
Issues Arising in Using Kernel Traces
to Make a Performance Model

Murray Woodside
 Carleton University

 Ottawa, Canada
 cmw@sce.carleton.ca

Shieryn Tjandra
 Carleton University

 Ottawa, Canada
 shieryntjandra@gmail.com

Gabriel Seyoum
 Carleton University

 Ottawa, Canada
 gaseyoum@gmail.com

ABSTRACT
This report is prompted by some recent experience with building
performance models from kernel traces recorded by LTTng, a
tracer that is part of Linux, and by observing other researchers
who are analyzing performance issues directly from the traces. It
briefly distinguishes the scope of the two approaches, regarding
the model as an abstraction of the trace, and the model-building
as a form of machine learning. For model building it then
discusses how various limitations of the kernel trace information
limit the model and its capabilities and how the limitations
might be overcome by using additional information of different
kinds. The overall perspective is a tradeoff between effort and
model capability.

CCS CONCEPTS
•General and reference~Cross-computing tools and
techniques~Measurement •General and reference~Cross-
computing tools and techniques~Performance

KEYWORDS
Performance model; Layered queueing; Kernel traces.

ACM Reference format:

Murray Woodside, Shieryn Tjandra, Gabriel Seyoum. 2020. Issues
Arising in Using Kernel Traces to Make a Performance Model. In
Proceedings WOSPC-2020, ICPE 2020 Companion, April 20-24, Edmonton,
AB, Canada. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3375555.3384937

1 Introduction: Kernel Traces
Kernel traces are gathered from operating system events
identified with process and thread ids, network interface ids and
file ids. Together with other OS-gathered metrics they have the
advantage of not requiring any application instrumentation, and
gathering data for applications for which there is no available
source code (or for components for which there is no source

code). They are also extremely fine-grained, and include all
processor-scheduling events, so everything which stops a
process from running can be identified.
LTTng [9] is a tracing tool that is distributed with Linux, so it is
always available on a Linux system. A large range of types of
pre-defined events to be recorded can be selectively enabled,
relating to CPU scheduling, signals, locks, and network
interfaces [9]. It has low overhead, but it only records into a
main-memory buffer which may limit the length of a tracing
run. Tracing all scheduler events takes a lot of memory but is
required for deep analysis. LTTng also has an API to record user-
defined events in the application code, to integrate kernel and
application level events in one trace.
The DORSAL group at Ecole Polytechnique de Montreal, under
M. Dagenais, have contributed to LTTng and are using it to
analyse performance issues with the analysis tool TraceCompass
[12]. Among TraceCompass’s capabilities two are most
noteworthy. For distributed systems it is capable of
synchronizing the clock times in traces gathered separately on
different hosts (it adjusts clock offsets by applying causal
ordering to messaging events that flow between the hosts). For
performance analysis they have developed a “waiting analysis”
[4] which traces what every process is waiting for when it is
scheduled, through the sequence of scheduler events. If there is a
bottleneck process or lock it shows up in all the waiting
conditions. They also display a “critical path” of chains of events
linked by waiting, which may traverse multiple processors. This
has been extended in various ways, e.g. to diagnose performance
deviations between different executions, by examining call
stacks at points along the critical path [2].

2. Layered Models based on Traces
The author and co-workers developed tools to extract layered
performance models from interprocess message traces [5][6].
Patterns of messages were interpreted as various kinds of
process interactions, and an interaction architecture at the
process level was extracted. Application level trace events were
used to identify where a process sent a request and where it
blocked to wait for a reply. This gave the structure of a layered
model and the call frequencies between processes but the
calibration of CPU time was left to separate operations using
methods such as surveyed in [8]and implemented in LibReDE
[11]. Model extraction went further in [7] and modeled parallel
paths and multithreaded tasks, and determined the CPU times of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
ICPE '20 Companion, April 20–24, 2020, Edmonton, AB, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7109-4/20/04?$15.00
https://doi.org/10.1145/3375555.3384937

