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ABSTRACT
Serverless computing is steadily becoming the implementation par-
adigm of choice for a variety of applications, from data analytics
to web applications, as it addresses the main problems with server-
full and monolithic architecture. In particular, it abstracts away
resource provisioning and infrastructure management, enabling
developers to focus on the logic of the program instead of worry-
ing about resource management which will be handled by cloud
providers. In this paper, we consider a document processing system
used in FinTech as a case study and describe the migration journey
from a monolithic architecture to a serverless architecture. Our
evaluation results show that the serverless implementation signif-
icantly improves performance while resulting in only a marginal
increase in cost.

CCS CONCEPTS
• Software and its engineering → Software architectures; •
Computer systems organization → Cloud computing.
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1 INTRODUCTION
Serverless computing is a new paradigm for developing applications 
and services, and a natural step in the evolution of cloud computing. 
It has emerged through the development of Function-as-a-Service 
(FaaS) and Backend-as-a-Service (BaaS) technologies [19]. In this 
paradigm, the application logic is broken into functions that are 
stateless in nature and are left to the serverless platform to manage. 
The granularity of serverless units has shifted from functions to 
stateless containers in recent years [5, 15]. Stateless containers are 
similar to stateless functions in the sense that they are triggered
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by an event, such as a HTTP request, and after the job execution
completes, they disappear and do not save or carry any state infor-
mation over to the next request. However, using stateless containers,
developers are free to use the programming language and libraries
of their choice to write code, which is not the case with stateless
functions [16].

By supporting provisioning and autoscaling of resources while
offering fine-grained pay-per-use billing [21], serverless comput-
ing has gained the attention of many enterprise and small-scale
companies [3]. In recent years, several machine learning and an-
alytics applications have been successfully migrated to serverless
computing. The Siren distributed machine learning framework [24]
and Graphless serverless graph analysis toolkit [23] are examples
of these applications.

Today cloud providers, such as Amazon and Google, provide
a comprehensive list of benefits and caveats for serverless appli-
cation developers (see for example AWS Lambda [4] and Cloud
Functions [13]). However, the serverless computing paradigm has
a number of disadvantages which have been explored in the liter-
ature. One example is the potential performance degradation of
applications with data intensive and communication dependent
tasks and functions [18, 21, 23]. Thus, whether the transition to a
serverless implementation makes sense, in terms of performance
and cost, depends on the target application. This paper aims to an-
for a rudimentary financial technology (FinTech) application.

We present a CPU and data intensive FinTech application as a 
case study and discuss the migration of this application from its 
crude monolithic architecture to a distributed, performant server-
less architecture. We evaluate the system with serverless architec-
ture in terms of performance and cost, and compare it with the 
original system before migration. We present different challenges 
and pitfalls that we faced in our implementation journey and discuss 
how we addressed them. For example, to overcome the performance 
issue of communication between services, we used non-blocking 
I/O, and to meet the resource constraints of the serverless platform, 
we divided machine learning models. In this work, instead of us-
ing stateless functions, we use stateless containers executed in a 
serverless manner by the Cloud Run platform [15].

The main contribution of our work is as follows:

• We migrate a real-world application with traditional mono-
lithic architecture to serverless architecture.

• We address the gap in the literature by identifying the barri-
ers and challenges in the process of migrating a monolithic
document processing system to serverless architecture.

• We evaluate the new system with serverless architecture in
terms of performance, scalability and cost, and compare it
with the original system before migration.
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The rest of this paper is organized as follows. Section 2 provides
background information about the terminologies that are used
throughout the paper. Section 3 introduces the case study system
which is used in this study. Section 4 explains the migration journey,
motivation, challenges, and the proposed serverless architecture.
Section 5 introduces the data set used in this work and evaluates
the proposed serverless solution. Section 6 reviews related work
on serverless computing, and Section 7 concludes the paper.

2 BACKGROUND
In this section, we provide background information and define the
terminology used throughout the paper.

2.1 Serverless Computing
In serverless computing, despite what its name suggests, we still
have servers that work in the background, but they are not visible
to end users [19]. The cloud provider takes care of infrastructure
management, allowing the developers to focus on the business
logic of their applications [18]. Hence, as a result the developers
do not need to worry about allocating resources and preventing
under/over provisioning of resources. As the number of requests
for a service increases the serverless platform scales the number of
running instances to accommodate the increased demand. Similarly,
when there is no workload it scales them down to zero. The cost
model is also different from traditional computation resources in
the cloud. In serverless platforms, users only pay for the time that
they use a specific resource.

