
Analyzing and Optimizing Java Code Generation
for Apache Spark Query Plan

Kazuaki Ishizaki
IBM Research

ishizaki@jp.ibm.com

ABSTRACT
Big data processing frameworks have received attention be-
cause of the importance of high performance computation.
They are expected to quickly process a huge amount of data
in memory with a simple programming model in a cluster.
Apache Spark is becoming one of the most popular frame-
works. Several studies have analyzed Spark programs and
optimized their performance. Recent versions of Spark gen-
erate optimized Java code from a Spark program, but few
research works have analyzed and improved such generated
code to achieve better performance. Here, two types of prob-
lems were analyzed by inspecting generated code, namely,
access to column-oriented storage and to a primitive-type
array. The resulting performance issues in the generated code
and were analyzed, and optimizations that can eliminate in-
efficient code were devised to solve the issues. The proposed
optimizations were then implemented for Spark. Experimen-
tal results with the optimizations on a cluster of five Intel
machines indicated performance improvement by up to 1.4×
for TPC-H queries and by up to 1.4× for machine-learning
programs. These optimizations have since been integrated
into the release version of Apache Spark 2.3.

CCS CONCEPTS
• Computing methodologies → Distributed programming
languages; • Software and its engineering → Dynamic
compilers.

KEYWORDS
Apache Spark; Code generation; Optimization

ACM Reference Format:
Kazuaki Ishizaki. 2019. Analyzing and Optimizing Java Code
Generation for Apache Spark Query Plan. In Tenth ACM/SPEC
International Conference on Performance Engineering (ICPE
’19), April 7–11, 2019, Mumbai, India. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3297663.3310300

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
ICPE ’19, April 7–11, 2019, Mumbai, India
© 2019 Copyright held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 978-1-4503-6239-9/19/04.
https://doi.org/10.1145/3297663.3310300

1 INTRODUCTION
Distributed parallel processing on a large cluster is widely
used to process huge volumes of data. The Pioneer frameworks
of this processing approach were Google MapReduce [15]
and Apache Hadoop [3], which offer simple programming
models with only map() and reduce() operations. These
MapReduce frameworks enable easy development of data-
intensive applications such as those for data analytics and
relational data processing. In addition to them, more flexible
distributed in-memory computing frameworks [25, 39] have
also been developed.

Apache Spark [48] is a well-known distributed in-memory
computing framework. Spark is written in Java and Scala,
which run on a Java virtual machine (JVM). Spark has three
advantages over traditional MapReduce frameworks. The
first is that Spark keeps as much intermediate data in mem-
ory as possible to accelerate computation and it provides a
functional and declarative API for abstraction of immutable
distributed in-memory data. The second advantage is that
such abstraction enables the use of any memory storage for-
mat including column-oriented storage [13], which is known as
an efficient format for keeping consecutive fields of a column
within adjacent memory addresses. This is because relational
data processing can be accelerated by vectorization and be-
cause data caching requires a smaller memory size at a high
compression ratio. From Spark 1.5, Project Tungsten started
to use a custom binary representation [46], called the Tung-
sten’s representation here, to alleviate the overhead of JVM
memory management [30]. The final advantage is that Spark
can put a set of operations into a single compilation scope
[32] when it can generate optimized Java code from a given
program. This can leverage advanced compiler optimizations
within a large compilation unit.

Spark uses the above technologies together. As their mix-
ture constitutes a new approach, Spark has new and unique
workload characteristics. There have been several studies on
characterizing and tuning Spark workloads at the operating
system and JVM levels [12, 38], file system level [10], or
CPU-architecture level [7], and on analyzing and improving
performance bottlenecks by applying block-time analysis [33].
Essertel et al. [16] showed performance issues for accessing
and decoding data with an in-memory data representation
by using sampling profiling. The following two performance
issues were complementarily identified by carefully inspecting
the generated code from a Spark program. To the best of my
knowledge, this is the first paper to describe optimizations
at the generated-code level in Spark.

Session 4: Performance and AI ICPE ’19, April 7–11, 2019, Mumbai, India

91

Listing 1: Example of a Spark program
1 val ds: Dataset[Array[Double]] = Seq(Array(0.5, 0.6), Array(1.5, 1.6)).toDS.

cache
2 for (int i = 0; i < 2; i++) {
3 val ds1 = ds.filter(a => a(0) > i).map(a => a)
4 ds1.show
5 }
6
7 // output i = 0: (0.5, 0.6), (1.5, 1.6)
8 // i = 1: (1.5, 1.6)

filter()

Column-oriented storage (ds) Row-oriented storage

Data-
conversionData-copy

Data-
conversion map() Data-

conversion

Row-oriented storage (ds1)

Data flow
Control flow

Tungsten Java

Java TungstenTungsten Java

Figure 1: Overview of code generated from Listing 1

1. Data-copy occurs between two different physical mem-
ory layouts. When column-oriented storage [6] is used,
the generated code always executes data-copy from
column-oriented to row-oriented storage or vice versa.

2. Data-conversion occurs between two different log-
ical representations. When a program that accesses
primitive-type arrays is executed, the generated code
includes data-conversions between the Java-data and
Tungsten’s representations through boxing and unbox-
ing.

Listing 1 shows an example of a Spark program embedded
in Scala. Line 1 creates a Dataset that includes two rows.
Each row has a double primitive-type array. This Dataset
is stored to an in-memory cache implemented via column-
oriented storage. Then, at line 3, if the first array element
in a given row is greater than i, a map() function returns a
pointer to the input array. Line 4 then prints the elements
of an array in the Dataset. The Spark runtime generates
Java code from the operations in line 3. Then, the generated
Java code is translated into native code by a just-in-time
(JIT) compiler in a JVM, and the native code for line 3 is
executed. Figure 1 gives an overview of the Java code gener-
ated by Spark from this program. The Data-copy operation
copies data from column-oriented to row-oriented storage.
The Data-conversion operation then converts data between
different representations. If a condition in filter() is satis-
fied, Data-conversion executes additional conversion to the
Java-data representation and one conversion from the Java
representation to the Tungsten’s representation. These opera-
tions in red are newly generated by the Spark runtime, which
degrades performance. These issues are discussed further in
Sections 3.1 and 4.1.

Inspecting code generated by Spark showed that such data
copying and conversion was generally unnecessary. This paper
generalizes the data-copy problem as an optimization problem
for efficient access to column-oriented storage in runtime-
generated code with an iterator-based loop. In addition, it

generalizes the data-conversion problem as an optimization
problem to handle two-valued logic (i.e., a primitive-type
array) in a Spark runtime originally designed for three-valued
logic (i.e., values in SQL), and to exchange data between
JVM and framework-managed memory regions that a Java or
Scala program cannot interpret. These are common problems
because column-oriented storage and three-valued logic are
also used in other big data processing frameworks [25]. Three
optimizations were thus devised to eliminate unnecessary
operations for these two problems. The optimizations were
implemented for Apache Spark and experimental results using
benchmark programs showed the efficiency of the proposed
optimizations. The optimizations have since been integrated
into the release version of Apache Spark 2.3 with refinements
[20–23].

This paper makes the following contributions.
• Identifying performance issues by inspecting generated

code in Spark (see Sections 3.1 and 4.1).
• Devising an optimization to eliminate data-copy for

accessing column-oriented storage (see Section 3.2).
• Devising two optimizations to eliminate data-conversions

for accessing a primitive-type array (see Section 4.2).
• Showing the following performance improvements (re-

duction of elapsed time) on a cluster with five Intel
Xeon machines (see Section 5) by
- up to 1.41× (geometric mean of 1.10×) for 22 TPC-H

queries; and
- up to 1.42× (geometric mean of 1.21×) for two

machine-learning algorithms.