ICPE ’20 Companion, April 20–24, 2020, Edmonton, AB, Canada

11

Workshop on Challenges and Opportunities
in Large-Scale Performance (WOSP-C)

operations. Operations were clustered and considered to be
instances of the same operation, based on their interactions (i.e.
based on what other processes they made requests to).
Layered models are described in [3]. They are an extension of
queueing models to describe software servers as well as
hardware. The software part is structured as in Fig 1, with tasks
(= concurrent processes), entries (their operations) and calls
(RPCs), and labels for the mean CPU demands of operations, and
for the mean number of calls. Figure 1 shows an example with
one entry per task, and blocking calls between the entries. When
a program of this architecture was traced and a model extracted
using the approach of [6], it was as shown in the automatically
drawn Figure 2. The entry and task names were automatically
generated by the analyzer. To solve the model its deployment to
host processors must also be defined; the model builder did not
capture these.
In Figure 2 there are additional entries, not in Figure 1, derived
from operation instances in the trace that made different
collections of calls. Thus in task Server02, E_2S represents one or
more operation instances that made no calls, and E8S represents
one or more that called both Server04 and Server05. There are
also additional types of calls; in task Server01 there are two
entries that receive asynchronous messages from the User task
(shown with open arrowheads in this Figure).
Sometimes the extracted model has a substantial clutter of
operations that were performed during initialization, for
instance of the RPC. Usually this part of the operation is not
critical for performance and can be ignored if an application
level event can be added at the beginning of the operational part
of the scenario. In tracing performance tests, such an event was
added to the test driver that simulated the users.

Figure 1: A layered architecture

Figure 2: A layered performance model, extracted from a
system, that describes the architecture in Figure 1

3. Performance Analysis from Traces
A trace can be exploited by both direct analysis and by model-
based analysis. As an example of a powerful direct analysis, “wait
analysis” as developed by Dagenais and his co-workers [4] can
identify an operating system entity (such as a process thread, a
system lock or a peripheral device) which is frequently the cause
of waiting by other entities. This extends to include causal
chains such as causality across a network, where some processes
often wait for a message from a particular remote process. For
performance analysis Dagenais and his co-workers have
developed a “waiting analysis” [4] which traces what every
process is waiting for when it is scheduled, through the sequence
of scheduler events. If there is a bottleneck process or lock it
shows up in all the waiting conditions. Effectively the wait
analysis can deduce: “over the duration of this trace, this entity
is a suspect”. So it is useful in diagnosis, and in the hunt for
places to make improvements. They also display a “critical path”
of chains of events linked by waiting, which may traverse
multiple processors. This has been extended in various ways, e.g.
to diagnose performance deviations between different
executions, by examining call stacks at points along the critical
path [2].
All of these direct analyses however are limited to what has been
observed over a particular time period and lack both generality
and predictive capability.

User_Sourc
e

sourceUse
r [1e-

006]

(0.181818)

(0.181818)

(0.181818)

(0.0909091)

(0.0909091)

(0.0909091)

(0.181818)

Server0
1

_E_1
S [9.08e+4,0

]

_E_6A
[2.41e-2,0]

(1 0)

_E_9A
[2.65e-2,0]

(1 0)

Server0
2

_E_2
S [2.23e-

2,0]

_E_8
S

(0 1) (0 1)

Server0
3

_E_3
S [6.05e+4,0

]

Server0
4

_E_4
S [7.93e-

2,0] Z=[0,0]
Server0
5

_E_5
S [1.29e-2,0]
Z=[0,0]

[1.69e-2,0]

ICPE ’20 Companion, April 20–24, 2020, Edmonton, AB, Canada

12

Workshop on Challenges and Opportunities
in Large-Scale Performance (WOSP-C)

