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ABSTRACT

Linear Programs (LPs) appear in a large number of applications.

Offloading the LP solving tasks to a GPU is viable to accelerate

an application’s performance. Existing work on offloading and

solving an LP on a GPU shows that performance can be accelerated

only for large LPs (typically 500 constraints, 500 variables and

above). This paper is motivated from applications having to solve

small LPs but many of them. Existing techniques fail to accelerate

such applications using GPU. We propose a batched LP solver in

CUDA to accelerate such applications and demonstrate its utility

in a use case - state-space exploration of models of control systems

design. A performance comparison of The batched LP solver against

sequential solving in CPU using the open source solver GLPK (GNU

Linear Programming Kit) and the CPLEX solver from IBM is also

shown. The evaluation on selected LP benchmarks from the Netlib

repository displays amaximum speed-up of 95× and 5×with respect

to CPLEX and GLPK solver respectively, for a batch of 1e5 LPs.
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1 INTRODUCTION

A linear program (LP) is an optimization problem with a linear cost

function subject to a search space defined by a conjunction of linear

constraints. The size of a LP is measured by the number of decision

variables and the number of linear constraints that it contains. LPs

appear in a variety of applications. This work is motivated from

applications that require solving a large number of LPs of small

size (less than 500 variables and 500 constraints). Traditional CPU

computations are now increasingly being carried out on CPU-GPU

heterogeneous systems, by offloading data parallel tasks to a GPU

for accelerating performance. We propose a hybrid CPU-GPU LP

solver which can solve a batch of many LPs simultaneously. Our

work assumes the setting that computations begin in a CPU where

LPs are created, batched and then offloaded to a GPU for an ac-

celerated solution. The solutions are transferred back to the CPU

ACMacknowledges that this contributionwas authored or co-authored by an employee,

contractor or affiliate of a national government. As such, the Government retains a

nonexclusive, royalty-free right to publish or reproduce this article, or to allow others

to do so, for Government purposes only.

ICPE ’19, April 7–11, 2019, Mumbai, India
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6239-9/19/04. . . $15.00

https://doi.org/10.1145/3297663.3310308

from the GPU for further processing. As an example, we show an

application of our batched LP solver in an algorithm for state-space

exploration of models of control systems. In model-based design,

state-space exploration is a standard analysis technique. State of

the art methods and tools for state-space exploration heavily rely

on solving many independent LPs [8, 24]. Moreover, the LPs are

generally of small size. We show that using our batched LP solver,

the state-space exploration tools can improve their performance

significantly. Prior work on solving a LP on a GPU and on multi-

GPU architectures are many [3, 16, 17, 23, 26]. The focus of all

such works has been on methods to improve the performance of

algorithms to solve one LP. Performance gain is reported generally

when offloading large LPs of size 500 (500 constraints, 500 variables)

and above [3, 17, 26]. It is seen that for small LPs, the time spent in

offloading the problems from CPU to GPUmemory is more than the

time saved with parallel execution in the GPU. Althoughmodern LP

solvers like CPLEX [5] and GLPK [19] are very efficient in solving

small LPs, solving many of them one by one may consume consid-

erable time. Note that using any of the prior work to solve a LP on

GPU will not accelerate our target applications since they perform

well only on large LPs. We show that with batched computation,

performance acceleration can be achieved even for small LPs (e.g.

LPs of size 5) for a considerably large batch size, where batch size
refers to the number of LPs in a batch. We present a CUDA C++

implementation of a solver which implements the simplex method

[6], with an effort to keep coalescent memory accesses, efficient

CPU-GPU memory transfer and an effective load balancing. To

the best of our knowledge, this is the first work in the direction

of batched LP solving on a GPU. The solver source can be found

at https://bitbucket.org/rajgurung777/simplexprojects. Beyond a

sufficiently large batch size, our implementation shows significant

gain in performance compared to solving them sequentially in the

CPU using the GLPK library [19], an open source LP solver and the

CPLEX solver from IBM. The evaluation on selected LP benchmarks

from the Netlib repository displays a maximum speed-up of 95×

and 5× with respect to CPLEX and GLPK solver respectively, for

a batch of 1e5 LPs. In addition, we consider a special class of LPs

with feasible region as an hyper-rectangle and exploit the fact that

these can be solved cheaply without using the simplex algorithm.

We implement this special case LP solver as part of the solver.

2 MOTIVATING APPLICATION

In model-based design of control systems, a standard technique of

analysis is to compute the state-space of the model using explo-

ration algorithms. Properties of the control system such as safety

and stability are analyzed by observing the computed state-space.

In this section, we consider two open-source tools that perform

state-space exploration of control systems with linear dynamics,
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namely SpaceEx [8] and XSpeed [24]. These tools can analyze sys-

tems modeled using a mathematical formalism known as hybrid
automaton [2]. A conservative over-approximation of the exact state

space is computed by both the tools. The state of the art state-space

exploration algorithm in these tools compute the state-space as a

union of convex sets, each having a symbolic representation, known

as the support function representation [10]. The algorithm requires

a conversion of these convex sets from its symbolic support func-

tion representation to concrete convex polytope representation, in

order to have certain operations efficient. This conversion involves

solving a number of linear programs. Moreover, the precision of

the conversion and consequently, the precision of the computed

state-space depends on the number of LPs solved. Table 1 shows

the number of LPs and its dimension that these tools solve for a

fairly accurate state-space computation over a time horizon of just

100 seconds, on some standard control systems benchmarks.