2 APACHE SPARK
This section gives an overview of a novel optimizer in Apache
Spark and two of Spark’s programming APIs, DataFrame and
Dataset for an embedded domain-specific language (DSL).

2.1 Optimizer
Spark provides a functional programming API for abstrac-
tion of immutable distributed in-memory collections called
resilient distributed datasets (RDDs) [47]. A program using
the RDD API is executed without any optimizations for the
whole program. Spark also has a novel optimizer called Cata-
lyst [6], which can optimize operations in a program by using
information on their schema with the DataFrame API or on
their types with the Dataset API. These APIs are explained
in Section 2.2.

Figure 2 shows the phases in Catalyst, analysis, logical-
plan-optimization, physical-plan-optimization, and code gen-
eration. The analysis phase creates a tree form for a logical
plan. Each node in the tree corresponds to a data source or

Analysis

Program using
DataFrame API

Program using
Dataset API

Logical-plan-
optimization

Physical-plan-
optimization

Code
generation Java code

Figure 2: Overview of the Catalyst optimizer

Session 4: Performance and AI ICPE ’19, April 7–11, 2019, Mumbai, India

92

computation in a program using the DataFrame or Dataset
API.

The logical-plan-optimization phase applies optimizations
among multiple operations such as Boolean expression sim-
plification, predicate push-down, and cast simplification. The
physical-plan-optimization phase then generates operations
that are executed on the Spark execution engine. Spark is
written in Java and Scala, and runs on a JVM. This phase
applies an optimization to determine whether multiple op-
erations can be put into one loop instead of using volcano
style [18], which passes data by using an iterator between
two operations. This model has the efficiency advantages of
pipeline processing.

Finally, the code-generation phase generates Java code
from one or multiple physical operations. When the physical-
plan optimization phase determines the appropriateness of
putting multiple physical operations into one loop, the code-
generation phase generates Java code for the multiple op-
erations in the loop to avoid generating the iterator. This
expands the optimization scope of the JIT compiler in a JVM
[32], and is called whole-stage code generation. To improve
performance, the generated code operates on data in Tung-
sten’s representation instead of Java’s data representation.

When it is invoked, the generated code repeats a loop
iteration to process each row. The loop includes the following
steps:

(1) Read row: Read data for a row in the Tungsten’s
representation.

(2) Read element: Read an element for each column from
the data read in step 1.

(3) Convert to Java data format: Convert data from
Tungsten’s representation to Java-data representation
used in step 4.

(4) Perform computation: Perform computation by us-
ing Java operations.

(5) Convert to Spark data format: Convert data from
the Java-data representation to the Tungsten’s repre-
sentation used in steps 6 and 7.

(6) Write element: Write an element for each column in
a row.

(7) Write row: Write data to a row in the Tungsten’s
representation.

Project Tungsten [46] includes three optimizations: (1)
optimized code generation, (2) custom memory management
and binary processing, and (3) cache-aware computation.
As mentioned above, optimization 1 is referred to as whole-
stage code generation. Optimization 2 uses a custom binary
representation to reduce the number of indirect references and
the number of Java objects to represent core data structures
such as a row or column; this is referred to as the Tungsten’s
representation.

2.2 Programming APIs
Since version 1.3, Spark has provided a declarative API,
called the DataFrame API, for an abstraction of immutable
distributed rows with a schema [6]. This abstraction, called a

Listing 2: Example program using the DataFrame
API

1 // df is stored in column-oriented storage
2 val df: DataFrame[Double] = Seq(0.5, 1.5).toDF("x").cache
3 for (i <- 0 to 1) {
4 val df1 = df.filter("x >" + i).selectExpr("x * 2 AS v")
5 df1.show
6 }
7 // output i = 0: 1.0, 3.0
8 // i = 1: 3.0

Listing 3: Logical and physical plans for Listing 2
1 == Logical Plan ==
2 Project [(x * 2.0) AS v]
3 +- Filter (x > 0.0)
4 +- InMemRelation [x]
5 == Physical Plan ==
6 *Project [(x * 2.0) AS v]
7 +- *Filter (x > 0.0)
8 +- InMemTblScan [x]
9 +- InMemRelation [x]

Listing 4: Pseudo Java code generated for line 4 in
Listing 2

1 final class GeneratedIterator {
2 Iterator inputIterator = ...;
3 Row projectRow = new Row(1);
4 RowWriter rowWriter = new RowWriter(projectRow);
5 protected void processNext() {
6 while (inputIterator.hasNext()) {
7 // (1) Read a row
8 Row inputRow = (Row) inputIterator.next();
9 // (2) Read an element

10 // (3) Convert to Java data format
11 double x = inputRow.getDouble(0);
12 // (4) Perform computation
13 if (!(x > 0)) continue; // filter("x > 0")
14 double value = x * 2; // selectExpr("x * 2")
15 // (5) Convert to Spark data format
16 // (6) Write an element
17 rowWriter.write(0, value);
18 // (7) Write a row
19 appendRow(projectRow);
20 }
21 }
22 }

DataFrame, is like a table in a relational database. Since ver-
sion 1.6, Spark has also provided a type-safe, object-oriented
programming API, called the Dataset API [5]. The Dataset
API enables programmers to use a lambda expression in Scala
or Java.

2.2.1 DataFrame API. A DataFrame can execute relational
operations and keep track of its schema and operations.
Listing 2 shows an example of a Spark program using the
DataFrame API. Line 2 creates a DataFrame df that includes
two rows. Each row has a double value 0.5 or 1.5 in column
x. The program executes the statement at line 4 twice with
two different values of i. The data in the df at line 2 is stored
to an in-memory cache by a cache operation. Building the
cache prevents creating multiple instances of df in the loop.
This is useful for iterative algorithms that are commonly
used in machine learning. At line 4, when i = 0, the value
0.5 from column x is first read. Because the condition x >
0 in the filter() operation is satisfied, x * 2 is executed.
The same operations are then executed with the value 1.5.
Finally, the program generates a new DataFrame df1 with
two rows that include 1.0 and 3.0. When i = 1, the value
3.0 is shown.

Session 4: Performance and AI ICPE ’19, April 7–11, 2019, Mumbai, India

93

Listing 5: Example program using the Dataset API
1 // ds is stored in column-oriented storage
2 val ds: Dataset[Double] = Seq(0.5, 1.5).toDS.cache
3 for (i <- 0 to 1) {
4 val ds1 = ds.filter(x => x > i).map(x => x * 2)
5 ds1.show
6 }
7 // output i = 0: 1.0, 3.0
8 // i = 1: 3.0

Listing 6: Logical and physical plans for Listing 5
1 == Logical Plan ==
2 SerFromObj [input[0, double] AS value]
3 +- MapElements <function1>, obj: double
4 +- Filter <function1>.apply
5 +- DeserToObj value: double, obj: double
6 +- InMemRelation [value]
7 == Physical Plan ==
8 *SerFromObj [input[0, double] AS value]
9 +- *MapElements <function1>, obj: double

10 +- *Filter <function1>.apply
11 +- *DeserToObj value: double, obj: double
12 +- InMemTblScan [value]
13 +- InMemRelation [value]

Listing 3 shows a pair of logical and physical plans for the
program in Listing 2. The physical plan has an InMemTblScan
operation that reads data from the in-memory cache, which
is represented by an InMemRelation operation. Whole-stage
code generation is applied to operations with a * prefix in
the physical plan. Listing 4 shows the resulting pseudo Java
code generated by Catalyst from the physical plan. This code
corresponds to the filter() and selectExpr() operations
at line 4 in Listing 2 for i = 0. In Listing 4, line 6 uses
an iterator to process each row. Line 8 obtains data for a
row from df. Line 11 obtains a value for column x. As the
variable x is a double primitive type, there is no explicit
data-conversion. Lines 13 and 14 execute the filter() and
selectExpr() operations, respectively. Finally, line 17 stores
the value for column x to a new row, and then line 19 adds
the new row to a new DataFrame df1.

