
Migrating a Recommendation System to Cloud Using ML
Workflow

Dheeraj Chahal, Ravi Ojha, Sharod Roy Choudhury, Manoj Nambiar

TCS Research, Mumbai, India

{d.chahal, ravi.ojha, sharod.rchoudhury, m.nambiar}@tcs.com

ABSTRACT
Inference is the production stage of machine learning workflow in

which a trained model is used to infer or predict with real world

data. A recommendation system improves customer experience

by displaying most relevant items based on historical behavior of

a customer. Machine learning models built for recommendation

systems are deployed either on-premise or migrated to a cloud for

inference in real time or batch. A recommendation system should

be cost effective while honoring service level agreements (SLAs).

In this work we discuss on-premise implementation of our rec-

ommendation system called iPrescribe. We show a methodology

to migrate on-premise implementation of recommendation system

to a cloud using ML workflow. We also present our study on per-

formance of recommendation system model when deployed on

different types of virtual instances.

CCS CONCEPTS
• General and reference → Performance; • Computer sys-
tems organization → Cloud computing;

KEYWORDS
Recommendation system, ML workflow, AWS SageMaker, cloud

performance

ACM Reference Format:
Dheeraj Chahal, Ravi Ojha, Sharod Roy Choudhury, Manoj Nambiar. 2020.

Migrating a Recommendation System to Cloud Using ML Workflow. In

ACM/SPEC International Conference on Performance Engineering Companion
(ICPE ’20 Companion), April 20–24, 2020, Edmonton, AB, Canada. ACM, New

York, NY, USA, Article 4, 4 pages. https://doi.org/10.1145/3375555.3384423

1 INTRODUCTION
Recommendation systems are used in a wide variety of domains

including retail, hospitality, media, video on demand etc. Orga-

nizations and businesses are using recommendation systems as

vital means to improve revenue. Amazon’s 35% sales and Netflix’s

65% movie views are generated from suggestions given by their

recommendation systems [11].

To improve the user experience, many portals use recommenda-

tion system that provides a list of products to the customer based

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICPE ’20 Companion, April 20–24, 2020, Edmonton, AB, Canada
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7109-4/20/04. . . $15.00

https://doi.org/10.1145/3375555.3384423

on past history, user interests and his current requirements. The

recommended products are shown to the user as the user logs in

or starts browsing for some product. Some of the challenges in

the recommendation system that affect the user experience are

throughput, latency, accuracy (provide relevant products) etc. As

observed, average user span for 17% web pages is less than 4 sec-

onds [10]. Hence it is extremely important for medium and large

size businesses to provide a low latency and high throughput rec-

ommendation system to convert new users to prospects. Moreover.

prediction latency shall be bounded by tail latency to meet service

level agreement (SLA) [15].

Developing and building models for recommendation system are

of paramount interest to practitioners but equally important is how

they are deployed and inference ready for optimal performance.

Each of the performance attributes is affected by the algorithms or

APIs used as well as the underlying hardware used.

In order to ease the work of model building, deployment and

inference many organizations rely on ML workflows such as AWS

SageMaker
1
,Microsoft Azure ML

2
, TFX [13], MLFlow [16] etc.

Many of these workflows are open source and allow users to build

their solutions using either default API implementations or inte-

grate their APIs and models with the workflow. Organizations aim

to reduce the cost of their solution implementation by choosing

the most appropriate hardware for model training, deployment and

inference.

Once a model is deployed, inference is performed in real time

or using batch processing. In real time, stream of incoming data

is read as input and passed to the model for inference. Batch pro-

cessing works on data stored in files and predictions are performed

offline. A key challenge in both scenarios is to choose appropriate

provisioning option among a large configuration space with diverse

cost model. The chosen instance or cloud service should provide

low-latency and cost-effective inference.

In this work we first discuss on-premise deployment of our pre-

viously developed content based recommendation system called

iPrescribe [14]. iPrescribe extracts features about user profiles and

products and makes recommendations for new items. Next, we dis-

cuss migration of this recommendation system to AWS instances

using AWS SageMaker. We also compare the performance of rec-

ommendation system under different deployment schemes. More

specifically, the contributions of our work are as follows:

(1) Migration methodology for a recommendation system to

migrate from on-premise deployment to cloud using ML

workflow.