Benchmark LP Dimension Total LPs

Fourth Order Filtered Oscillator 6 7.2e7

Eight Order Filtered Oscillator 10 2.0e8

Helicopter Controller 28 1.568e9

Table 1: A large number of LP solving is required for a fairly

accurate state-space computation.

We see that the number of LPs to be solved in the above examples

is in the order of 1e9 which cannot be solved in practical time limits

even by the fast modern LP solvers like GLPK or CPLEX, when

solved sequentially. For instance, to compute the state-space of a

Filtered Oscillator model using the tool XSpeed, it requires solving

7.2e7 LPs [11, 24]. Note that although a solver like CPLEX take

approximately 0.003 seconds to solve an LP of dimension 32 in

a modern CPU, it will take nearly 60 hours to solve 7.2e7 LPs

sequentially. Therefore, we believe that there is a need to accelerate

applications where such bulk LP solving is necessary.

3 LINEAR PROGRAMMING

A linear program in standard form is maximizing an objective func-

tion under the given set of linear constraints. The objective function

is denoted as

∑n
j=1 c jx j and the set of linear constraints is given

by

∑n
j=1 ai jx j ≤ bi and x j ≥ 0, for i = 1,2, ...,m and j = 1,2, ...,n.

The inequality

∑n
j=1 ai jx j ≤ bi is the set of m constraints over

n variables and x j ≥ 0 is the non-negativity constraints over n
variables. An LP in standard form can be converted into slack form
by introducingm additional slack variables (xn+i ), one for each
inequality constraint, to convert it into an equality constraint, as

shown below:

xn+i = bi −
n∑
j=1

ai jx j , f or i = 1, ...,m (1)

An algorithm that solves LP problems efficiently in practice is the

simplex method described in [6, 15]. The variables on the left-hand

side of the Equation (1) are referred as basic variables and those

on the right-hand side are non-basic variables. The initial basic
solution of an LP is obtained by assigning its non-basic variables

to zero. The initial basic solution may not be always feasible (when

one or more of the bi ’s are negative, resulting in the violation of

the non-negativity constraint). For such LPs, the simplex method

employs a two-phase algorithm. In the first phase, a new auxiliary

LP is formed by having a new objective function z, which is the

sum of the newly introduced artificial variables. The simplex

algorithm is employed on this auxiliary LP and it is checked if the

optimal solution to the objective function is zero. If a zero optimal is

found then it implies that the original LP has a feasible solution and

the simplex method initiates the second phase. In the second phase,

the feasible slack form obtained from the first phase is considered

and the original objective function is restored with appropriate

substitutions and elimination of the artificial variables. The simplex

algorithm is then employed to solve the LP.

Prior to the simplex method, many LP solvers apply precon-

ditioning techniques such as a simple geometric mean scaling in

combination with equilibration to reduce the condition number

of the constraint matrix in order to decrease the computational

effort for solving an LP [7, 18, 22, 27]. In this work, we do not apply

any pre-conditioning on the LP for simplicity and use the simplex

algorithm described in the following section.

3.1 The Simplex Algorithm

The simplex algorithm is an iterative process of solving a LP. Each

iteration of the simplex algorithm attempts to increase the value of

the objective function by replacing one of the basic variables (also

known as the leaving variable), by a non-basic variable (called

the entering variable). The exchange of these two variables is

obtained by a pivot operation [1]. The index of the leaving and the

entering variables are called the pivot row and pivot column respec-

tively. The simplex algorithm iterates on a tabular representation

of the LP, called the simplex tableau. The simplex tableau stores

the coefficients of the non-basic, slack and artificial variables in its

rows. It contains auxiliary columns for storing intermediate compu-

tations. In our implementation, we consider a tableau of size p × q,
where p =m+1 and q = n+sum of slack and artificial variables+2.
The (m + 1)th row stores the best solution to the objective function

found until the last iteration, along with the coefficients of the

non-basic variables in the objective function.

Index b x1      x2   . . .    xn xn + 1  xn + 2  . . .  xn + m a1 a2  . . .  as

Index of
basic

variables

Bounds of
the

constraints

Coefficients of
non-basic
variables

Coefficients of
slack variables

Coefficients of
artificial variables

unused
Optimal
Solution 

Coefficients of non-basic variable in objective function
(used to determine entering variable)

Figure 1: Formation of the Simplex Tableau.

There are two auxiliary columns, the first column stores the

index of the basic variables and the second stores bi ’s of equation
(1). Figure 1 shows a schematic of the simplex tableau.