Machine-learning models could also be applied, to abstract away
from the trace and summarize the results as a model that can be
used to interpolate in the results. They are (in most cases) like
curve-fit models; they support interpolation within the observed
cases but not prediction to new situations. For extrapolation,
performance models are needed.
Regarding performance model-based analysis, a performance
model is essentially an abstraction tool for extrapolating from
the observations in the trace. It may extrapolate to different load
levels, deployments, or to systems with additional subsystems.
Extrapolation is based on assumptions (1) that the model
captures the system structure and (2) that the parameters fitted
to the trace remain valid when extrapolating. The second
assumption can be relaxed by re-fitting the parameters using
methods such as in REF. Essentially successful extrapolation
rests on the model capturing general behaviour like contention
effects, which applies to situations beyond the traced
experiments or not.
The trace does not have to capture a performance problem to
give a useful model; a light-load trace can predict a bottleneck
location even though the bottleneck is not active. However a
model made this way is still limited by the conditions under
which the trace was made. The limitations are related to its
structure and its parameters. For structure, some important
entities may be missing from the model because they are not
represented in the trace. For parameters, the execution of an
operation depends on environment factors at the time of
execution, for example on the state of caches and on the
processor load (through power management and speed control).

4. Limitations of Trace-Based Models and How
to Deal With Them

The following issues are examined specifically for kernel traces,
although many of them also apply to application-level traces. We
try to identify additional information that can improve the
model usefulness for various purposes, and its associated effort.
Missing model structure may include;
 The identity of the program for each process id: for

interpreted software such as Java or Python, the process id
is associated with the interpreter program rather than the
application code.

What can be done: This is not difficult. The proc file system
(a monitoring repository maintained by Linux) records the
command line that invoked the process, so the application
file can be discovered in that data if it is queried or
recorded periodically during tracing.

 Software resources such as locks that the analyst knows
nothing about, implemented in the application (e.g, a
software-implemented lock or a limited buffer pool). are
invisible.

What can be done: This complicated. The existence of such
a resource could be inferred from unexplained waiting in
the trace data. First, suppose a process A is waiting for a
software lock; it executes after waiting for another process
B (which has released the lock). The causality could be a

message or signal from B, if these can be eliminated
(because they are detected separately as interprocess
events) then the release of a logical resource is a candidate
cause. Additional inferences which would be needed
include some way of identifying other interactions with
the same logical resource. If two logical resources are
implemented in the same process they cannot be
distinguished in this way.
Second, the resource could be inferred from a separate
model-building approach based on fitting the model to
average performance measures. If the delays of the best
fitted model are not an adequate match to the data, an
additional queue not related to known queueing resources,
could be hypothesized and its contribution to a better fit
could be tested statistically (REF reg). This is a big
additional effort, however it could be done as part of
parameter fitting used to maintain the model, see below.

 The destination of messages via messaging middleware
such as MQ is hidden from the sender, which only sees an
interaction with the message broker. Thus the trace does
not reveal what service is being requested.

What can be done: Here it is essential to trace at least the
middleware, to capture the arrival of a message and trace it
through to its destination(s). If not the middleware, then
the application might provide the information. Middleware
tracing seems to be an essential add-on to kernel tracing,
and is feasible for open-source middleware. Once installed
it can be re-used in any other system. However there are
many kind of middleware.

 The direction of calling in interprocess calls via messages
is not knowable just from the kernel level message events.
For example for RPCs the kernel simply sees a sequence of
messages, with no call/reply semantics. It is natural to
interpret the first message between two processes as a call,
and the next in the reverse direction as the corresponding
reply. However if the first message is asynchronous, the
second may be a callback initiated by its receiver, in the
reverse direction, reversing the sense of an entire sequence
of calls.

What can be done: In event-driven software this is not an
issue, since all messaging is asynchronous anyway.
Otherwise this requires some application or middleware
level knowledge about which process is making
interprocess calls. Simplest would be to trace the calls and
replies at the application level. Some middleware supports
client-server relationships and keeps track of the roles of
its users; if the messages are traced at this level they can be
distinguished (but MQ, for example, does not).

 Requests to remote servers that are themselves not
monitored, are only partially covered. The occurrence of
the request message is traced, and the reply from the
remote server, but connecting the two requires message
data such as the URL of the remote server, which is not
accessible in the kernel trace. An important example is file
operations on a storage server for applications in the cloud.

ICPE ’20 Companion, April 20–24, 2020, Edmonton, AB, Canada

13

Workshop on Challenges and Opportunities
in Large-Scale Performance (WOSP-C)

In large-scale systems remote servers are a serious issue,
and there is also a larger issue of whether such servers are
wanted in the model.