The serverless paradigm also brings several benefits to the cloud
providers. Specifically, it benefits cloud providers by increasing the
utilization of their servers that might not be appealing to users or
platforms such as ARM and RISC-V to handle computations [19].
Moreover, multitenancy reduces the amount of idle infrastructure,
thereby reducing the degree of under-utilization. These advantages
make serverless appeal to cloud providers to the extent that today all
main cloud providers offer serverless solutions, including Amazon
AWS Lambda [4], Google Cloud Functions [13], and open source
projects such as Apache OpenWhisk [8].

2.2 Monolithic Architecture
Monolithic architecture is a simple way of designing and imple-
menting software systems. In monolithic architecture, all of the
component are combined into a single tightly coupled piece of soft-
ware. For brand new projects, this architecture may work well at
the beginning, but as requirements evolve this architecture makes
it more difficult for developers to adapt. This is one of the main
disadvantages of monolithic architecture.

3 A FINTECH CASE STUDY
We focus on a document processing system which is commonly
used by financial institutions as a case study. The document pro-
cessing pipeline is a replacement for the laborious tasks of reading,
classifying, and extracting information from financial documents
such as bank statements, balance sheets, letters, etc. Historically,
these tasks were done manually in banks and financial institutions
but have been automated in the past couple of years.

PDF to Image

Preprocessing

Page Classifier

OCR

Database

Monolith

Figure 1: Original document processing pipeline before mi-
gration

The first version of this system is implemented in Python pro-
gramming language and has a monolithic architecture. As shown
in Figure 1, this system has five main components:

• PDF to Image Converter: Converts each page of a PDF docu-
ment to image so that it can be processed by other compo-
nents. This component is implemented using the PDF2Image
library [10].

• Page Classifier: Gets an image as input and classifies it into
one of the predefined document classes. This component is
implemented using the Keras library [12] with Tensorflow
backend [1].

• Preprocessing: Applies image processing and enhancement
techniques to the input image, making it ready for the
OCR component. This component is implemented using the
OpenCV library [11].

• Optical Character Recognition (OCR): Extracts the text con-
tent from the input image. This component is implemented
using the Tesseract OCR Engine [22].

• Database: Indexes and stores the output of the document
processing pipeline for each input document.

The output of this system is fed to a Key-Value extractor system
which is capable of extracting key-value pairs that the financial
institutions are interested in.

4 MIGRATION JOURNEY
In this section, we walk through the migration journey and describe
the challenges faced in each step. We start with the motivation
behind the transition from a monolithic architecture to a serverless
architecture. At last, we present the new serverless architecture.

4.1 Motivation
The original document processing system works well for a small
number of input documents; however, it cannot handle a large
number of documents in a reasonable amount of time within the
non-functional requirements of large financial institutions. The
two main issues with the original system are therefore speed and
scalability.

We can imagine different ways to improve the performance of
this system and make it process documents faster. For example,
we can use multi-threading and parallel processing [25], but multi-
threading may not be the most cost-effective solution because of
the extra effort needed to tailor an existing software solution to a
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multi/many core execution environment. Furthermore, to achieve
the best multi/many core performance there is a need for certain
infrastructure and hardware scale-ups which may not be afford-
able. For these reasons the multi-threaded solutions could be less
appealing compared to the serverless alternative.

For scalability, due to monolithic nature of the system, the only
option for scaling without changing the implementation is vertical
scaling by adding more resources to the machine that runs the
application. This approach provides limited scalability and at some
point cannot catch up with the growing demand [2]. Thus, the
main motivation for migrating to the serverless architecture is to
improve the performance and scalability of the system.

4.2 Breaking the Monolith
We started the migration journey by decoupling the system and
breaking it down to a number of well-defined and loosely coupled
services. As depicted in Figure 1, it is possible to identify four
well-defined services in the original monolithic architecture. These
four services are: PDF to image conversion, page classification,
preprocessing, and OCR.