Step 1) Determine the entering variable: At each iteration,

the algorithm identifies a new entering variable from the non-basic

variables. It is called an entering variable since it enters the set of

basic variables. The choice of the entering variable is with the goal

that increasing its value from 0 increases the objective function

value. The index of the entering variable is referred to as the pivot
column. The most common rule for selecting an entering variable
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is by choosing the index e of the maximum in the last row of the

simplex tableau (excluding the current optimal solution).

Step 2) Determine the leaving variable: Once the pivot col-

umn is determined (say e), the algorithm identifies the row index

with the minimum positive ratio (bi/ − ai,e ), say ℓ, called the pivot
row. The variable xℓ is called the leaving variable because it leaves

the set of basic variables. This ratio represents the extend to which

the entering variable xe (in Step 1) can be increased without violat-

ing the constraints.

Step 3) Obtain the new improved value of the objective

function: The algorithm then performs the pivot operation which

updates the simplex tableau such that the new set of basic variables

are expressed as a linear combination of the non-basic ones, using

substitution and rewriting. An improved value for the objective

function is found after the pivot operation.

The above steps are iterated until the halt condition is reached.

The halt condition is met when either the LP is found to be un-
bounded or the optimal solution is found. An LP is unbounded

when no new leaving variable can be computed, i.e., when the ratio

(bi/ − ai,e ) in Step 2 is either negative or undefined for all i . An
optimal solution is obtained when no new entering variable can be

found, i.e., the coefficients of the non-basic variables in the last row

of the tableau are all negative values

4 SIMULTANEOUS SOLVING OF BATCHED

LPS ON A GPU

We present our CUDA implementation that solves batched LPs in

parallel on a GPU. In this discussion, we shall refer a CPU by host
and a GPU by device. The LP batching is performed on the host

and transferred to the device. Our solver implementation assumes

that all the LPs in a batch are of the same size. The batch size is

adjustable, depending on the device memory size and LP size. Our

batching routine considers the maximum batch size that can be

accommodated in the device memory.

4.1 Memory Transfer and Load Balancing

First, we allocate device memory (global memory) from the host,

that is required for creating a simplex tableau for the LPs in the

batch. The maximum number of LPs that can be batched depends

on the size of the device global memory in the device. The tableau

for every LP in the batch is populated with all the coefficients and

indices of the variables in the host side, before transferring to the

device. To speed-up populating the tableau in the host, we initialize

the tableau in parallel using OpenMP threads. Once initialized, the

Simplex tableaux are copied from the host to the device memory

(referred to as H2D-ST in Figure 3). The LP batching routine is

shown in Algorithm 1. Lines 2 to 5 computes the basic operations

such as obtaining the available size of global memory in GPU,

memory requirement of an LP, number of threads for an LP and the

number of LPs in a batch. Line 7 determines the number batches

required to execute the GPU kernel (line 15). Lines 8 to 14 shows the

computation of appropriate indices from the data-structure listLP,

so that the device memory devLP can load appropriate batches of

LP. The GPU kernel modifies the tableau to obtain solutions using

the simplex method for every LP in the batch and copies back from

the device to the host memory (referred to as D2H-res in Figure 3).

We discuss further on our CPU-GPU memory transfer using CUDA

streams for efficiency in Section 4.4.

Algorithm 1 Batching Routine: N – the number of LP problems

present in the data structure listLP . Computed results are returned

in R

1: procedure batching(N ,listLP ,R)
2: дpuMem ← MemSize () ▷ GPU’s global memory size

3: lpSize ← LPSize () ▷ get memory requirement per LP

4: threadSize ← ThreadSize () ▷ computes the appropriate

thread size based on LP dimension

5: batchSize = (дpuMem − codeSize ) ÷ lpSize ▷ codeSize is

kernel code size

6: if N > batchSize then
7: batches = ceil (N ÷ batchSize )
8: for i = {0, ..., (batches − 1)} do
9: start = i ∗ batchSize
10: if i == (batches − 1) then
11: end = N − 1
12: else

13: end = start + batchSize − 1
14: devLP ← copy listLP from index (start to end)
15: batchKernel (batchSize,threadSize,devLP ,R)

16: else

17: devLP ← copy listLP from index (1 to N )

18: batchKernel (batchSize,threadSize,devLP ,R)

Load Balancing. We assign a CUDA block of threads to solve

an LP in the batch. Since blocks are scheduled to Streaming Mul-

tiprocessors (SMs), this ensures that all SMs are busy when there

are sufficiently large number of LPs to be solved in the batch. As

CUDA blocks execute asynchronously, such a task division emu-

lates solving many LPs independently in parallel. Moreover, each

block is made to consist of j (≥ q) threads, which is a multiple of

32, as threads in GPU are scheduled and executed as warps. The

block of threads is utilized in manipulating the simplex tableaux in

parallel, introducing another level of parallelism.

4.2 Implementation of the Simplex Algorithm

Finding the pivot column in Step 1 of the simplex algorithm above

requires to determine the index of the maximum value from the

last row of the tableau. We parallelize Step 1 by utilizing n (out of

j) threads in parallel to determine the pivot column using parallel

reduction described in [13]. A parallel reduction is a technique

applied to achieve data parallelism in GPU when a single result

(e.g. min, max) is to be computed from an array of data. We have

implemented a parallel reduction by using two auxiliary arrays, one

for storing the data and the other for storing the array indices of the

corresponding data. The result of a parallel reduction provides us

the maximum value in the data array and its corresponding index

in the indices array.

