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ABSTRACT 
This report is prompted by some recent experience with building 
performance models from kernel traces recorded by LTTng, a 
tracer that is part of Linux, and by observing other researchers 
who are analyzing performance issues directly from the traces. It 
briefly distinguishes the scope of the two approaches, regarding 
the model as an abstraction of the trace, and the model-building 
as a form of machine learning. For model building it then 
discusses how various limitations of the kernel trace information 
limit the model and its capabilities and how the limitations 
might be overcome by using additional information of different 
kinds. The overall perspective is a tradeoff between effort and 
model capability. 
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1  Introduction: Kernel Traces 
Kernel traces are gathered from operating system events 
identified with process and thread ids, network interface ids and 
file ids. Together with other OS-gathered metrics they have the 
advantage of not requiring any application instrumentation, and 
gathering data for applications for which there is no available 
source code (or for components for which there is no source 

code). They are also extremely fine-grained, and include all 
processor-scheduling events, so everything which stops a 
process from running can be identified. 
LTTng [9] is a tracing tool that is distributed with Linux, so it is 
always available on a Linux system. A large range of types of 
pre-defined events to be recorded can be selectively enabled, 
relating to CPU scheduling, signals, locks, and network 
interfaces [9]. It has low overhead, but it only records into a 
main-memory buffer which may limit the length of a tracing 
run. Tracing all scheduler events takes a lot of memory but is 
required for deep analysis. LTTng also has an API to record user-
defined events in the application code, to integrate kernel and 
application level events in one trace. 
The DORSAL group at Ecole Polytechnique de Montreal, under 
M. Dagenais, have contributed to LTTng and are using it to 
analyse performance issues with the analysis tool TraceCompass 
[12]. Among TraceCompass’s capabilities two are most 
noteworthy. For distributed systems it is capable of 
synchronizing the clock times in traces gathered separately on 
different hosts (it adjusts clock offsets by applying causal 
ordering to messaging events that flow between the hosts). For 
performance analysis they have developed a “waiting analysis” 
[4] which traces what every process is waiting for when it is 
scheduled, through the sequence of scheduler events. If there is a 
bottleneck process or lock it shows up in all the waiting 
conditions. They also display a “critical path” of chains of events 
linked by waiting, which may traverse multiple processors. This 
has been extended in various ways, e.g. to diagnose performance 
deviations between different executions, by examining call 
stacks at points along the critical path [2]. 

2. Layered Models based on Traces 
The author and co-workers developed tools to extract layered 
performance models from interprocess message traces [5][6]. 
Patterns of messages were interpreted as various kinds of 
process interactions, and an interaction architecture at the 
process level was extracted. Application level trace events were 
used to identify where a process sent a request and where it 
blocked to wait for a reply. This gave the structure of a layered 
model and the call frequencies between processes but the 
calibration of CPU time was left to separate operations using 
methods such as surveyed in [8]and implemented in LibReDE 
[11]. Model extraction went further in [7] and modeled parallel 
paths and multithreaded tasks, and determined the CPU times of 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full 
citation on the first page. Copyrights for components of this work owned by others 
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. Request permissions from Permissions@acm.org. 
ICPE '20 Companion, April 20–24, 2020, Edmonton, AB, Canada 
© 2020 Association for Computing Machinery. 
ACM ISBN 978-1-4503-7109-4/20/04?$15.00 
https://doi.org/10.1145/3375555.3384937 

ICPE ’20 Companion, April 20–24, 2020, Edmonton, AB, Canada

11

Workshop on Challenges and Opportunities 
in Large-Scale Performance (WOSP-C)



  
 

 

operations. Operations were clustered and considered to be 
instances of the same operation, based on their interactions (i.e. 
based on what other processes they made requests to).  
Layered models are described in [3]. They are an extension of 
queueing models to describe software servers as well as 
hardware. The software part is structured as in Fig 1, with tasks 
(= concurrent processes), entries (their operations) and calls 
(RPCs), and labels for the mean CPU demands of operations, and 
for the mean number of calls. Figure 1 shows an example with 
one entry per task, and blocking calls between the entries. When 
a program of this architecture was traced and a model extracted 
using the approach of [6], it was as shown in the automatically 
drawn Figure 2. The entry and task names were automatically 
generated by the analyzer. To solve the model its deployment to 
host processors must also be defined; the model builder did not 
capture these. 
In Figure 2 there are additional entries, not in Figure 1, derived 
from operation instances in the trace that made different 
collections of calls. Thus in task Server02, E_2S represents one or 
more operation instances that made no calls, and E8S represents 
one or more that called both Server04 and Server05. There are 
also additional types of calls; in task Server01 there are two 
entries that receive asynchronous messages from the User task 
(shown with open arrowheads in this Figure). 
Sometimes the extracted model has a substantial clutter of 
operations that were performed during initialization, for 
instance of the RPC. Usually this part of the operation is not 
critical for performance and can be ignored if an application 
level event can be added at the beginning of the operational part 
of the scenario. In tracing performance tests, such an event was 
added to the test driver that simulated the users. 
 