After further consideration and taking into account the commu-
nication overhead and also the relationship between services, we
decided to merge the preprocessing and OCR services into one ser-
vice. This resulted in three primary services that together comprise
the document processing pipeline.

Afterward, we started to package each service along with depen-
dencies into a Docker container that follows the stateless principle
of serverless computing. Each service resides in a container and
listens for HTTP requests and input arguments. We trigger the
stateless services via HTTP request and pass them the necessary
arguments. The page classification service takes the image of a
document as input and returns the prediction result as output. The
input for the OCR service is also the image of the document; it
returns the extracted text from the image.

However, after deploying this first architecture we faced several
challenges that led to modifying this architecture. In the next sec-
tion, we review these challenges and changes that we implemented.

4.3 Migration Challenges
After implementing the first version of the serverless document
processing pipeline based on the architecture in the previous sec-
tion, we faced two main challenges. They can be attributed to the
constraints that exist in the implementation and serverless solution
provided by the cloud provider, which in our case was Google Cloud
Platform (GCP).

The first challenge is the constrained resource of the serverless
platform. This challenge is mainly due to the limitations and con-
straints that GCP imposes on instances of Cloud Run service. In
particular, the maximum amount of memory that can be allocated
to a Cloud Run service is 2 GB, but the page classification service
needs more memory. To mitigate this challenge, we split the clas-
sifier component into two parts by breaking the trained neural
network model, as shown in Figure 2. The first part performs a part
of the prediction task and sends the output of the last hidden layer
to the second part, which subsequently provides us with the final

first	part	of	the	neural	network
(Page	Classifier	1)	

Second	part	of	the	neural	network
(Page	Classifier	2)	

output	layer

input	layer

output	of	first
part	is	the	input
of	second	part

hidden	layer hidden	layer hidden	layer hidden	layer hidden	layer

Figure 2: Structure of page classifier neural network after
splitting.

prediction, i.e., the document class. Therefore, the page classifica-
tion service is replaced by two separate services Page Classifier 1
and Page Classifier 2.

The second challenge was related to the way that serverless
services communicate with each other. In the first implementa-
tion, synchronous HTTP requests were used for communication
between services. So when we send an HTTP request in a synchro-
nous manner, it blocks the execution of the program and waits for
the response to arrive. In scenarios where we can execute other
tasks at the same time, this paradigm diminishes the performance
of the system and leads to wasting a considerable amount of compu-
tation time without doing useful computation, considering the cost
model of serverless platform. To deal with this problem, we replaced
synchronous HTTP requests with asynchronous HTTP requests for
communication between services. Asynchronous HTTP requests
follow the non-blocking programming paradigm in which after
sending a request, the program can continue running other state-
ments and do some useful task until the response arrives. Hence, in
the document processing pipeline, when we send an asynchronous
HTTP request the program can continue sending other I/O requests,
aggregate, and store the results of requests and complete the job in
a shorter time in comparison with synchronous mode. We observe
in the evaluation section that using asynchronous HTTP requests
instead of synchronous HTTP requests improves the performance
of the system tremendously. In the next section, we present the final
serverless architecture after migration for the document processing
pipeline.

4.4 Serverless Architecture
Figure 3 provides a high-level overview of the serverless architec-
ture of the document processing pipeline after migration. In the
new architecture we have the following serverless services:

• Dispatcher: Receives a Pub/Sub message that contains the
bucket name and the list of document names. It then assigns
each document to an instance of the coordinator service.

• Coordinator: Plays the role of an orchestrator in the pipeline.
This service is responsible for executing the pipeline logic
on a single document, aggregating the results, and storing
the results in BigQuery.

• Page Classifier 1: Gets an image as input and performs the
first part of the classification task and sends the last hidden
layer output to the coordinator service.
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Figure 3: Serverless Architecture of Document processing pipeline.

• Page Classifier 2: The input for this service is the output of
Page Classifier 1. It executes the second part of the classifica-
tion task and returns the final prediction to the coordinator
service.

• OCR: Gets an image as input, extracts the text content from
the image after preprocessing, and sends it to the coordinator
service.