We also apply parallel reduction in Step 2 by utilizingm (out of

j) threads in parallel to determine the pivot row (m being the row-

size of the simplex tableau). It involves finding a minimum positive

value from an array of ratios (as described in Step 2 above) and

Session 3: High Performance Computing  ICPE ’19, April 7–11, 2019, Mumbai, India

61



therefore ratios which are not positive needs to be excluded from

the minimum computation. This leads to a conditional statement

in the parallel reduction algorithm and degrades the performance

due to warp divergence. Even if we re-size the array to store only

the positive values, the kernel still contains conditional statements

to check the threads that need to process this smaller size array. To

overcome performance degradation with conditional statements,

we substituted a large positive number in place of ratios that are

negative or undefined. This creates an array that is suitable for

parallel reduction in our kernel implementation.

Data parallelism is also employed in the pivot operation in Step

3, involving substitution and re-writing, using the (m − 1) threads
(out of j threads in the block).

4.3 Coalescent Memory Access

In this section, we discuss our efforts on keeping a coalescent access

to global memory to reduce performance loss due to cache misses.

When threads in a warp access contiguous locations in the memory,

the access is said to be coalescent. A coalescent memory access

results in performance benefits due to an increased cache hit rate.

As discussed earlier, we use global memory to store the simplex

tableaux of the LPs in a batch as described in Section 4.1 (Since the

global memory in a GPU is of the maximum size in the memory

hierarchy, it can accommodatemany tableaux).We store the simplex

tableau inmemory as a two-dimensional array. High level languages

like C and C++ use the row-major order by default for representing

a two-dimensional array in the memory. CUDA is an extension

to C/C++ and also use the row-major order. The choice of row or

columnmajor order representation of two-dimensional arrays plays

an important role in deciding the efficiency of the implementation,

depending on whether the threads in a warp access the adjacent

rows or adjacent columns of the array andwhat is the offset between

the consecutive rows and columns.

We use the term column-operation, when elements of all rows

from a specific column are accesses simultaneously by each thread

in a warp. If the array is in a row-major order, then this operation is

not a coalesced memory access, as each thread access elements from

the memory separated by the size equal to the column-width of the

array. When elements of a specific row are accessed simultaneously

by threads of a warp, we called this a row-operation. Note that for a
two dimensional array stored in row-major order, a row-operation

is coalesced since each thread access data from contiguous locations

in the memory.

We now show that in the simplex algorithm described above,

there are more column-operations than row operations and thus,

storing our data (i.e. simplex tableau) in a column-major order

ensure more coalesced memory access in comparison to having a

row-major storage.

Step 1 of the simplex algorithm determines the entering variable

(also known as the pivot column), which requires finding the index

of the maximum positive coefficient from the last row. This requires

a row-operation and as mentioned in Section 4.2, we use parallel

reduction using two auxiliary arrays, Data and Indices. Although
accessing from the last row of the simplex tableau is not coalesced

(due to our column-major ordering) but copying into the Data (and

Indices) array is coalesced and so is the parallel reduction algorithm

on the Data (and Indices) array. We use the technique of Parallel
Reduction: Sequential Addressing in [13], a technique that ensures

coalesced memory access.

Step 2 of the simplex algorithm determines the leaving variable

(also called the pivot row) by computing the row index with the

minimum positive ratio (bi/ − ai,e ), as described in Section 3.1.

This requires two column-operations involving the access to all

elements from columns b and xe as shown in Figure 2. To compute

the row index with the minimum positive ratio, we use parallel

reduction as described above in Section 4.2. Our tableau being

stored in a column-major order, access to columns b and xe are

both coalesced. The ratio and its corresponding indices (represented

by the thread ID) are stored in the auxiliary arrays, Data and Indices
which is also coalesced. Like in Step 1, we use the same technique

of Parallel Reduction: Sequential Addressing in [13] for coalesced

memory access. Step 3 performs the pivot operation that updates

Index b x1 . . . xe . . . xn+m+s

. . . . . . . . . . . . . . . . . . . . .

i bi . . . . . . aie . . . . . .

. . . . . . . . . . . . . . . . . . . . .

unused Optimal
Solution 

Coefficients of non-basic
variable in objective function
(used to determine entering

variable)

 

th
re

ad
Id

x.
x

bi/-aie

MAX n - 1

i

0

. . .

. . .

. . .

. . .

. . .

Data Indices

Figure 2: Simplex Tableau along with two separate arrays,

Data to store the positive ratio and Indices to keep track of

the indices of the corresponding values in the Data array.