 

Figure 1: A layered architecture 

 

Figure 2: A layered performance model, extracted from a 
system, that describes the architecture in Figure 1 

3. Performance Analysis from Traces 
A trace can be exploited by both direct analysis and by model-
based analysis. As an example of a powerful direct analysis, “wait 
analysis” as developed by Dagenais and his co-workers [4] can 
identify an operating system entity (such as a process thread, a 
system lock or a peripheral device) which is frequently the cause 
of waiting by other entities. This extends to include causal 
chains such as causality across a network, where some processes 
often wait for a message from a particular remote process. For 
performance analysis Dagenais and his co-workers have 
developed a “waiting analysis” [4] which traces what every 
process is waiting for when it is scheduled, through the sequence 
of scheduler events. If there is a bottleneck process or lock it 
shows up in all the waiting conditions. Effectively the wait 
analysis can deduce: “over the duration of this trace, this entity 
is a suspect”. So it is useful in diagnosis, and in the hunt for 
places to make improvements. They also display a “critical path” 
of chains of events linked by waiting, which may traverse 
multiple processors. This has been extended in various ways, e.g. 
to diagnose performance deviations between different 
executions, by examining call stacks at points along the critical 
path [2]. 
All of these direct analyses however are limited to what has been 
observed over a particular time period and lack both generality 
and predictive capability. 
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Machine-learning models could also be applied, to abstract away 
from the trace and summarize the results as a model that can be 
used to interpolate in the results. They are (in most cases) like 
curve-fit models; they support interpolation within the observed 
cases but not prediction to new situations. For extrapolation, 
performance models are needed. 
Regarding performance model-based analysis, a performance 
model is essentially an abstraction tool for extrapolating from 
the observations in the trace. It may extrapolate to different load 
levels, deployments, or to systems with additional subsystems. 
Extrapolation is based on assumptions (1) that the model 
captures the system structure and (2) that the parameters fitted 
to the trace remain valid when extrapolating. The second 
assumption can be relaxed by re-fitting the parameters using 
methods such as in REF. Essentially successful extrapolation 
rests on the model capturing general behaviour like contention 
effects, which applies to situations beyond the traced 
experiments or not. 
The trace does not have to capture a performance problem to 
give a useful model; a light-load trace can predict a bottleneck 
location even though the bottleneck is not active. However a 
model made this way is still limited by the conditions under 
which the trace was made. The limitations are related to its 
structure and its parameters. For structure, some important 
entities may be missing from the model because they are not 
represented in the trace. For parameters, the execution of an 
operation depends on environment factors at the time of 
execution, for example on the state of caches and on the 
processor load (through power management and speed control).  

4. Limitations of Trace-Based Models and How 
to Deal With Them 

The following issues are examined specifically for kernel traces, 
although many of them also apply to application-level traces. We 
try to identify additional information that can improve the 
model usefulness for various purposes, and its associated effort. 
Missing model structure may include; 
 The identity of the program for each process id: for 

interpreted software such as Java or Python, the process id 
is associated with the interpreter program rather than the 
application code.  

What can be done: This is not difficult. The proc file system 
(a monitoring repository maintained by Linux) records the 
command line that invoked the process, so the application 
file can be discovered in that data if it is queried or 
recorded periodically during tracing. 

 Software resources such as locks that the analyst knows 
nothing about, implemented in the application (e.g, a 
software-implemented lock or a limited buffer pool). are 
invisible. 

What can be done:  This complicated. The existence of such 
a resource could be inferred from unexplained waiting in 
the trace data. First, suppose a process A is waiting for a 
software lock; it executes after waiting for another process 
B (which has released the lock). The causality could be a 

message or signal from B, if these can be eliminated 
(because they are detected separately as interprocess 
events) then the release of a logical resource is a candidate 
cause. Additional inferences which would be needed 
include some way of identifying other interactions with 
the same logical resource. If two  logical resources are 
implemented in the same process they cannot be 
distinguished in this way. 
Second, the resource could be inferred from a separate 
model-building approach based on fitting the model to 
average  performance measures. If the delays of the best 
fitted model are not an adequate match to the data, an 
additional queue not related to known queueing resources, 
could be hypothesized and its contribution to a better fit 
could be tested statistically (REF reg). This is a big 
additional effort, however it could be done as part of 
parameter fitting used to maintain the model, see below. 

 The destination of messages via messaging middleware 
such as MQ is hidden from the sender, which only sees an 
interaction with the message broker. Thus the trace does 
not reveal what service is being requested.  

What can be done: Here it is essential to trace at least the 
middleware, to capture the arrival of a message and trace it 
through to its destination(s). If not the middleware, then 
the application might provide the information. Middleware 
tracing seems to be an essential add-on to kernel tracing, 
and is feasible for open-source middleware. Once installed 
it can be re-used in any other system. However there are 
many kind of middleware. 

 The direction of calling in interprocess calls via messages 
is not knowable just from the kernel level message events. 
For example for RPCs the kernel simply sees a sequence of 
messages, with no call/reply semantics. It is natural to 
interpret the first message between two processes as a call, 
and the next in the reverse direction as the corresponding 
reply. However if the first message is asynchronous, the 
second may be a callback initiated by its receiver, in the 
reverse direction, reversing the sense of an entire sequence 
of calls.  