In this architecture, we leverage the inherent parallelism in the
serverless platform which is the ability to launch a new instance
per request to speedup the document processing pipeline. As Fig-
ure 3 shows, in this new architecture the coordinator service gets
a document as input and splits the document into pages. Next it
feeds each page to the Page Classifier 1 and OCR services at the
same time using asynchronous HTTP requests. This means that
each page is sent to a separate instance of OCR and Page Classifier
1 services and processed in parallel with other pages; this leads to
higher throughput and increased performance.

Page Classifier 1 carries out the first part of the whole classi-
fication job and sends the output of the last hidden layer to the
Page Classifier 2 through the coordinator service. Page Classifier
2 carries out the rest of the classification job and returns the final
prediction to the coordinator service. In the OCR service, each page
is preprocessed first and the text content is extracted and returned
to the coordinator service. The coordinator service receives the
results from all services, aggregates and stores them in BigQuery.

To simply show the interaction between different serverless
services in the new architecture, we pass a single document with
one page to the pipeline as depicted in Figure 4.

5 EVALUATION
In this section, we evaluate the serverless document processing
pipeline in terms of performance, scalability, and cost, and compare
it with the old monolithic version.

5.1 Dataset Description
Due to privacy issues regarding financial documents, we cannot
publicly share the dataset of financial documents that we used in
our system; instead we take advantage of the publicly available RVL-
CDIP dataset for classifier training and performance/cost evaluation
of the new system1[17]. This dataset contains 400,000 document
images in 16 different classes. These 16 classes are letter, form, email,
handwritten, advertisement, scientific report, scientific publication,
specification, file folder, news article, budget, invoice, presentation,
questionnaire, resume, and memo. We stitch random samples from
RVL-CDIP together to form a synthetic dataset of PDFs between
7-15 pages long.

5.2 Experimental Setup
We deploy each service in the proposed serverless architecture on
GCP as a Cloud Run service. 2 GB of memory is allocated to each
instance of the service. We also run the monolithic version on two
separate virtual machines with different specifications on GCP to
observe the effect of adding more resources on the scalability and
performance of themonolithic version. The first virtual machine has
4 vCPU and 15 GB of memory, while the second one has 96 vCPU
and 360 GB of memory.

We conduct two experiments. In the first experiment, we com-
pare the serverless architecture with the monolithic one in terms
of performance and cost by benchmarking both systems on a set
of 100 documents that have between 7 and 15 pages. In the second
experiment, we evaluate the performance and scalability of the
new architecture as the number of input documents increases. We
repeat each experiment three times and ignore the result of the first
run to eliminate the cold start effect. Hence, we report the average
of the results of the second and third runs.

1https://www.cs.cmu.edu/ aharley/rvl-cdip/
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Figure 4: Sequence diagram of serverless document processing pipeline for one document with one page.

Table 1: Comparing themonolithic architecture with server-
less architecture in terms of performance and cost

Architecture Spec Turnaround Time Cost
Monolithic
(Single VM )

4 vCPU, 15 GB
(n1-standard-4) ∼ 6.27 h ∼ $1.23

Monolithic
(Single VM)

96 vCPU, 360 GB
(n1-standard-96) ∼ 5.07 h ∼ $23.12

Serverless
(Cloud Run) 1 vCPU, 2 GB ∼ 4.05 min ∼ $2.43

5.3 Results
Table 1 shows the performance and cost results obtained for the
old system and the new system on 100 documents in the first ex-
periment. It can be readily seen that the serverless version is about
93x faster than the monolithic version; it processes the documents
in about four minutes, whereas it takes about six hours for the
monolithic version with 4 vCPU and 15 GB of memory to finish the
same job. Turning our attention to cost, the monolithic version with
4 vCPU and 15 GB of memory turns out to be about 49.38% cheaper
than serverless version. Note that we have not taken into account
the idle time for the virtual machine in our cost calculations. The
cost for the virtual machine is only for the duration that it processes
the document, so if we consider the idle time in the cost calculation
(which is the case in the real-world setting), it would become more
expensive than the serverless solution.

We also repeated the first experiment for the monolithic version
on a more powerful virtual machine with 96 vCPU and 360 GB of
memory to understand to what extent we can improve the perfor-
mance and reduce the turnaround time by adding more resources.
As expected, adding more resources did not greatly improve the
performance despite increasing the cost dramatically. We attribute
this to the sequential execution of the monolithic version.