Ratios that reduces to negative or undefined are replaced by

a large value denoted by MAX.

the elements of the simplex tableau and is the most expensive of the

three steps. It first involves a non-coalescent row-operation which

computes the new modified pivot row (denoted by the index ℓ) as

{NewPivotRowℓ = OldPivotRowℓ ÷ PE}, where PE is the element

in cell at the intersection of the pivot row and the pivot column

for that iteration, known as the pivot element. The modified row

(NewPivotRowℓ ) is then substituted to update each element of all

the rows of the simplex tableau, using the formula NewRowi j =

OldRowi j −PivotColie ∗NewPivotRowℓj . The elements of the pivot

column are first stored in an array named PivotCol which is a

column-operation, and so is coalesced, due to the column-major

representation of the tableau. The crucial operation is updating each

jth element for every ith row (except the pivot row ℓ) of the simplex

tableau, which requires a nested for-loop operation. We parallelize

the outer for-loop that maps the rows of the simplex tableau. Our

data being represented in a column-major order, parallel access to

all rows for each element in the jth column of the inner for-loop is

coalesced.

To verify the performance gain due to coalesced memory access,

we experiment with Step 3 which is the most expensive of the

three steps in the simplex algorithm, by modifying it to have non-

coalesced memory accesses. We interchange the inner for-loop

with the outer loop (loop interchange, a common technique to

improve cache performance [14]). This loop interchanging converts

the Step 3 to have non-coalesced memory access since our simplex
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tableau is represented in a column-major order. Table 2 presents

the experimental results to show the gain in performance when

the accesses to memory are coalesced, as compared to having non-

coalesced memory accesses. The results show a significant gain in

performance on a Tesla K40c GPU, for LPs with the initial basic

solution as feasible.

LP Dim Batch-size Speed-up

10 1000 0.193 0.016 12.06
50 1000 0.286 0.033 8.67
100 1000 0.947 0.105 9.02
200 1000 4.739 0.397 11.94
300 1000 14.482 0.921 15.72
400 1000 30.320 2.109 14.38
500 1000 43.416 2.844 15.27

Non-coalesced 
Access Time 

(seconds)

Coalesced 
Access Time 

(seconds)

Table 2: Performance due to coalesced/non-coalesced mem-

ory access on a GPU, LPs with feasible initial basic solution.

We observe that Step 1 has a row-operation, Step 2 has two

column-operations and Step 3 has a row and a column operation

each with a nested for-loop which can be expressed both in row

as well as column operations. We see that there are more column

operations than row operations.

4.4 Overlapping data transfer with kernel

operations using CUDA Streams

The memory bandwidth of host-device data copy is a major bot-

tleneck in CUDA applications. We use nvprof [20] to profile time

for memory transfer and kernel operation of our implementation

discussed above in Section 4. The result of profiling in a Tesla K40c

GPU, for LPs with an initial basic solution as feasible, is reported in

Table 3. We observe that, for a small batch size (e.g. 10 in the Table

3), the memory copy operation takes a maximum of 5.75% of the

execution time, whereas for larger batch size (rows in gray colour),

the memory copy operation takes 6% to 15% of the execution time.

Table 3: Profiling report obtained using nvprof tool for LPs

with an initial basic solution as feasible. H2D - stands for

host to device and D2H indicates device to host memory

copies respectively.

A standard technique to improve the performance in CPU-GPU

heterogeneous applications is by using CUDA streams. CUDA

streams allow overlapping memory copy operation with kernel

execution. A stream in CUDA consists of a sequence of operations

executed on the device in the order in which they are issued by the

host procedure. These operations can not only be executed in an

interleaved manner, but also be executed concurrently in order to

gain performance [12].

Figure 3: Performance gain due to overlapping kernel execu-

tion with data transfer compared to sequential data transfer

and kernel execution. The time required for host-to-device

(H2D), device-to-host (D2H) and kernel execution are as-

sumed to be the same.

A GPU in general, has a separate kernel and a copy engine.

All kernel operations are executed using the kernel engine and

memory copy operations to and from the device are performed

by the copy engine. However, some GPUs have two copy engines,

one each for copying data from host to device and from device to

host, for better performance. Figure 3 illustrates the overlapping

of kernel executions with memory copy operation, when the GPU

has one kernel and one copy engine. Streaming by batching similar

operations causes more overlap of copies with kernel executions,

as depicted in the figure. Adding all host-to-device copy to the

CUDA streams followed by all kernel launches and device-to-host

data copies, can result in a significant overlap of memory copy

operations with kernel executions, resulting in a performance gain.

When there are two copy engines, looping the operations in the

order of a host-to-device copy followed by kernel launch and device-

to-host copy, for all streams may result in a better performance

than the former method. For GPUs with compute capability 3.5 and

above, both the methods result in the same performance due to the

Hyper-Q [4] feature.

Although a large number of CUDA streams achieves more con-

currency and interleaving among operations, it incurs stream cre-

ation overhead. The number of CUDA streams that gives optimal

performance is found by experimentation. From our experimental

observations, we conclude that with varying the batch size and the

LP dimension, the optimal number of streams also varies. In this

paper, we report results with 10 streams for batch size more than

100 LPs. We use a single stream when the batch size is less than

100 (for LPs of any dimension).