2.2.2 Dataset API. A Dataset is another data abstraction,
which enables programmers to use a lambda expression to be
invoked from the Dataset API operations such as map() or
filter(). A Dataset introduces compile-time type safety and
more expressive power (e.g., to execute a loop in map()) than
a DataFrame has. A Dataset can also leverage optimizations
used for a DataFrame and use the Tungsten’s representation.

Listing 5 shows an example of a Spark program using
the Dataset API. This program works the same as that in
Listing 2. Listing 6 shows the corresponding pair of logical
and physical plans. This logical plan has two additional
operations DeserToObj and SerFromObj, unlike the logical
plan in Listing 3. The DeserToObj operation converts data
from the Tungsten’s representation to the Java representation,
whereas the SerFromObj operation converts data from the
Java representation to the Tungsten’s representation. Listing
7 shows the generated pseudo Java code for the filter()
and map() operations at line 4 in Listing 5 for i = 0. Listing
7 does not show the lambda expressions, which are launched
by the apply() methods at lines 15 and 18.

Listing 7: Pseudo Java code generated from Listing
5

1 final class GeneratedIterator {
2 Iterator inputIterator = ...;
3 Row projectRow = new Row(1);
4 RowWriter rowWriter = new RowWriter(projectRow);
5 protected void processNext() {
6 while (inputIterator.hasNext()) {
7 // 1. Read a row
8 Row inputRow = (Row) inputIterator.next();
9 // 2. Read an element

10 // 3. Convert to Java data format
11 double x = inputRow.getDouble(0)
12 // 4. Perform computation
13 // apply() calls {x => x > i} for filter
14 // i is a bounded variable
15 boolean filter_val = (Boolean)filter_func.apply(x);
16 if (!filter_val) continue;
17 // apply() calls {x => x * 2} for map
18 double map_val = (Double)map_func.apply(x);
19 // 5. Convert to Spark data format
20 // 6. Write an element of each column
21 rowWriter.write(0, map_val);
22 // 7. Write a row
23 appendRow(projectRow);
24 }
25 }
26 }

While the physical plan has the DeserToObj and SerFromObj
operations, there is no explicit conversion in Listing 7 ow-
ing to the use of a primitive type. Lines 11 and 18 access a
primitive double value for column x.

2.3 Column-oriented storage
Column-oriented storage is known as an efficient format for
relational data processing or data caching [13]. For relational
data processing, column-oriented storage enables vectoriza-
tion. Spark internally stores data in column-oriented storage
to read multiple elements at once from a Parquet [4] file.
For data caching, column-oriented storage enables a good
compression ratio. Spark keeps data materialized by a cache
operation in column-oriented storage. The DataFrame df in
Listing 2 and Dataset ds in Listing 5 also use column-oriented
storage.

3 ANALYSIS AND OPTIMIZATION
FOR COLUMN-ORIENTED
STORAGE

This section describes problems in code generated from a
Spark program to access column-oriented storage. It then
describes optimizations to avoid these problems.

3.1 Problems
Column-oriented storage is an important data format used
in Spark for performance and memory-reduction purposes.
Generated code in Spark, however, always reads data from
row-oriented storage or stores data to row-oriented storage
even when the code accesses column-oriented storage. This is
because the generated code uses an iterator to read data in a
row as shown at line 8 in Listings 4 and 7. This behavior in-
volves data-copy or data-conversion between column-oriented
and row-oriented storage. These operations degrade perfor-
mance.

Session 4: Performance and AI ICPE ’19, April 7–11, 2019, Mumbai, India

94

Listing 8: Example program that accesses data in
column-oriented storage

1 // df and df2 use column-oriented storage
2 val df = Seq(0.5, 1.5).toDF("x").cache
3 val df1 = df.filter("x > 0").selectExpr("x * 2 AS v")
4 val df2 = df1.cache

Listing 8 shows an example program that reads data from
a cache and stores the data into a new cache in column-
oriented storage. DataFrames df and df2 in Listing 8 are
stored in column-oriented storage. The generated code for
line 2 in Listing 8 is the same as that in Listing 4. The
current code-generation phase always generates Java code
that reads data from a row by using an iterator and stores
data to a row. Line 8 in Listing 4 reads data from row-oriented
storage via a Row object. The inputIterator.next() method
is used to convert data from column-oriented to row-oriented
storage, as shown in Figure 3. Line 19 then stores the data
to row-oriented storage. When a new cache of df2 is built
later, data-copy from row-oriented to column-oriented storage
occurs.

3.2 Optimization
Given the above problems, an optimization was devised to
eliminate data-copy. This optimization analyzes the data
sources and sinks though the following steps:

(1) Check whether a data source for a given operation uses
column-oriented storage. If not, go to step 5.

(2) Check whether the data types in each column are
supported. The code-generation phase may not sup-
port direct read for complicated data types such as
Calender. If not, go to step 5.

(3) Check whether all of the operations from a data source
to a data sink support column-oriented storage. If not,
go to step 5.

(4) Generate Java code that directly reads data from
column-oriented storage.

(5) If the analysis can identify that a data sink for a given
operation uses column-oriented storage and that the
data types in each column are supported, then the
code-generation phase generates Java code that directly
stores data to column-oriented storage.

In step 3, element-wise operations, such as filter(), map(),
and aggregation(), can support column-oriented storage
without any changes to the operation from the row-oriented
storage support. Some complicated operations, such as join(),
may require additional work to support column-oriented stor-
age. In step 4, because each element of column-oriented
storage is accessed to read or write data with a row index,
getter and setter methods are necessary. Examples include
getDouble(i) and putDouble(i, value), where i is a row
index and value is a double primitive value to be stored. The
number of rows should be known by using a compile-time
constant or a method such as nRows() before accessing all of
the row elements.

Column-oriented
storage (ds)

Row-oriented
storage

inputIterator.next()

Data copy

Execution flow
Data flow

Figure 3: Data copy from column-oriented to row-
oriented storage at line 9 in Listing 4

Listing 9: Physical plan for Listing 8
1 == Physical Plan ==
2 InMemTblScan [value]
3 +- InMemRelation [value]
4 +- *Project [(x * 2.0) AS v]
5 +- *Filter (x > 0.0)
6 +- InMemTblScan [x]
7 +- InMemRelation [x]

Listing 10: Pseudo Java code generated from Listing
8 with the proposed optimization

1 final class GeneratedIterator {
2 Columnar columnarSource = ..., columnarSink = ...;
3 ColumnVector col0Source = columnarSource.column(0);
4 ColumnVector col0Sink = columnarSink.column(0);
5 protected void processNext() {
6 for (int i = 0, j = 0; i < columnarSource.nRows(); i++) {
7 // (1) and (2) Read an element from a column
8 // (3) Convert to Java data format
9 // from column-oriented storage

10 double x = col0Source.getDouble(i);
11 // (4) Perform computation
12 if (!(x > 0)) continue; // filter("x > 0")
13 double value = x * 2; // selectExpr("x * 2")
14 // (5) Convert to Spark data format
15 // (6) and (7) Write an element to column-oriented storage
16 col0Sink.putDouble(j++, value);
17 }
18 }
19 }

Implementation in Spark: The implementation of this
optimization first analyzes a physical plan for a Spark pro-
gram. Listing 9 shows a physical plan for the program in
Listing 8. For lines 2 and 3 in Listing 8, step 1 checks whether
the predecessor of the Filter and selectExpr operations in
Listing 8 uses column-oriented storage. The InMemTblScan op-
eration in Listing 9 does use column-oriented storage, which
corresponds to the cache operation. Step 2 checks the data
type of each column in the column-oriented storage. In this
case, the type is known as double, a supported type, based on
the type information of the variable x. Step 3 checks whether
the Filter, selectExpr, and Project operations support
column-oriented storage. It is worth noting that the smaller
of two inputs for join can also support column-oriented stor-
age. Step 5 checks whether the successor of the Project
operation uses column-oriented storage, which is indeed the
case for the InMemTblScan operation. Finally, the analysis
can prove that the generated code can directly access the
column-oriented storage for the data source and sink.