What can be done: First, a server can be assumed, for the
remote requests. If there are several of them they may not
be distinguishable. Second, if the remote servers are
known, as in a test environment, it may be possible to infer
which messages go to which server. Third, the content of a
packet can be captured in the trace, so it might be possible
to parse out the identity of the remote server, although the
storage required for this might be prohibitive.

 operations by peripheral devices, that are not traced. File
I/O devices are an important example. For file operations
LTTng can record the syscalls to identify operations, but
they apply to anything mapped to a file... sockets for
instance. For a single operation there may be multiple read
or write calls, each for part of the file.

What can be done: Possibly the peripheral device was just
not used during the trace, so a longer trace may capture its
usage. The same potentially could apply to a process that is
not activated during a trace. For file reads and writes the
OS separately records total blocks read and written (but
not by file), which can possibly be incorporated in the
model parameters, especially if only one file is open at a
time.

Also unwanted model structure (clutter) may be produced:
 As noted in the example of Figure 1/2, some execution

periods (such as initialization) may have complex
behaviour that is not of interest to the analyst. If events
can be recorded to demarcate these periods, they can be
eliminated from the modeling effort. This approach can be
extended to create separate models for different phases of
execution of the entire application, using boundary events
related to the beginning of a new phase.

What can be done: This requires including application level
events in the trace, which can be done with LTTng. To
avoid having to instrument the source code it may be
possible to capture the boundaries of such a period in a
custom-written component, such as the test driver
mentioned above. Another potential source of boundary
events is existing application logging such as a weblog.

 Multi-threaded programs require tracing the behaviour of
each thread and treating it as a separate concurrent task in
the model, since causality between stimulus and response
flows through each thread separately. If each one is
modeled as a task it may create a huge model.

What can be done: If these threads have essentially the
same behaviour, as in a server thread pool, they should be
collected together as a software multiserver. If a thread is
just a unit of modular behaviour, created dynamically to
execute a function and then destroyed, it can be absorbed
into the creating thread if that one is blocked. The analysis
for these characteristics may be complex, however.

 It may be possible only to trace a subsystem at a time, in a
large distributed system, because of the amount of data
involved.

What can be done: subsystem models can be connected in
a compositional approach, in various modeling systems.
For layered modeling a compositional approach was
described by Wu et al [14].

Model parameter weaknesses can include:
 the cpu demand of operations and the number of calls to

them can be calculated from the scheduling events of the
trace, but may not be representative.

What can be done: Longer traces taken under a variety of
conditions may be needed to get representative averages.
Also, the parameters can be calibrated separately (after
creating the model structure) from performance measures
which require much simpler logging and can be done over
a much longer time. CPU demand calibration in this way is
well developed REF.

 multi-event messages are common when a large block of
data is transferred with several send syscalls. Normally in a
performance model we would like to identify them as one
message, with one remote operation and one delay for the
reply. Clustering these send or receive events is a
challenge without application level identification of the
application message.

What can be done: heuristics are only partly successful. For
example one tool we use identifies the last message of a
cluster of sends and the first message back as a send-reply,
and all the others are identified as asynchronous messages;
a heuristic is then to cluster the asynchronous messages
before and after with the send-reply. However this may
disregard an actual asynchronous message.

5. Conclusions
Trace interpretation can recover essential causal information
such as the request message which causes a process to execute
an operation, and the set of events triggered by that message.
Kernel traces are valuable in that they capture all the events of
the given type, without requiring user instrumentation effort.
This is also the source of their weaknesses: because they are at
kernel level they lack application semantics. Clever inferences or
partial structural knowledge can sometimes fill these gaps, but
some absolutely require additional data. A major example for
modern distributed systems is monitoring of the middleware to
connect the sender of a message with its receiver. Some other
kinds of additional data may be readily available in some cases,
such as advance knowledge of some of the interprocess
interactions and of untraced remote servers. A second important
example for many systems is the ability to separate out
initialization activity from production activity, in order to model
only the latter.

ICPE ’20 Companion, April 20–24, 2020, Edmonton, AB, Canada

14

Workshop on Challenges and Opportunities
in Large-Scale Performance (WOSP-C)

ACKNOWLEDGMENTS
This research was supported by NSERC (the Natural Sciences
and Engineering Research Council of Canada) in its Discovery
Grant program, grant RGPIN 06274-2016, and by a MITACS
Accelerate grant IT11285.

