-
able on GitHub at [3]. Kubernetes master node initializes a cluster
and generates a token that is used by worker nodes to join the
cluster. We use a video streaming nodeJS application (node v13.5.0)
with five microservices communicating as shown in Figure 1. Each
microservice of the application is containerized as a multi-platform
image using Docker Buildx CLI plugin and pushed to the docker
hub repository.

A Kubernetes pod is defined as a YAML file that consists of the
details of one or more container images. Kubernetes runs a sched-
uling algorithm that assigns nodes to the pods. For the deployment
strategy depicted in Figure 1(a), we place all the Docker containers
of the application in the same pod and the pod is deployed on a
single raspberry pi. Every container in a pod shares the network
namespace, including the IP address and network ports and commu-
nicate with one another using the localhost without any network
delay. On the other hand, in order to implement the placement
depicted in Figure 1(b), the containers distributed on different Ku-
bernetes nodes are placed in different pods. Kubernetes assigns
a different IP address to each pod and communication between
two pods placed on two different physical devices is performed
over the network. We use Weave Net[4] to create a virtual network
that connects Docker containers deployed across multiple nodes
and enables their automatic discovery. This deployment strategy
introduces a network delay in achieving the same functionality. We
further use Kubernetes services that bind a port to exposes the pod.
This allows us to access the pod on the Nodes IP address by sending
a REST request.

4 DEMONSTRATION OVERVIEW
We start the streaming of video packets from container A and
packets follow the path as shown in Figure 1. We will observe the
output of the streaming on container E by sending an HTTP request
to node 4. The demonstration will show that the functionality of
the application is not affected by the distribution of communicating
containers in separate pods placed on different raspberry pis. In the
demo, we will show the quality of video streaming achieved with
the two deployment strategies and the time lag experienced in the
second scenario (Figure 1(b)). We also show how the application
functionality, in terms of time delay, is affected when we consider
mobile nodes and change the distance between the devices.

REFERENCES
[1] 2020. Docker Engine [Online]. https://docs.docker.com/engine/
[2] 2020. Kubernetes: Production-Grade Container Orchestration [Online]. https:

//kubernetes.io/
[3] 2020. Setup Instructions [Online]. https://github.com/paridhika/streaming-app
[4] 2020. Weave Net addon for Kubernetes [Online]. https://www.weave.works/

docs/net/latest/kubernetes/kube-addon/
[5] Paolo Bellavista and Alessandro Zanni. 2017. Feasibility of Fog Computing De-

ployment Based on Docker Containerization over RaspberryPi. In Proc. of ICDCN.
[6] B. Butzin, F. Golatowski, and D. Timmermann. 2016. Microservices approach for

the internet of things. In Proc. IEEE ETFA. 1–6.
[7] P. Kayal and J. Liebeherr. 2019. Autonomic Service Placement in Fog Computing.

In IEEE WoWMoM. 1–9.
[8] P Kayal and J. Liebeherr. 2019. Distributed Service Placement in Fog Computing:

An Iterative Combinatorial Auction Approach. In IEEE ICDCS. 2145–2156.
[9] OpenFog Consortium Architecture Working Group. 2017. OpenFog Architecture

Overview White Paper. (2017).

POSTERS & EXHIBITS ICPE ’20 Companion, April 20–24, 2020, Edmonton, AB, Canada

33

https://docs.docker.com/engine/
https://kubernetes.io/
https://kubernetes.io/
https://github.com/paridhika/streaming-app
https://www.weave.works/docs/net/latest/kubernetes/kube-addon/
https://www.weave.works/docs/net/latest/kubernetes/kube-addon/

	Abstract
	1 Introduction
	2 Background
	3 Implementation Details
	4 Demonstration Overview
	References