From this analysis result, the code-generation phase gen-
erates Java code. Listing 10 shows the pseudo Java code
generated from Listing 8. Line 6 introduces a for-loop to
iterate all of the rows in column-oriented storage. Then, the
generated code directly reads data from column-oriented stor-
age at line 10 and directly writes data to column-oriented

Session 4: Performance and AI ICPE ’19, April 7–11, 2019, Mumbai, India

95

storage at line 16 for the Project operation. At lines 12
and 13, the filter() and selectExpr() operations are per-
formed with each row element read at line 10. The loop style
is changed from an iterator-based loop in Listing 5 to a sim-
ple for-loop here. This change can encourage application of
advanced loop optimizations such as loop unrolling in a Java
JIT compiler.

4 ANALYSIS AND OPTIMIZATION
FOR PRIMITIVE-TYPE ARRAY

This section describes performance problems in generated
Java code that accesses a primitive-type array in a Spark
program. It then describes optimizations to avoid these prob-
lems.

4.1 Problems
Code generation is more complicated for an array than for a
scalar value. This is because a variable in a program may have
a null value (three-valued logic) even for a non-reference
variable. Because Java offers only two-valued logic for a
non-reference variable, generated Java code has to manage
three-valued logic for non-reference elements. In particular,
a primitive-type array should be carefully handled to ensure
high performance.

Inspection of the Java code generated from a program that
uses the DataFrame or Dataset API and accesses a primitive-
type array identified the following performance problems:

(1) Data-conversion in an internal array representation
class for a primitive-type array.

(2) Data-conversion in generated code .
When the program using the Dataset API in Listing 1 is run,
the logical and physical plans in Listing 11 are generated.
Then, from this physical plan, the Java code in Listing 12
is generated. To simplify the explanation, while the rest of
this section uses a program using the Dataset API as an
example, a program using the DataFrame API causes the
same problems.

For problem 1 above, the SerFromObj operation in the
physical plan instantiates a GenericArrayData class for a
double primitive-type array, which corresponds to line 30 in
Listing 12. The GenericArrayData class can support three-
valued logic for an array by using a boxed object. Listing
13 shows a part of this implementation. We found that the

Listing 11: Logical and physical plans for Listing 1
1 == Logical Plan ==
2 SerFromObj [new(GenericArrayData) AS value]
3 +- MapElements <function1>, obj: [D
4 +- DeserToObj cast(value as array<double, containsNull=true>).

toDoubleArray
5 +- Filter <function1>.apply
6 +- InMemRelation [value]
7 == Physical Plan ==
8 *SerFromObj [new(GenericArrayData) AS value]
9 +- *MapElements <function1>, obj: [D

10 +- *DeserToObj cast(value as array<double, containsNull=true>).
toDoubleArray

11 +- *Filter <function1>.apply
12 +- InMemTblScan [value]
13 +- InMemRelation [value]

object creation in this constructor causes boxing from a
double value to a Double object. This degrades performance.

For problem 2, the DeserToObj operation in the physi-
cal plan executes the type casting from a given array to
another array by using a GenericArrayData class. The ar-
ray’s data type is then cast to a double array by calling a
toDoubleArray() method, which corresponds to the Java
statements at lines 21 to 26 in Listing 12. Similar code is gen-
erated for the pair consisting of InMemTblScan and Filter
operations. The InMemTblScan operation corresponds to Java
statements at lines 11 to 16 in Listing 12. We found that these
statements cause boxing from a double value to a Double
object and unboxing from the Double object back to a double
value. As boxing involves an object allocation and unboxing
involves an object reference, performance degradation occurs.

4.2 Optimizations
The following optimizations were devised to alleviate the two
performance problems above:

(1) Make the internal data representation more efficient to
potentially avoid boxing and unboxing at runtime.

(2) Eliminate boxing and unboxing by exploiting static
information at compile time.

Regarding optimization 1, a basic idea is to hold a Java
data representation in a framework’s data structure as much
as possible. When the data representation requires a three-
valued logic value, however, it is not possible to natively
represent that with a Java non-reference variable, which
cannot hold null. A straight-forward approach is to use a
Java object that can hold null. While this approach was
used in previous versions of Spark for its ease of implemen-
tation, it requires boxing and unboxing at runtime when
a value is referenced. This degrades performance and con-
sumes additional memory. Our optimization instead keeps
the body of a Java primitive-type array with a bitvector to
represent the nullability of each element of the array. This
can improve performance and decrease memory consump-
tion by avoiding a Java Object array. For this optimization,
the internal representation requires getter and setter meth-
ods. Examples include toArray() that returns a Java array,
fromArray(a) that accepts a Java array, and isNull(i) that
returns whether an element is null, where a is a Java array
and i is the index of an array element.

Regarding optimization 2, a basic idea is to apply static
analysis based on schema information to eliminate unneces-
sary boxing and unboxing. When the generated code uses a
framework’s data representation, a straight-forward approach
is to always convert an array in the data representation to
a Java Object array. This avoids handling the variable type
in the generated code. While this approach was used in pre-
vious versions of Spark for its ease of implementation, it
requires boxing and unboxing at runtime when a primitive-
type value is referenced, which again degrades performance
and consumes additional memory. Our optimization avoids
this data-conversion to a Java Object array by analyzing
schema information. Listing 14 is an example of a scheme of

Session 4: Performance and AI ICPE ’19, April 7–11, 2019, Mumbai, India

96

Listing 12: Pseudo Java code generated from Listing 1
1 final class GeneratedIterator {
2 Iterator inputIterator = ...;
3 Row projectRow = new Row(1);
4 RowWriter rowWriter = new RowWriter(projectRow);
5 protected void processNext() {
6 while (inputIterator.hasNext()) {
7 // (1) Read a row
8 Row inputRow = (Row) inputIterator.next();
9 // (2) Read an array