Session 3: High Performance Computing  ICPE ’19, April 7–11, 2019, Mumbai, India

63



4.5 Limitations of the Implementation

As the current limit on threads per block is 1024 in CUDA, our

implementation limits the size of LPs having initial basic solution
as feasible to 511 × 511. The size limit for LPs having initial basic
solution as infeasible is 340 × 340. This limit is derived from (2):

(var + slack + arti + 2) ≤ 1024 (2)

wherevar is the number of variables (dimension of the LP problem),

slack is the number of slack variables and arti is the number of

artificial variables in the given LP. The number 2 indicates the use

of two auxillary columns described in Section 3.1.

4.6 Solving a Special Case of LP

The feasible region of an LP given by its constraints defines a

convex polytope. We observe that when the feasible region is a

hyper-rectangle, which is a special case of a convex polytope, the

LP can be solved cheaply. Equation (3) shows that maximizing the

objective function is the sum of the dot products of n terms.

maximize

x ∈B
(ℓ.x ) =

n∑
i=1
ℓi .hi ,where hi =




ai if ℓi < 0

bi otherwise

(3)

where ℓ ∈ Rn is the sampling directions over the given hyper-

rectangle B = {x ∈ Rn |x ∈ [a1,b1] × ... × [an ,bn]}.
An implementation for solving this special case of LPs is incor-

porated in our solver. In order to solve many LPs in parallel, we

organize CUDA threads in a one-dimensional block of threads with

each block used to solve an LP. Each block is made to consist of

only 32 threads, the warp size. Within each block, we used only a

single thread to perform the operations of the kernel. A preliminary

introduction to this technique is introduced in the paper [24].

5 EVALUATION

We evaluate our solver on two set of LPs. The first is a set of ran-

domly constructed LPs. The LPs in this set are constructed by

randomly selecting the coefficients of the constraint matrix A from

a range of [1...1000], the bounds of the constraints b from a range of

[1...1000] and the coefficients of the objective functions c from the

range of [1...500] respectively. The second set of LPs are selected

from the Netlib repository. On both the set of LPs, we evaluate the

performance of our batched solver on varying batch sizes. In the

text that follows, we refer to our solver on a GPU as BLPG, abbrevi-

ating Batched LP solver on a GPU. The solver using CUDA streams

is referred as BLPG-SM. We perform our experiment in Intel Xeon

E5-2670 v3 CPU, 2.30 GHz, 12 Core (without hyper-threading), 62

GB RAM with Nvidia’s Tesla K40c GPU. The reported performance

is an average over 10 runs. A performance comparison of our solver

to GLPK is shown in Figure 4, for the first set of randomly gen-

erated LPs of various sizes and various batch sizes. We observe a

maximum speed-up of 16× for LPs having the initial basic solution
as feasible, for a batch of 2K LPs of dimension 100. For the same

type of LPs, we see a maximum speed-up of 18×, for a batch of 5K
LPs of dimension 100, using BLPG-SM. We observe that for LPs of

large size, BLPG performs better even with a few LPs in parallel

(e.g., batch size=50 for a 500 dimensional LP). However, for small

size LPs, BLPG out-performs GLPK only for larger batch sizes (e.g.

a batch size of 100 for a 5 dimensional LP).

Batch-size
Time (Sec) Speed-up w.r.t. GLPK

GLPK BLPG BLPG-SM Vs BLPG Vs BLPG-SM

1 0.000 0.000 0.000 0.00 0.00
50 0.001 0.000 0.000 0.00 5.00

100 0.001 0.000 0.001 12.00 1.09
500 0.009 0.001 0.002 9.40 4.48

1000 0.016 0.003 0.003 5.43 4.94
1500 0.031 0.009 0.004 3.44 7.75
2000 0.041 0.005 0.006 8.20 6.83
5000 0.104 0.013 0.014 8.00 7.43

10000 0.166 0.025 0.025 6.64 6.64
20000 0.317 0.049 0.048 6.47 6.60
50000 0.775 0.122 0.120 6.35 6.46

100000 1.663 0.242 0.239 6.87 6.96

(a) 5-Dimension

Batch-size
Time (Sec) Speed-up w.r.t. GLPK

GLPK BLPG BLPG-SM Vs BLPG Vs BLPG-SM

1 0.002 0.003 0.004 0.67 0.50
50 0.099 0.013 0.040 7.62 2.48

100 0.178 0.018 0.018 9.89 9.89
500 0.681 0.070 0.050 9.73 13.62

1000 1.628 0.105 0.095 15.50 17.14
1500 2.400 0.153 0.153 15.69 15.69
2000 3.283 0.200 0.184 16.42 17.84
5000 7.900 0.486 0.435 16.26 18.16

10000 15.695 0.956 0.860 16.42 18.25
20000 31.283 1.904 1.714 16.43 18.25
50000 78.280 4.778 4.277 16.38 18.30

(b) 100-Dimension

Batch-size
Time (Sec) Speed-up w.r.t. GLPK

GLPK BLPG BLPG-SM Vs BLPG Vs BLPG-SM

1 0.045 0.074 0.046 0.61 0.98
50 2.133 0.234 0.172 9.12 12.40

100 4.242 0.339 0.274 12.51 15.48
500 21.395 1.480 1.309 14.46 16.34

1000 43.084 2.844 2.572 15.15 16.75
1500 62.819 4.295 3.846 14.63 16.33
2000 75.288 5.730 5.143 13.14 14.64

(c) 500-Dimension

Figure 4: Performance of batched LPs of type initial basic

solution as feasible.