(2) Recommendations for performance and cost-effective de-

ployment of recommendation system.

1
https://aws.amazon.com/sagemaker/

2
https://azure.microsoft.com/en-in/services/machine-learning/

ICPE ’20 Companion, April 20–24, 2020, Edmonton, AB, Canada

1

The Eighth International Workshop on Load
Testing and Benchmarking of Software Systems (LTB'20)

https://doi.org/10.1145/3375555.3384423
https://doi.org/10.1145/3375555.3384423

Rest of the paper is structured as follows. In section 2 we discuss

state of the art and related work. Our recommendation system is

briefly discussed in section section 3 followed by approach to mi-

grate the recommendation system to cloud in section 4. We discuss

recommendation engine and inference in section 5. Experimental

setup and evaluation is discussed in sections 6 and 7 respectively

followed by conclusion in section 8.

2 RELATEDWORK
Many organizations are adopting artificial intelligence and ma-

chine learning techniques for customer behavior studies. Lot of

research has been done for building and deployment of recommen-

dation systems. Uber has its own machine learning workflow called

Michelangelo [6]. Michelangelo allows Uber to build, deploy and

operate machine learning solutions at a very large scale. It has the

capability to perform 1million predictions per second. FBLearn [12],

a ML platform used by Facebook engineers can deliver 6 millions

predictions per second. Although recommendation engines have

similar features but they can be deployed in different ways for in-

ference in real time. Aloha [9], a model representation framework

that mitigates the data related issues by allowing user to implement

user-defined datatypes instead of framework defined datatypes.

Crankshawet al. [8] developed a low latency prediction serving sys-

tem called clipper. Clipper demonstrates a low and bounded latency

of less than 20ms. Google has developed an industrial grade pre-

diction serving system [5] using TensorFlow training framework.

Zhang et al. [17] recently presented their study on cost-effective

and service level objective (SLO).

Although all these systems andworkflows are able to deliver high

throughput and low latency but none of these provide sufficient

insight into cost-effective deployment. These require strategy from

user to achieve high performance and cost-effective deployment.

The onus is on user to decide the type of instance appropriate

for model deployment and inference such that it is performance

efficient and cost-effective as well.

Inference is an important component to explore further in a rec-

ommendation system and we believe that our work in this direction

will provide insight to the practitioners for migrating on-premise

deployment of ML models for inference to cloud.

3 OUR RECOMMENDER SYSTEM

Figure 1: Abstract view of iPrescribe interfaces

iPrescribe is a customer-based predictive analysis recommender

system to deliver variety of customer prepositions. The recom-

mendation system model predicts the likelihood that the user will

click on an advertisement. iPrescribe has two interfaces : Batch

and Real time. iPrescribe uses XGBoost [7] ML algorithm which

requires extraction of features from transaction data containing

temporal behavior of users to build probability prediction model.

The user features are updated continuously via real time interface.

iPrescribe achieved significant accuracy as indicated by area under

curve (AUC) value of .67 and F-score (Harmonic mean of precision

and recall) value .348 [14]. In a real time deployment of iPrescribe,

the user requests in B2C system are processed and inference is per-

formed using the already built and deployed model. Model building

in iPrescribe requires using features generated from the temporal

behavior of the customer.

4 OUR APPROACH
In this section we first discuss on-premise deployment of iPrescribe

and then its migration to AWS cloud using ML workflow called

SageMaker. Both these deployment strategies and iPrescribe com-

ponents are discussed as below:

4.1 On-premise iPrescribe
An abstract view of on-premise implementation of iPrescribe is as

shown in the Figure 1. It has a batch interface called Startup and two
real time interfaces namely Recommend and FeatureUpdate. The
Startup interface processes transactional data for feature creation,

training and testing the model. The concatenated feature one-hot

vectors generated from feature creation process are used to build

XGBoost model. Both recommend and FeatureUpdate are triggered

via iPrescribe connector for every action message which need to

generate an offer for a user. The recommend interface extracts

the user context from the incoming message, fetched its feature

for the model, builds concatenated one-hot vector and inference

from the model to get the best offer for the user. The featureupdate

interface is responsible for updating the features for every action

performed. The process involves extracting the user details from

the incoming message, retrieving the existing features, updating

the features and saving it back in the feature store. Further details

about on-premise implementation of iPrescribe are available in our

previous work [14].