10 ArrayData a = inputRow.getArray(0);
11 Object[] obj0 = new Object[a.length]; /* -----v----- Problem 2 -----v-----*/
12 for (int i = 0; i < a.length; i++)
13 obj0[i] = Double.valueOf(a.getDouble(i)); /* boxing from double to Double */
14 ArrayData array_filter = new GenericArrayData(obj0); /* -----ˆ----- Problem 2 -----ˆ-----*/
15 // (3) Convert to Java data format
16 double[] input_filter = array_filter.toDoubleArray(); /* unboxing from Double to double */
17 // (4) Perform computation
18 boolean fvalue = (Boolean)filter_func.apply(input_filter); // apply() calls {a => a(0) > i} for filter
19 if (!fvalue) continue; // i is a bounded variable
20 // (2) Read an element
21 Object[] obj1 = new Object[a.length]; /* -----v----- Problem 2 -----v-----*/
22 for (int i = 0; i < a.length; i++)
23 obj1[i] = Double.valueOf(a.getDouble(i)); /* boxing from double to Double */
24 ArrayData array_map = new GenericArrayData(obj1); /* -----ˆ----- Problem 2 -----ˆ-----*/
25 // (3) Convert to Java data format
26 double[] input_map = array_map.toDoubleArray(); /* unboxing from Double to double */
27 // (4) Perform computation
28 double[] mvalue = (double[])map_func.apply(input_map); // apply() calls {a => a} for map
29 // (5) Convert to Spark data forma
30 ArrayData value = new GenericArrayData(mvalue); /* Problem 1: boxing from double to Double */
31 // (6) Write an array
32 rowWriter.write(0, value);
33 // (7) Write a row
34 appendRow(projectRow);
35 }
36 }
37 }

Listing 13: Part of the current
GenericArrayData.scala

1 class GenericArrayData(ary: Array[Any]) // Object[] in Java
2 extends ArrayData {
3 def this(seq: Seq[Any]) = this(seq.toArray)
4 // omitted constructors for other primitive-type arrays
5 def this(primAry: Array[Double]) =
6 this(primAry.toSeq) // boxing from double to Double
7 ...
8 override def getDouble(i: Int): Double =
9 ary(i).asInstanceOf[T] // unboxing from Double to double

10 override def toDoubleArray(): Array[Double] = {
11 val size = numElements()
12 val values = new Array[Double](size)
13 for (i <- 0 until size) { values(i) = getDouble(i) }
14 values
15 }
16 }

Listing 14: Example of schema information for the
DataFrame/Dataset API with a primitive-type array

1 val df = Seq(Array(0.5, 0.6),Array(1.5, 1.6)).toDF("a").cache
2 val ds = Seq(Array(0.5, 0.6),Array(1.5, 1.6)).toDS.cache
3 // schema for df and ds
4 root
5 |-- a: array (nullable = true)
6 | |-- element: double (containsNull = false)

Listing 15: GenericArrayData.scala class enhanced for
a primitive-type array

1 class GenericArrayData(val array: Array[Any],
2 boArray: Array[Boolean], byArray: Array[Byte],
3 sArray: Array[Short], iArray: Array[Int],
4 lArray: Array[Long], fArray: Array[Float],
5 dArray: Array[Double]) extends ArrayData {
6 def this(primAry: Array[Double]) =
7 this(null, null, null, null, null, null, null, primAry)
8 ...
9 override def getDouble(i: Int): Double = {

10 if (dArray != null) dArray(i) else array(i).asInstanceOf[T]
11 }
12 override def toDoubleArray(): Array[Double] = {
13 if (dArray != null) dArray else super.toDoubleArray
14 }
15 }

a DataFrame or Dataset with a double primitive-type array.
If the analysis can prove that there is no null element in a
given array, then the optimization passes through the array
in the data representation without data-conversion. For this
optimization, the internal representation requires a setter
method, such as, fromDoubleArray(a) for the double type,
where a is an array in the data representation.

Implementation in Spark: For optimization 1, we im-
plemented a new GenericArrayData class to access array
elements without boxing and unboxing. This approach only
adds new fields to keep primitive-type arrays, modified source
code for constructors (i.e., a setter in our algorithm), and
getter methods. Constructors are updated to store a given
primitive-type array to the new field. Getter methods such as
getDouble() and toDoubleArray(), are updated to return a
value from the new field. There may be a concern regarding
space inefficiency in that the new GenericArrayData class
includes seven additional fields and uses at most one at each
time. While the current GenericArrayData class keeps an ar-
ray with a boxed object, however, the new GenericArrayData
class keeps a primitive-type array without any boxed objects.
The total memory space for the new GenericArrayData class
is thus smaller in practice. This implementation supports only
a Java primitive-type array, because our experiences suggests
that few primitive arrays have null elements. This simplifies
the implementation without being concerned with the bit vec-
tor. Listing 15 shows part of the enhanced GenericArrayData
class.

For optimization 2, we implemented specialization of logi-
cal plans for the case when the optimizer can recognize that
an array element has a primitive-type. The specialization does
not generate a type-casting operation to handle three-valued

Session 4: Performance and AI ICPE ’19, April 7–11, 2019, Mumbai, India

97

Listing 16: Pseudo Java code generated from List-
ing 1 with the two proposed optimizations for a
primitive-type array

1 final class GeneratedIterator {
2 Iterator inputIterator = ...;
3 Row projectRow = new Row(1);
4 RowWriter rowWriter = new RowWriter(projectRow);
5 protected void processNext() {
6 while (inputIterator.hasNext()) {
7 // (1) and (2) Read an array from a column
8 Row inputRow = (Row) inputIterator.next();
9 ArrayData array = inputRow.getArray(0);

10 // (3) Convert to Java data format
11 double[] input = array.toDoubleArray();
12 // (4) Perform computation
13 boolean filter_va = (Boolean)filter_func.apply(input);
14 if (!filter_val) continue;
15 // (4) Perform computation
16 double[] map_output = (double[])map_func.apply(input);
17 // (5) Convert to Spark data format
18 ArrayData output = new GenericArrayData(map_output);
19 // (6) Write an array
20 rowWriter.write(0, output);
21 // (7) Write a row
22 appendRow(projectRow);
23 }
24 }
25 }

logic in Java code but simply allocates a Java primitive-type
array from the GenericArrayData class instance.

Finally, the proposed optimizations generate the code in
Listing 16. As compared with the code in Listing 12, this
code is simple, without boxing, unboxing, or type casting.
Line 9 still has a data-copy operation using toDoubleArray()
for a primitive-type array. A previous work [45], however,
describes eliminating this operation by using Java bytecode
to rewrite the lambda expressions in the filter and map
operations and directly access ArrayData, which complement
the approach here.

5 EVALUATION
This section presents the results of experimental evaluations
of the proposed optimizations on a cluster of five Intel ma-
chines running the Ubuntu 16.04 operating system. Each
machine has a 16-core Intel Xeon E5-2683 v4 CPU (2.1 GHz
with 128 GB of RAM). OpenJDK 1.8.0 181 was used with a
96 GB heap and the default garbage collection policy.

We implemented our optimizations described in Sections
3.2 and 4.2 in Spark 2.2, because they have been integrated
into Spark 2.3. Benchmark programs were run with two
implementations of Spark: one disabling the optimizations for
column-oriented storage and primitive arrays, and the other
enabling them. The average results were compared. Each
benchmark program was executed 25 times in a single JVM
invocation, and the average time of the last 10 executions
was reported as a steady-state execution time to reduce the
impact of JIT compilation anomalies, garbage collection, and
other JVM components.

In the cluster of five machines, one was used as a driver,
and the other four were used as executors. Each machine
launched one executor JVM with 16 worker threads per JVM.

5.1 TPC-H queries
This section discusses the performance improvements for
TPC-H[42] queries to a relational database system. All of the
22 queries in the TPC-H benchmark were considered with
a scale factor of 10. The data was stored to an in-memory
cache, and a query was executed five times while reading
data from the cache. The effectiveness was measured only in
terms of optimizations for column-oriented storage, because
the schema of TPC-H includes only the scalar data types
integer, double, and String, but no array type. It is worth
noting that the optimization was enhanced for the String
type.