Figure 5 shows a performance comparison of BLPG with GLPK

on LPs having the initial basic solution as infeasible. In spite of

the fact that BLPG executes the kernel twice due to the two-phase

simplex algorithm as discussed in Section 3 (an extra overhead

of data exchange between the two kernels), we observe a better

performance. We gain a maximum speed-up of nearly 12×, for a

batch of 10K LPs of dimension 200.

On profiling BLPG-SM, we observe that for small sized LPs, the

processing time of the kernel is much larger than the data transfer

time. As a result, the gain in performance due to overlapping data

transfer with kernel execution is negligible. This is evident from

the results in Figure 4a. As the LP size increases, the volume of

data transfer also significantly increases. Hence, the operation of

data transfer for all the streams (except the first) can be overlapped

while the first kernel is in execution, thereby saving the time for

data transfer in the rest of the streams. This results in performance

gain up to 2% to 3% for LPs of large sizes, as evident from Figures

4b and 4c.
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Batch-size - -> 1 5 10 100 500 1000 5000 7000 10000 50000 70000 100000

Sl No Benchmarks Speed-up

1 ADLITTLE 0.06 0.31 0.60 4.29 4.58 5.07 5.26 5.68 5.82 5.45 5.48 5.51
2 AFIRO 0.91 4.93 10.76 37.76 73.43 74.84 87.51 89.72 96.12 98.90 93.25 95.21
3 BLEND CPLEX could not read the input file (SIF format) available in the Netlib repository
4 ISRAEL 0.09 0.36 0.64 1.74 2.14 2.17 2.21 2.26 2.23 2.17 2.17 2.17
5 SC105 0.16 0.94 1.18 4.52 5.53 5.66 5.87 5.79 5.82 5.58 5.58 5.55
6 SC205 0.04 0.19 0.38 0.67 0.78 0.77 0.85 0.78 1.07 1.07 1.08 1.08
7 SC50A 0.64 3.10 6.56 37.16 46.88 45.28 50.83 52.25 49.45 50.41 50.73 50.75
8 SC50B 0.51 2.71 5.53 29.06 46.23 37.92 40.23 42.86 42.35 40.74 41.01 41.44
1 ADLITTLE

GLPK

0.04 0.17 0.28 1.36 1.40 1.52 1.61 1.61 1.62 1.64 1.65 1.64
2 AFIRO 0.00 0.33 0.67 1.63 2.45 2.14 2.68 2.69 2.93 2.78 2.81 2.89
3 BLEND 0.05 0.10 0.20 0.89 1.34 1.35 1.42 1.42 1.42 1.43 1.40 1.39
4 ISRAEL 0.09 0.31 0.52 1.27 1.55 1.59 1.61 1.63 1.60 1.56 1.57 1.56
5 SC105 0.20 0.67 0.79 2.30 2.51 2.57 2.62 2.63 2.63 2.48 2.49 2.49
6 SC205 0.07 0.24 0.43 0.89 0.92 1.01 1.02 1.02 1.23 1.22 1.22 1.21
7 SC50A 0.20 1.00 0.80 5.00 5.43 5.62 5.75 5.74 5.82 5.82 5.75 5.81
8 SC50B 0.17 0.83 0.67 4.36 4.69 4.78 4.97 4.97 5.05 5.00 5.00 4.97

BLPG 
Vs

IBM 
CPLEX

Table 5: Performance evaluation on selected benchmarks from Netlib
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Figure 5: Performance comparison betweenGLPKandBLPG

for LPs with initial basic solution as infeasible

Batch-size -->  1 10 100 1000 10000 100000
 Benchmark  Rows Cols Gflop/s
ADLITTLE 71 97 0.09 0.92 7.51 8.27 8.81 8.84

AFIRO 35 32 0.10 0.98 7.64 10.01 11.19 11.27
BLEND 117 83 0.15 1.34 6.17 9.90 10.47 10.48
ISRAEL 174 142 0.57 4.46 12.46 15.35 15.61 15.61
SC105 150 103 0.48 3.73 13.87 15.48 15.72 15.74
SC205 296 203 0.95 7.18 13.67 15.11 16.94 16.93
SC50A 70 48 0.22 2.20 13.14 14.69 15.52 15.56
SC50B 70 48 0.22 2.17 13.04 14.52 15.40 15.47

Table 4: Performance of batched LP solver on a GPU

Table 5 shows a comparative evaluation of our solver to CPLEX

and GLPK, on a set of selected LPs from the Netlib repository. The

experimental platform is a 4 Core Intel Xeon CPU E5-1607 v4, 3.10

GHz, 63 GB RAM with Nvidia’s Tesla K40m GPU. The LP bench-

marks in the Netlib repository are present in MPS format. We use

the MATLAB’s built-in function mpsread to read the benchmarks

and then convert them into the standard form. The converted sizes

of the benchmarks is shown in Table 4 with column heading “Rows”

indicating the number of converted constraints and “Cols” indicat-

ing the size of the benchmark. The table also shows the number

of floating point operations per second (in Giga flops), giving an

estimation of the floating point computations in the Simplex algo-

rithm and the utilization of GPU by our proposed batched LP solver.