4.2 Cloud based implementaion of iPrescribe
Now we implement iPrescribe using MXNet [3] with SageMaker

python SDK as shown in Figure 2. Our MXNet training scripts

implement mandatory train function containing iPrescribe model

training code. The startup interface discussed in on-premise imple-

mentation is implemented in this method. Train method is called

by invoking fit method using MXNet estimator. The input to fit
function is location of training data either stored locally or on S3

storage.

Model saving is enabled by save function to store and manage

the model in S3 returned by train. After calling fit, we invoke deploy
method using MXNet estimator to create a SageMaker endpoint.

We specify instance type and count as arguments to the deploy
function. deploy returns a predictor object that we use to inference

ICPE ’20 Companion, April 20–24, 2020, Edmonton, AB, Canada

2

The Eighth International Workshop on Load
Testing and Benchmarking of Software Systems (LTB'20)

Figure 2: AWS implementation of iPrescribe using MXNet

on endpoint hosting our MXNet model. Each predictor contains

a predict function that takes user request in the JSON format and

returns the result of inference on the model. predict function in-

vokes transform_fn to inference using deployed model. One hot

vector generation and predict_proba function for inference are im-

plemented inside transform_fn. The recommend interface from

on-premise implementation is implemented in transform_fn. Sage-
Maker provides default implementation of train, save, model_fn and
transform_fn but we have modified these methods to contain the

functionalities of iPrescribe.

5 RECOMMENDATION ENGINE AND
INFERENCE

In this section we discuss recommendation engine and inference

in iPrescribe. The performance of both real time and batch inter-

faces depends upon feature store access time, processing time and

inference time . Our focus in this work is performance of infer-

ence engine. iPrescribe prediction is done on-premise using python

web server implementation. For our experiments we first train the

model and deploy locally on our servers for inference. To simulate

the behavior of user clicks we generate a stream of user records by

starting multiple processes called producers that read input data

from multiple files. Each data file contains records from different

users sorted on clock time. We use HAProxy, an external load bal-

ancer for load balancing the data across multiple cores. HAProxy

provides a fast and efficient load balancing for TCP and HTTP based

applications. HAProxy uses round robin distribution policy and dis-

tributes data over various output ports where multiple consumers

are listening for inference using deployed model. In order to avoid

over subscribing or under subscribing the cores we keep number of

producers and consumers equal to number of cores used for a run.

Next, we deploy iPrescribe on AWS cloud using SageMaker as

discussed in section 4.2. For batch inference we read data for infer-

ence from multiple files saved in JSON format. In a batch inference,

SageMaker reads the data from input files in mini batches. Input

data for inference is read from a file stored on simple storage service

(S3) and results are also stored back in S3. The model is deployed

using HTTPs endpoint that can also be invoked in real time for

inference. SageMaker uses Nginx [4] for load balancing.

6 EXPERIMENTAL SETUP
We used well known benchmarks instacart [1]and PAKDD [2] to

conduct experiments with on- premise and AWS deployment of

iPrescribe. The on-premise server used for deploying iPrescribe

had 28 physical cores. Instacart consists of 3 million grocery or-

ders obtained from 200,000 instacart users. The data set consists

of relation sets describing user purchase pattern over a period of

time. We used c-family (compute optimized) and m-family (gen-

eral purpose) instances of AWS for cloud based experiments. We

control the ingestion rate by varying the number of producers. In

our experiments throughput for instacart is measured as number

of products predicted per second for a user while throughput for

PAKDD is measured as prediction for number of users per second.