The performance was measured for all of the queries on a
cluster. Specifically, the elapsed time was measured from start
to completion of executing each query. Figure 4 shows thee
performance improvement with the optimization to eliminate
data-copy for column-oriented storage. The Y-axis represents
the ratio of elapsed times. The optimization improved the
performance of the 22 queries by a geometric mean of 1.10×.
The performance of six queries improved by more than 1.10×,
and in particular, the performance of query 6 (Q6) improved
by 1.41×. This was because the processing time for reading
tables is longer for Q6 than for the other queries. This query
includes only lightweight operations, such as filter and
aggregation, and does not have heavier operations, such as
sort and join. In contrast, Q1, Q11, Q12, Q15, and Q22
have a cached table followed by a sequence of filter or ag-
gregation operations, and other operations such as sort and
join. As the current implementation does not support sort
or some join operations designed for row-oriented storage,
it is not effective for such cases of reading a cached table
followed by these operations. The proposed optimization
is clearly effective, however, for some types of queries in a
database system.

5.2 Machine-learning algorithms
This section shows the performance improvement for two
machine-learning algorithms:

• K-means: iterative-clustering algorithm
• Logistic regression: iterative-classification algorithm

with a regression model
These benchmark programs, originally used RDDs [19] and

an example in the Spark package, but we rewrote them for
this work using the Dataset API. This was because versions
of these two algorithms using the Dataset API cannot be
found in current Spark benchmark suites such as SparkBench
[27] and Spark Performance Tests [14]. Data read more than
once was stored to an in-memory cache. A 5M-point data
set with 200 dimensions and a 32M-point data set with 200
dimensions were used for k-means and logistic regression,
respectively. The elapsed time was measured from start to
completion of the computation in each program. Figure 5
shows the performance improvement with the proposed opti-
mizations. The Y-axis shows the relative performance with
respect to no optimization. For each algorithm, the left bar
in red shows the performance with the two optimizations

Session 4: Performance and AI ICPE ’19, April 7–11, 2019, Mumbai, India

98

1

1.1

1.2

1.3

1.4

1.5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t o
ve

r
no

 o
pt

im
iza

tio
n

with column-oriented storage
optimization

Higher is better

Figure 4: Performance comparison for TPC-H queries with and without the optimization for column-oriented
storage on cluster

1

1.1

1.2

1.3

1.4

1.5

1

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t o
ve

r
no

 o
pt

im
iza

tio
n

(a) K-means

Higher is better

(b) Logistic regression

with two array optimizations

with all three optimizations
for array and column-oriented
storage

Figure 5: Performance comparison for machine-
learning algorithms with and without the optimiza-
tions for dealing with primitive-type arrays and
column-oriented storage on cluster

Figure 6: Method-level profiling for logistic regres-
sion with and without the primitive-type array opti-
mizations

for eliminating data-conversion in accessing a primitive-type
array. The right bar in blue shows the performance with all
of three optimizations, including the one for eliminating data-
copy in accessing column-oriented storage. The optimizations
improved the performance for k-means by 1.02× and logis-
tic regression by 1.42× (for a geometric mean of 1.21×) by
eliminating data-conversion for accessing a primitive-type
array. The proposed optimizations were thus also effective
for machine-learning workloads.

To further investigate why the optimizations in eliminating
data-conversion for accessing a primitive-type array, method-
level profiling was applied using the perf command. Figure 6
shows the results for the logistic regression algorithm with and
without the optimizations. The graph presents a breakdown of
all CPU cycles in the JVM. The left bar shows the breakdown
without the optimizations, while the right bar shows the
breakdown with them. The optimizations eliminated cycle
consumption for executing data-copy with object boxing. The
proportion of computation improved from 60.1 to 87.6%. This
graph shows that the overall performance improved because
of a reduction in cycle consumption for the data-conversion.
From this profiling, cycle consumption for accessing column-
oriented storage was not dominant, as computation accounted
for most of the cycles. As a result, the optimization for
eliminating data-copy in accessing column-oriented storage
resulted in little performance improvement for the logistic
regression algorithm.

6 RELATED WORK
This section describes related work in several areas: Apache
Spark, compilation and optimizations of DSLs, column-oriented
storage format, and data-conversion between a custom data
representation and Java-data representation.

6.1 Apache Spark
Apache Spark [48] is an in-memory computing framework.
It executes computations to transform an RDD [47] to a
new RDD by parallel operations such as map(), filter(),
or reduce(). Spark provides several domain specific libraries
for applications such as machine learning [31], graphs [17],
and the R programming language [43]. Spark 2.0 and later
versions generates Java code from a Spark program to achieve
high performance [2, 6].

There have been many studies on improving the perfor-
mance of Apache Spark workloads. Chiba and Onodera [12]
improved the performance of TPC-H queries by 1.4× by
tuning option parameter values for a JVM. Jia et al. [24] im-
proved the performance of machine-learning applications by
1.6× by tuning the available number of simultaneous threads

Session 4: Performance and AI ICPE ’19, April 7–11, 2019, Mumbai, India

99

for multithreading on a core. Taneja et al. [41] improved the
performance of a machine-learning application by 2.2× by
tuning option parameter values for Spark. Chaimov et al. [10]
identified bottlenecks for a shuffle operation and in-memory
cache with Lustre and improved the performance by adding
file pooling and a large non-volatile RAM (NVRAM) buffer.
Ousterhout et al. [33] identified many stragglers in Spark
through block time analysis and revealed undiscovered oppor-
tunities for performance improvements of TPC-DS queries.
Lu et al. [28] improved the performance of the sort bench-
mark by 1.8× by exploiting remote direct memory access
(RDMA) over InfiniBand.

While there have been many studies like those above, few
have been conducted to analyze generated code in Spark.
Canali [9] analyzed generated code through sampling pro-
filing. Essertel et al. [16] showed performance issues at ac-
cess and decoding with in-memory data representations, also
through sampling profiling. Grossman and Sarkar [19] devised
a framework to generate GPU code from a Spark program us-
ing the RDD API. That work also involved data-conversions
between row-oriented and column-oriented storage formats.
Wroblewski et al. [45] improved the performance of a Spark
workload, that accesses a primitive-type array by rewriting
the Java bytecode of a lambda expression. They reported
that a program using the Dataset API performs better than
a program using the RDD API. To the best of our knowl-
edge, however this paper is the first to analyze generated
code by inspecting the code and to optimize it by devising
optimizations in Spark. The optimizations here an be applied
complementarily with those of previous studies.

6.2 Compilation of DSLs
Multiple data processing frameworks generate native code
from a given program. Impala [25] translates a SQL query
into native code by using a low-level virtual machine (LLVM)
compiler [26] with volcano style [44]. That paper does not,
however, describe the details of code generation for column-
oriented storage or a primitive-type array. Flare [16] uses a
very promising approach that generates machine code from
a Spark program by using a completely different advanced
toolchain, Delite, which was designed for a DSL [40], in-
stead of using Catalyst. Flare achieves high performance in
processing TPC-H queries. The present work complemen-
tarily addresses performance bottlenecks in Spark versions
before 2.3. Weld [34] is a new approach for defining a com-
mon intermediate representation to optimize across different
frameworks. It uses the an LLVM compiler as a backend
instead of a JIT compiler in a JVM. As the current version
of Weld does not have a null value and does not use column-
oriented storage, it does not have the related performance
problems.

Deep learning frameworks generate native code from a
given program using an embedded DSL. TensorFlow XLA
[1], PyTorch [35], and TVM [11] translate their programs
into native code for each target device by using the LLVM
compiler.

An especially important DSL is SQL. In SQL, volcano style
[18] is a basic execution model for a query to pass data by
using an iterator between two operations. Volcano style has
the efficiency advantages of pipeline processing. MonetDB [8]
uses an extended volcano style to support column-oriented
storage through buffering.