REFERENCES
[1] M. Desnoyers, M.R. Dagenais, “The LTTng tracer: A low impact

performance and behavior monitor for GNU/Linux”, in OLS (Ottawa Linux
Symposium), pp. 209–224, 2006.

[2] F. Doray, M. Dagenais, “Diagnosing Performance Variations by Comparing
Multi-Level Execution Traces”, IEEE Trans. on Parallel and Distributed
Systems, v 28 n 2 pp 462-474, 2017.

[3] G. Franks, T. Al-Omari, M. Woodside, O. Das, S. Derisavi, "Enhanced
Modeling and Solution of Layered Queueing Networks", IEEE Trans. on
Software Eng. Aug. 2008

[4] F. Giraldeau, M. Dagenais, "Wait Analysis of Distributed Systems Using
Kernel Tracing," IEEE Trans. on Parallel and Distributed Systems , V 27,
Issue 8, pp 2450 – 2461, 2016.

[5] C. Hrischuk, J. Rolia and C.M. Woodside, "Automatic Generation of a
Software Performance Model Using an Object-Oriented Prototype", Proc.
MASCOTS 1995, pp. 399-409, January 1995

[6] T.A. Israr, D.H. Lau, G. Franks, M. Woodside, “Automatic Generation of
Layered Queuing Software Performance Models from Commonly Available

Traces”, Proc. 5th Int. Workshop on Software and Performance (WOSP
2005), pp 147-158, July 2005.

[7] Mizan and G. Franks, “An automatic trace based performance evaluation
model building for parallel distributed systems,” Proc. Joint WOSP/SIPEW
Int. Conf. on Performance Engineering (ICPE 2011), Karlsruhe, pp. 61-72,
April 2011.

[8] S. Spinner, G. Casale, F. Brosig, S. Kounev. “Evaluating Approaches to
Resource Demand Estimation”, Performance Evaluation, Elsevier 92:51-71,
Oct 2015

[9] The LTTng Documentation, https://lttng.org/docs/v2.11/, accessed January
2020,

[10] S. Tjandra, “Performance Model Extraction Using Kernel Event Tracing”,
MASc thesis, Carleton University, 2019.

[11] S. Spinner, J, Grohmann, “LibReDE User Guide”, https://se.informatik.uni-
wuerzburg.de/
fileadmin/10030200/user_upload/librede/LibReDE_UserGuide_01.pdf,
February 28, 2019

[12] Trace Compass User Guide, https://archive.eclipse.org/tracecompass/doc/
stable/org.eclipse.tracecompass.doc.user/User-Guide.html, accessed Jan 2020

[13] M. Woodside, "The Relationship of Performance Models to Data", Proc.
SPEC Int. Workshop on Performance Evaluation, Springer LNCS, Vol. 5119,
pp 9 - 28, June 2008.

[14] Xiuping Wu and Murray Woodside, "Performance Modeling from Software
Components," in Proc. 4th Int. Workshop on Software and Performance
(WOSP 04), Jan 2004, pp. 290-301..

ICPE ’20 Companion, April 20–24, 2020, Edmonton, AB, Canada

15

Workshop on Challenges and Opportunities
in Large-Scale Performance (WOSP-C)

https://lttng.org/docs/v2.11/
https://se.informatik.uni-wuerzburg.de/%20fileadmin/10030200/user_upload/librede/LibReDE_UserGuide_01.pdf
https://se.informatik.uni-wuerzburg.de/%20fileadmin/10030200/user_upload/librede/LibReDE_UserGuide_01.pdf
https://se.informatik.uni-wuerzburg.de/%20fileadmin/10030200/user_upload/librede/LibReDE_UserGuide_01.pdf
https://archive.eclipse.org/tracecompass/doc/%20stable/org.eclipse.tracecompass.doc.user/User-Guide.html
https://archive.eclipse.org/tracecompass/doc/%20stable/org.eclipse.tracecompass.doc.user/User-Guide.html