(a) (b)

Figure 3: On-premise andAWS SageMaker throughput (a) in-
stacart (b) PAKDD

(a) (b)

Figure 4: Effect of number of instances on throughput (a)
Instacart (b) PAKDD

(a) (b)

Figure 5: Instacart benchmark (a)Throughput on difference
instance types (b) Cost per inference on different instance
types

7 EXPERIMENTAL EVALUATION
We conducted several experiments to compare on-premise and

cloud implementation of recommendation system. We also studied

ICPE ’20 Companion, April 20–24, 2020, Edmonton, AB, Canada

3

The Eighth International Workshop on Load
Testing and Benchmarking of Software Systems (LTB'20)

(a) (b) (c)

Figure 6: Response time of recommendation system using
instacart benchmark on three different instances with (a)
low network band width (5Gb/s) (b) low to mid network
bandwidth (10 Gb/s) (c) High network bandwidth (25Gb/s)

(a) (b) (c)

Figure 7: Response time of recommendation system using
PAKDD benchmark on three different instances with (a) low
network band width (5Gb/s) (b) low to mid network band-
width 10 Gb/s) (c) High network bandwidth (25Gb/s)

the effect of instance configuration on performance and cost of

recommendation system. In this section we present results of some

the experiments.

Figures 3a and 3b show throughput for on-premise and sage-

maker based implementation of iPrescribe using instacart and

PAKDD benchmarks respectively in batch mode. We observed bet-

ter throughput with AWS SageMaker which further improved as the

number of active cores and workload is increased. Higher through-

put is attributed to better optimizations and scaling available in the

SageMaker.

In our next experiment we used m-family instances of AWS

sagemake. We first ran our benchmarks on one ml.m5.2xlarge (8

cores) followed by two instances of ml.m5.xlarge (4 cores each)

instance and lastly four ml.m5.large (2 cores each) instances. In

these three runs total number of cores used (8 cores) and total

cost (USD) is same but number and type of instances is different.

As shown in Figure 4, throughput of the recommendation system

increases as we increase the number of instances while keeping the

total number of cores same. Maximum throughput was observed

with 4 instances of ml.m5.large. This is due to the fact that size of

mini batch in SageMaker that can be allocated to an instance at

a time is limited by parallelism and size of records. Hence more

instances result in more number of mini batches executed in parallel

on instances available for inference.

Figures 5a and 5b show throughput and cost per inference of in-

stacart benchmark on five SageMaker instances differing in number

of cores, available memory and their usage cost. As shown in Figure

5b, cost per inference increases significantly by using an instance

with large number of cores and higher costs but relatively smaller

increase in the throughput is observed for the same instance as

shown in Figure 5a. Hence prompting for a trade-off in cost and

throughput.

Figures 6 and 7 show the effect of available network bandwidth

on response time of benchmarks in real time. We used three types of

AWS instances with different network bandwidths. We see a signifi-

cant improvement in the response time by choosing instances with

larger network bandwidth. For a high available network bandwidth

we see that response time is almost constant even with increasing

workload.We can conclude that not only the cores available but also

network bandwidth affect the response time of the recommendation

system.

8 CONCLUSION
Wehave successfully migrated an in-house recommendation system

called iPrescribe from on-premise deployment to AWS cloud using

automated ML workflow called SageMaker. In this work, we have

studied performance metrics of iPrescribe including throughput,

response time and cost per inference. Based on experimental results,

we can conclude that by using cloud resources judiciously and

appropriately, we can achieve our objective of better performance

and cost-effective deployment of a recommendation system.

REFERENCES
[1] 2017. KaggleInstacartChallenge. https://www.kaggle.com/c/

instacart-marketbasket-analysis.

[2] 2017. KaggleInstacartChallenge. http://www.recobell.com/rb/main.php?menu=

pakdd2017..

[3] https://mxnet.apache.org/, 2019. [Online;Accessed 01 January 2019].

[4] nginx[enginex].http://nginx.org/en/, 2019. [Online;Accessed 25 December2019].

[5] Tensorflow serving. https://www.tensorflow.org/, 2019. [Online;Accessed 20

January 2019].

[6] Uber michelangelo. https://eng.uber.com/michelangelo/, 2019. [Online;Accessed

20 January 2019].

[7] XGBoost - Extreme Gradient Boosting. https://xgboost.readthedocs.io/en/latest/

tutorials/model.html, 2019. [Online;Accessed 25 December2019].