Neumann [32] described an approach for generating native
code from an SQL query by using the LLVM compiler. To
leverage the latest compiler optimizations, this approach
eliminates iterators for Volcano style by putting multiple
operations into one function. Catalyst also uses this approach.
Our optimizations were created on top of this research.

Rao et al. [37] described an approach to dynamically gen-
erate Java code for each query. The generated code improves
the query performance by using a JIT compiler in JVM. The
code generation phase in Catalyst uses that idea. Rao et al.
used volcano style to easily switch the query execution engine
for each operation between an interpreter or generated code.
They did not, however, describe optimizations at the code
generation phase.

6.3 Column-oriented storage format
Column-oriented storage [13] is a well-known format used
by many database systems [8, 36] and Spark. Daniel et al.
[29] described a strategy of selectively using row- or column-
oriented storage. The code generation optimization there were
complementarily devised for column-oriented storage. DB2
is a state-of-the-art production system uses both column-
and row-oriented storage and leverages SIMD instructions to
exploit instruction-level parallelism. Exploitation of SIMD in
collaboration with a JIT compiler remains as a future work.

6.4 Data-conversion
A JVM is the foundation of various runtime frameworks
because of its platform-neutral nature. Because a JVM has
some memory management overhead for a managed runtime
environment, some runtime frameworks manage memory al-
locations and accesses through a customized approach using
the Java Unsafe API [30]. While that approach can result
in high performance within a system, it introduces a new
challenge in the data-conversion overhead between a custom
data representation and the Java-data representation for a
bridge with a method written in a JVM language. The opti-
mizations here alleviate this overhead by exploiting schema
information.

7 CONCLUSION
The performance bottlenecks of Apache Spark, which is a
widely used open-source framework, were analyzed by in-
specting generated code. This inspection identified two per-
formance issues: data-copy and data-conversion. We devised
optimizations to eliminate these two performance issues,
and then implemented them for Spark. The performance
for benchmark programs improved by up to 1.4× on a clus-
ter. This code inspection and optimization approach can be
applied to other big data framework to improve performance.

Session 4: Performance and AI ICPE ’19, April 7–11, 2019, Mumbai, India

100

ACKNOWLEDGMENTS
We thank Wenchen Fan, Herman van Hovell, Liang-Chi Hsieh,
Tayuka Ueshin, Sameer Agarwal, Andrew Or, Davies Liu,
Nong Li, and Reynold Xin for their suggestions on merging
our optimizations into Apache Spark.

REFERENCES
[1] Mart́ın Abadi, Michael Isard, and Derek G. Murray. 2017. A

Computational Model for TensorFlow: An Introduction. In Pro-
ceedings of the 1st ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages (MAPL 2017).
1–7.

[2] Sameer Agarwal, Davies Liu, and Reynold Xin. 2016. Apache
Spark as a Compiler: Joining a Billion Rows per Second on
a Laptop. (2016). https://databricks.com/blog/2016/05/23/
apache-spark-as-a-compiler-joining-a-billion-rows-per-second-
on-a-laptop.html

[3] Apache Hadoop. 2007. (2007). https://hadoop.apache.org.
[4] Apache Parquet. 2013. (2013). https://parquet.apache.org.
[5] Michael Armbrust, Wenchen Fan, Reynold Xin, and Matei

Zaharia. 2016. Introducing Apache Spark Datasets. (2016).
https://databricks.com/blog/2016/01/04/introducing-apache-
spark-datasets.html

[6] Michael Armbrust, Reynold Xin, Cheng Lian, Yin Huai, Davies
Liu, Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J.
Franklin, Ali Ghodsi, and Matei Zaharia. 2015. Spark SQL:
Relational Data Processing in Spark. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of
Data (SIGMOD ’15). 1383–1394.

[7] Ahsan Javed Awan, Mats Brorsson, Vladimir Vlassov, and Eduard
Ayguade. 2015. Performance Characterization of In-Memory Data
Analytics on a Modern Cloud Server. In Proceedings of the 2015
IEEE Fifth International Conference on Big Data and Cloud
Computing (BDCLOUD ’15). 1–8.

[8] Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetD-
B/X100: Hyper-Pipelining Query Execution. In Conference on
Innovative Data Systems Research (CIDR). 225–237.

[9] Luca Canali. 2016. Voice from CERN: Apache Spark 2.0
Performance Improvements Investigated With Flame Graphs.
(2016). https://databricks.com/blog/2016/10/03/voice-from-
cern-apache-spark-2-0-performance-improvements-investigated-
with-flame-graphs.html

[10] Nicholas Chaimov, Allen Malony, Shane Canon, Costin Iancu,
Khaled Z. Ibrahim, and Jay Srinivasan. 2016. Scaling Spark on
HPC Systems. In Proceedings of the 25th ACM International
Symposium on High-Performance Parallel and Distributed Com-
puting (HPDC ’16). 97–110.

[11] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng,
Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei
Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018.
TVM: An Automated End-to-End Optimizing Compiler for Deep
Learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). 578–594.

[12] Tatsuhiro Chiba and Tamiya Onodera. 2016. Workload character-
ization and optimization of TPC-H queries on Apache Spark. In
2016 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS). 112–121.

[13] George P. Copeland and Setrag N. Khoshafian. 1985. A Decompo-
sition Storage Model. In Proceedings of the 1985 ACM SIGMOD
International Conference on Management of Data (SIGMOD
’85). 268–279.

[14] Databricks. 2014. Spark Performance Tests. (2014). https://
github.com/databricks/spark-perf/

[15] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified
Data Processing on Large Clusters. In Proceedings of the 6th
Conference on Symposium on Operating Systems Design &
Implementation (OSDI’04). 10–10.

[16] Gregory Essertel, Ruby Tahboub, James Decker, Kevin Brown,
Kunle Olukotun, and Tiark Rompf. 2018. Flare: Optimizing
Apache Spark with Native Compilation for Scale-Up Architec-
tures and Medium-Size Data. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18). 799–
815.

[17] Joseph E. Gonzalez, Reynold Xin, Ankur Dave, Daniel Crankshaw,
Michael J. Franklin, and Ion Stoica. 2014. GraphX: Graph Pro-
cessing in a Distributed Dataflow Framework. In Proceedings of

the 11th USENIX Conference on Operating Systems Design and
Implementation (OSDI’14). 599–613.

[18] Goetz Graefe. 1994. Volcano — An Extensible and Parallel Query
Evaluation System. IEEE Transaction on Knowledge and Data
Engineering 6, 1 (1994), 120–135.

[19] Max Grossman and Vivek Sarkar. 2016. SWAT: A Programmable,
In-Memory, Distributed, High-Performance Computing Platform.
In Proceedings of the 25th ACM International Symposium on
High-Performance Parallel and Distributed Computing (HPDC
’16). 81–92.

[20] Kazuaki Ishizaki. 2016. SPARK-15985: Eliminate redundant cast
from an array without null or a map without null. (2016). https:
//github.com/apache/spark/pull/13704

[21] Kazuaki Ishizaki. 2016. SPARK-16213: Reduce runtime overhead
of a program that creates an primitive array in DataFrame. (2016).
https://github.com/apache/spark/pull/13704

[22] Kazuaki Ishizaki. 2016. SPARK-17490: Optimize SerializeFro-
mObject() for a primitive array. (2016). https://github.com/
apache/spark/pull/13704

[23] Kazuaki Ishizaki. 2017. SPARK-20822: Generate code to directly
get value from ColumnVector for table cache. (2017). https:
//github.com/apache/spark/pull/13704

[24] Zhen Jia, Chao Xue, Guancheng Chen, Jianfeng Zhan, Lixin
Zhang, Yonghua Lin, and Peter Hofstee. 2016. Auto-tuning Spark
Big Data Workloads on POWER8: Prediction-Based Dynamic
SMT Threading. In Proceedings of the 2016 International Con-
ference on Parallel Architectures and Compilation (PACT ’16).
387–400.