In the second experiment, we change the number of input docu-
ment to the serverless pipeline from 1 to 500 documents to measure
the performance of the new system on different loads. Figure 5
illustrates the turnaround time as we increase the number of input
documents. The x-axis of this figure shows the total number of

documents submitted to the system where each document consists
of multiple pages (11 pages on average).

Due to the limit set by GCP, each Cloud Run service can currently
scale to a maximum of 1000 instances simultaneously. Thus, the
number of instances varies between 0 to 1000 based on the input
workload. As we invoke some services such as Page Classifier 1
for each page, at some point, these services reach this instance
limit, causing the next requests to experience a waiting time before
getting service. Therefore, we observe an almost linear increase in
the turnaround time as the number of documents increases.
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Figure 5: The turnaround time of jobs in the serverless doc-
ument processing pipeline.

6 RELATEDWORK
The body of research on serverless computing can be categorized
into two groups: studies on serverless computing evolution and
open problems [9, 20, 21], and studies on migrating applications
to the serverless computing paradigm which is the focus of this
paper [3, 7, 23, 24].

In recent years, due to the appealing characteristics of FaaS
serverless solutions such as fine grained billing benefits and im-
plicit autoscaling, many companies and developers have migrated
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their solutions to the serverless architecture to benefit from these
advantages and provide better services to their costumers. Such
companies include Reuters, iRobot, Autodesk and many more that
reportedly use AWS Lambda to better serve their customers and
internal processes [6]. In Toader et al. [23], the authors proposed
a detailed implementation of a serverless graph processing frame-
work implemented with AWS Lambda which benefits from auto-
mated resource autoscaling and provisioning. Graphless abstracts
away resource management and configuration from the users. This
will benefit end users who are not familiar with HPC concepts.
However, the authors have shown that because of the variability
of network characteristics under certain communication intensive
workloads, the Graphless efficiency degrades.

In [24], the authors proposed a serverless framework for ma-
chine learning tasks, called Siren, which is fully asynchronous and
achieves different levels of parallelism and elasticity. Siren, through
stateless serverless functions, much like Graphless eliminates the
burden of resource management and scaling machine learning al-
gorithms imposed on the end users by the current well established
serverfull frameworks. The Siren framework is deployed on the
AWS Lambda serverless platform. The authors in [3] discussed
economic and architectural benefits of serverless computing and
study two real world services, namely MindMup and Yubl [3], that
have been migrated to and adopted serverless computing. They
discussed how MindMup and Yubl could benefit from serverless
deployment; these benefits include reduced time to feature delivery
and time to market for developers and faster request processing for
customers. However, it is mentioned that serverless platforms are
not well suited for mission critical and time sensitive tasks [3].

Moreover, a recent innovative step and improvement in the
serverless computing research and development is the replacement
of functions in the FaaS serverless architecture with containers and
images from the developers. These containers are stateless and their
autoscaling and all the other deployment details are handled by
the cloud providers. Such container-oriented serverless solutions
include products such as the Google Cloud Run [15] or the Amazon
Fargate [5], both of which are serverless solutions for containers.
The upside of serverless containers compared to functions is the
level of concurrency introduced by containers which refers to the
number of user requests processed by each container. The devel-
opers are free to assign concurrency levels higher than 1 to each
container, for example, a concurrency level of 4 indicates that 4
user requests are processed by each container. The concurrency
level in each function in the FaaS serverless solutions is set to 1,
meaning that each function processes 1 request at a time [14].

7 CONCLUSION
With the advent of serverless computing, several monolith applica-
tions which were previously developed for a single-core or multi-
core execution environment are implemented from scratch follow-
ing the serverless paradigm to take advantages of auto-scaling and
automated resource provisioning. In this article, by observing the
gap in the literature and the lack of studies concerning the perfor-
mance of the serverless implementation of financial services, we
present the migration journey of a FinTech application from its
monolithic form to a high-performance serverless implementation.

Based on our evaluations, the proposed serverless implementation
outperforms the previous monolith serverfull implementation by 93
times, while increasing the cost by 50%. Our cost calculation does
not take into account the under utilization of the serverfull infras-
tructure and the investment required to build the serverless system.
In conclusion, the serverless implementation provides unparalleled
speedup and performance improvement over the serverfull imple-
mentation without making drastic changes to the software design.
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