[8] Crankshaw, D., Wang, X., Zhou, G., Franklin, M. J., Gonzalez, J. E., and

Stoica, I. Clipper: A low-latency online prediction serving system. In 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 17)
(Boston, MA, Mar. 2017), USENIX Association, pp. 613–627.

[9] Deak, R. M., and Morra, J. H. Aloha: A machine learning framework for

engineers. In Proceedings of the SysML Conference (2018).
[10] Gaille, B. Average Web Page Load Times By Industry. http://www.byreputation.

com/Average-Web-Page-Load-Times_a/452.htm, 2015. [Online;Accessed 28 June

2015].

[11] Ge, W. A continuous dataflow pipeline for low latency recommendations. Mas-

ter’s thesis, KTH, School of Information and Communication Technology (ICT),

2016.

[12] Hazelwood, K., Bird, S., Brooks, D., Chintala, S., Diril, U., Dzhulgakov, D.,

Fawzy, M., Jia, B., Jia, Y., Kalro, A., et al. Applied machine learning at facebook:

A datacenter infrastructure perspective. In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA) (2018), IEEE, pp. 620–629.

[13] Modi, A. N., Koo, C. Y., Foo, C. Y., Mewald, C., Baylor, D. M., Breck, E., Cheng,

H.-T., Wilkiewicz, J., Koc, L., Lew, L., Zinkevich, M. A., Wicke, M., Ispir, M.,

Polyzotis, N., Fiedel, N., Haykal, S. E., Whang, S., Roy, S., Ramesh, S., Jain, V.,

Zhang, X., and Haqe, Z. Tfx: A tensorflow-based production-scale machine

learning platform. In KDD 2017 (2017).

[14] Singhal, R., Shroff, G., Kumar, M., Choudhury, S. R., Kadarkar, S., Virk, R.,

Verma, S., and Tewari, V. Fast online’next best offers’ using deep learning. In

Proceedings of the ACM India Joint International Conference on Data Science and
Management of Data (2019), ACM, pp. 217–223.

[15] Yun, J.-M., He, Y., Elnikety, S., and Ren, S. Optimal aggregation policy for

reducing tail latency of web search. In Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in Information Retrieval (New
York, NY, USA, 2015), SIGIR ’15, Association for Computing Machinery, p. 63–72.

[16] Zaharia, M., Chen, A., Davidson, A., Ghodsi, A., Hong, S. A., Konwinski, A.,

Murching, S., Nykodym, T., Ogilvie, P., Parkhe, M., et al. Accelerating the

machine learning lifecycle with mlflow. IEEE Data Eng. Bull. 41, 4 (2018), 39–45.
[17] Zhang, C., Yu, M., Wang, W., and Yan, F. Mark: Exploiting cloud services for

cost-effective, slo-aware machine learning inference serving. In 2019 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 19) (2019).

ICPE ’20 Companion, April 20–24, 2020, Edmonton, AB, Canada

4

The Eighth International Workshop on Load
Testing and Benchmarking of Software Systems (LTB'20)

https://www.kaggle.com/c/instacart-marketbasket-analysis.
https://www.kaggle.com/c/instacart-marketbasket-analysis.
 http://www.recobell.com/rb/main.php?menu= pakdd2017..
 http://www.recobell.com/rb/main.php?menu= pakdd2017..
https://mxnet.apache.org/
nginx [engine x]. http://nginx.org/en/
https://www.tensorflow.org/
https://eng.uber.com/michelangelo/
https://xgboost.readthedocs.io/en/latest/tutorials/model.html
https://xgboost.readthedocs.io/en/latest/tutorials/model.html
http://www.byreputation.com/Average-Web-Page- Load-Times_a/452.htm
http://www.byreputation.com/Average-Web-Page- Load-Times_a/452.htm

	Abstract
	1 Introduction
	2 Related Work
	3 Our recommender system
	4 Our approach
	4.1 On-premise iPrescribe
	4.2 Cloud based implementaion of iPrescribe

	5 Recommendation engine and inference
	6 Experimental Setup
	7 Experimental Evaluation
	8 Conclusion
	References