[25] Marcel Kornacker, Alexander Behm, Victor Bittorf, Taras Bo-
brovytsky, Casey Ching, Alan Choi, Justin Erickson, Martin
Grund, Daniel Hecht, Matthew Jacobs, Ishaan Joshi, Lenni
Kuff, Dileep Kumar, Alex Leblang, Nong Li, Ippokratis Pandis,
Henry Robinson, David Rorke, Silvius Rus, John Russell, Dim-
itris Tsirogiannis, Skye Wanderman-Milne, and Michael Yoder.
2015. Impala: A Modern, Open-Source SQL Engine for Hadoop.
In Conference on Innovative Data Systems Research (CIDR).

[26] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation
Framework for Lifelong Program Analysis & Transformation. In
Proceedings of the International Symposium on Code Generation
and Optimization: Feedback-directed and Runtime Optimization
(CGO ’04). 75–86.

[27] Min Li, Jian Tan, Yandong Wang, Li Zhang, and Valentina Sala-
pura. 2015. SparkBench: A Comprehensive Benchmarking Suite
for in Memory Data Analytic Platform Spark. In Proceedings of
the 12th ACM International Conference on Computing Frontiers
(CF ’15). 53:1–53:8.

[28] Xiaoyi Lu, Dipti Shankar, Shashank Gugnani, and Dhabaleswar K.
Panda. 2016. High-performance design of Apache Spark with
RDMA and its benefits on various workloads. In 2016 IEEE
International Conference on Big Data, BigData 2016. 253–262.

[29] Samuel R. Madden, Daniel S. Myers, David J. DeWitt, and
Daniel J. Abadi. 2007. Materialization Strategies in a Column-
Oriented DBMS. 2007 IEEE 23rd International Conference on
Data Engineering (2007), 466–475.

[30] Luis Mastrangelo, Luca Ponzanelli, Andrea Mocci, Michele Lanza,
Matthias Hauswirth, and Nathaniel Nystrom. 2015. Use at Your
Own Risk: The Java Unsafe API in the Wild. In Proceedings of
the 2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2015). 695–710.

[31] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shiv-
aram Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai,
Manish Amde, Sean Owen, Doris Xin, Reynold Xin, Michael J.
Franklin, Reza Zadeh, Matei Zaharia, and Ameet Talwalkar. 2016.
MLlib: Machine Learning in Apache Spark. The Journal of
Machine Learning Research 17, 1 (2016), 1235–1241.

[32] Thomas Neumann. 2011. Efficiently Compiling Efficient Query
Plans for Modern Hardware. Proceedings of the VLDB Endow-
ment 4, 9 (2011), 539–550.

[33] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker,
and Byung-Gon Chun. 2015. Making Sense of Performance in
Data Analytics Frameworks. In Proceedings of the 12th USENIX
Conference on Networked Systems Design and Implementation
(NSDI’15). 293–307.

[34] Shoumik Palkar, James J. Thomas, Anil Shanbhag, Deepak
Narayanan, Holger Pirk, Malte Schwarzkopf, Saman Amarasinghe,
and Matei Zaharia. 2017. Weld: A Common Runtime for High

Session 4: Performance and AI ICPE ’19, April 7–11, 2019, Mumbai, India

101

Performance Data Analytics. In Proceedings of the Conference
on Innovative Data Systems Research (CIDR).

[35] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan,
Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison,
Luca Antiga, and Adam Lerer. 2017. Automatic differentiation in
PyTorch. (2017).

[36] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh
Chainani, David Kalmuk, Vincent KulandaiSamy, Jens Leenstra,
Sam Lightstone, Shaorong Liu, Guy M. Lohman, Tim Malkemus,
Rene Mueller, Ippokratis Pandis, Berni Schiefer, David Sharpe,
Richard Sidle, Adam Storm, and Liping Zhang. 2013. DB2 with
BLU Acceleration: So Much More Than Just a Column Store.
Proceedings of the VLDB Endowment 6, 11 (Aug. 2013), 1080–
1091.

[37] Jun Rao, Hamid Pirahesh, C. Mohan, and Guy Lohman. 2006.
Compiled Query Execution Engine Using JVM. In Proceedings of
the 22nd International Conference on Data Engineering (ICDE
’06). 23–23.

[38] Juwei Shi, Yunjie Qiu, Umar Farooq Minhas, Limei Jiao, Chen
Wang, Berthold Reinwald, and Fatma Özcan. 2015. Clash of the
Titans: MapReduce vs. Spark for Large Scale Data Analytics.
Proceedings of the VLDB Endowment 8, 13 (Sept. 2015), 2110–
2121.

[39] Avraham Shinnar, David Cunningham, Vijay Saraswat, and Ben-
jamin Herta. 2012. M3R: Increased Performance for In-memory
Hadoop Jobs. Proceedings of the VLDB Endowment 5, 12 (Aug.
2012), 1736–1747.

[40] Arvind K. Sujeeth, Tiark Rompf, Kevin J. Brown, HyoukJoong
Lee, Hassan Chafi, Victoria Popic, Michael Wu, Aleksandar
Prokopec, Vojin Jovanovic, Martin Odersky, and Kunle Olukotun.
2013. Composition and Reuse with Compiled Domain-specific
Languages. In Proceedings of the 27th European Conference on

Object-Oriented Programming (ECOOP’13). 52–78.
[41] Rohit Taneja, Raj Krishnamurhty, and Gang Liu. 2016. In The

2016 International Conference on Parallel and Distributed Pro-
cessing Techniques and Applications (PDPTA’16).

[42] The Transaction Processing Council. 2017. TPC-H Standard
Specification Revision 2.17.3. (2017).

[43] Shivaram Venkataraman, Zongheng Yang, Davies Liu, Eric Liang,
Hossein Falaki, Xiangrui Meng, Reynold Xin, Ali Ghodsi, Michael
Franklin, Ion Stoica, and Matei Zaharia. 2016. SparkR: Scaling R
Programs with Spark. In Proceedings of the 2016 International
Conference on Management of Data (SIGMOD ’16). 1099–1104.

[44] Skye Wanderman-Milne and Nong Li. 2014. Runtime Code Gen-
eration in Cloudera Impala. IEEE Data Engineering Bulletin
37, 1 (2014), 31–37.

[45] Jan Wroblewski, Kazuaki Ishizaki, Hiroshi Inoue, and Moriyoshi
Ohara. 2017. Accelerating Spark Datasets by inlining deserial-
ization. In 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2017).

[46] Reynold Xin and Josh Rosen. 2015. Project Tungsten:
Bringing Apache Spark Closer to Bare Metal. (2015).
https://databricks.com/blog/2015/04/28/project-tungsten-
bringing-spark-closer-to-bare-metal.html

[47] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker,
and Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-
tolerant Abstraction for In-memory Cluster Computing. In Pro-
ceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation (NSDI’12). 1.

[48] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. 2010. Spark: Cluster Computing with
Working Sets. In Proceedings of the 2nd USENIX Conference
on Hot Topics in Cloud Computing (HotCloud’10). 1.

Session 4: Performance and AI ICPE ’19, April 7–11, 2019, Mumbai, India

102