What can be done: In event-driven software this is not an 
issue, since all messaging is asynchronous anyway. 
Otherwise this requires some application or middleware 
level knowledge about which process is making 
interprocess calls. Simplest would be to trace the calls and 
replies at the application level. Some middleware supports 
client-server relationships and keeps track of the roles of 
its users; if the messages are traced at this level they can be 
distinguished (but MQ, for example, does not). 

 Requests to remote servers that are themselves not 
monitored, are only partially covered. The occurrence of 
the request message is traced, and the reply from the 
remote server, but connecting the two requires message 
data such as the URL of the remote server, which is not 
accessible in the kernel trace. An important example is file 
operations on a storage server for applications in the cloud. 
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In large-scale systems remote servers are a serious issue, 
and there is also a larger issue of whether such servers are 
wanted in the model.  

What can be done: First, a server can be assumed, for the 
remote requests. If there are several of them they may not 
be distinguishable. Second, if the remote servers are 
known, as in a test environment, it may be possible to infer 
which messages go to which server. Third, the content of a 
packet can be captured in the trace, so it might be possible 
to parse out the identity of the remote server, although the 
storage required for this might be prohibitive.  

 operations by peripheral devices, that are not traced. File 
I/O devices are an important example. For file operations 
LTTng can record the syscalls to identify operations, but 
they apply to anything mapped to a file... sockets for 
instance. For a single operation there may be multiple read 
or write calls, each for part of the file.  

What can be done: Possibly the peripheral device was just 
not used during the trace, so a longer trace may capture its 
usage. The same potentially could apply to a process that is 
not activated during a trace. For file reads and writes the 
OS separately records total blocks read and written (but 
not by file), which can possibly be incorporated in the 
model parameters, especially if only one file is open at a 
time. 

Also unwanted model structure (clutter) may be produced: 
 As noted in the example of Figure 1/2, some execution 

periods (such as initialization) may have complex 
behaviour that is not of interest to the analyst. If events 
can be recorded to demarcate these periods, they can be 
eliminated from the modeling effort. This approach can be 
extended to create separate models for different phases of 
execution of the entire application, using boundary events 
related to the beginning of a new phase. 

What can be done: This requires including application level 
events in the trace, which can be done with LTTng. To 
avoid having to instrument the source code it may be 
possible to capture the boundaries of such a period in a 
custom-written component, such as the test driver 
mentioned above. Another potential source of boundary 
events is existing application logging such as a weblog.  

 Multi-threaded programs require tracing the behaviour of 
each thread and treating it as a separate concurrent task in 
the model, since causality between stimulus and response 
flows through each thread separately. If each one is 
modeled as a task it may create a huge model.  

What can be done: If these threads have essentially the 
same behaviour, as in a server thread pool, they should be 
collected together as a software multiserver. If a thread is 
just a unit of modular behaviour, created dynamically to 
execute a function and then destroyed, it can be absorbed 
into the creating thread if that one is blocked. The analysis 
for these characteristics may be complex, however. 

 It may be possible only to trace a subsystem at a time, in a 
large distributed system, because of the amount of data 
involved. 

What can be done: subsystem models can be connected in 
a compositional approach, in various modeling systems. 
For layered modeling a compositional approach was 
described by Wu et al [14]. 

Model parameter weaknesses can include: 
 the cpu demand of operations and the number of calls to 

them can be calculated from the scheduling events of the 
trace, but may not be representative.  

What can be done: Longer traces taken under a variety of 
conditions may be needed to get representative averages. 
Also, the parameters can be calibrated separately (after 
creating the model structure) from performance measures 
which require much simpler logging and can be done over 
a much longer time. CPU demand calibration in this way is 
well developed REF.  

 multi-event messages are common when a large block of 
data is transferred with several send syscalls. Normally in a 
performance model we would like to identify them as one 
message, with one remote operation and one delay for the 
reply. Clustering these send or receive events is a 
challenge without application level identification of the 
application message.  

What can be done: heuristics are only partly successful. For 
example one tool we use identifies the last message of a 
cluster of sends and the first message back as a send-reply, 
and all the others are identified as asynchronous messages; 
a heuristic is then to cluster the asynchronous messages 
before and after with the send-reply. However this may 
disregard an actual asynchronous message. 

5. Conclusions 
Trace interpretation can recover essential causal information 
such as the request message which causes a process to execute 
an operation, and the set of events triggered by that message. 
Kernel traces are valuable in that they capture all the events of 
the given type, without requiring user instrumentation effort. 
This is also the source of their weaknesses: because they are at 
kernel level they lack application semantics. Clever inferences or 
partial structural knowledge can sometimes fill these gaps, but 
some absolutely require additional data. A major example for 
modern distributed systems is monitoring of the middleware to 
connect the sender of a message with its receiver. Some other 
kinds of additional data may be readily available in some cases, 
such as advance knowledge of some of the interprocess 
interactions and of untraced remote servers. A second important 
example for many systems is the ability to separate out 
initialization activity from production activity, in order to model 
only the latter. 
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