We use the visual profiler (nvvp) available in the CUDA Toolkit

[21]. The batched LP solver gives a maximum of 16.93 Gflops/s for

a batch size of 100K LPs on a Nvidia Tesla K40m GPU that has a

theoretical peak of 1.43 Tflops/s, for double precision arithmetic.

Due to the LP size limitation of BLPG discussed earlier in Sec-

tion 4.5, we choose benchmarks that satisfy this limitation. Table 5

shows the performance comparison of the two LP solvers with that

of BLPG, on the Netlib benchmarks. Note that Netlib benchmarks

are highly sparse in nature and LP solvers such as IBM CPLEX

and GLPK are optimized for sparse LPs. Our implementation is the

original Simplex method proposed by Dantzig and does not have

any optimization for sparse LPs. We observe that in some bench-

marks such as SC205 in Table 5 (and some others, not included

in the table) CPLEX performs better than GLPK, whereas in other

benchmark instances, GLPK outperforms CPLEX. Our proposed

BLPG achieves a maximum of 95× and nearly 6× speed-up on the

Netlib benchmarks w.r.t. CPLEX and GLPK respectively.

5.1 Motivational Application

In this section, we demonstrate the performance enhancement of

state-space exploration of models of control systems, using our

batched LP solver. As discussed in Section 2, the state-space ex-

ploration routines in the state of the art tools requires solving a

large number of LPs. We consider two benchmarks, the Helicopter

controller and a Five dimensional dynamical system for its state-

space computation using the tools SpaceEx-LGG and XSpeed. The

Helicopter controller benchmark is a model of a twin-engined multi-

purpose military helicopter with 8 continuous variable modeling

the motion and 20 controller variables that governs the various

controlling actions of the helicopter [8, 25]. The Five dimensional

dynamical system benchmark is a model of a five dimensional linear

continuous system as defined in [9]. We direct the reader to the

paper [9] for details on the dynamics of the model.
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In order to show the impact of our solver BLPG, we evaluate the

performance of the tools by solving the resulting LPs generated

from the state-space exploration routines on these benchmarks.

The LPs are sequentially solved using GLPK and in parallel using

BLPG. The performance comparison is shown in Table 6, in an

experimental setup of Intel Q9950 CPU, 2.84 Ghz, 4 Core (no hyper-

threading), 8 GB RAM with a GeForce GTX 670 GPU. We observe a

maximum speed-up of 12× and 9× in the tools performance with

parallel solving of the LPs in BLPGw.r.t. sequential solving in GLPK.

When compared to the tool SpaceEx-LGG, we observe a maximum

of 54× and 39× speed-up in XSpeed using our solver. Note that the

LPs generated by the tool on these benchmarks have the property

that their feasible region is an hyper-rectangle. Therefore, BLPG

solves these using the technique mentioned in Section 4.6.

Benchmark

Time (in Secs) Speed-up w.r.t. XSpeed (GPU)

SpaceEx Vs SpaceEx

20010 0.133 0.345 0.018 7.4 19.2
100050 0.717 1.399 0.060 12.0 23.3

1000500 6.695 24.171 0.576 11.6 42.0
2001000 13.128 59.996 1.121 11.7 53.5

56056 1.400 4.399 0.172 8.1 25.6
1569568 39.089 123.794 4.246 9.2 29.2
2002000 50.367 187.825 5.397 9.3 34.8
3003000 75.087 311.652 8.055 9.3 38.7

Nos. of 
LPs XSpeed 

(Seq)
XSpeed 
(GPU)

Vs XSpeed 
(Seq)

Five 
Dimensional

System

Helicopter 
Controller

Table 6: Speed-up in XSpeed using Hyperbox LP Solver

5.2 Future Work

As the current limit on threads per block is 1024 in CUDA, our

implementation limits the size of LPs having initial basic solution
as feasible to 511 × 511 and 340 × 340 for LPs having initial basic
solution as infeasible. We intend to address this limitation in future

work. Another limitation of the solver is the LPs in the batch have

to be the same size. Although this limitation is not a concern for

our motivational application in particular, but the solver will be

useful in more general applications without this limitation.

6 CONCLUSION

Solving a linear program on a GPU for an accelerated performance

on a CPU-GPU heterogeneous platform has been extensively stud-

ied. To the best of our knowledge, all such work report a perfor-

mance gain only on linear programs of large size. We present a

solver implemented in CUDA that can accelerate applications hav-

ing to solve small to medium size LPs, but a large number of them.

Our solver batches the LPs in an application and solves them in

parallel on a GPU using the simplex algorithm. We report signif-

icant performance gain on benchmarks in comparison to solving

them in CPU using GLPK and CPLEX solvers. We show the utility

of our solver in an application of state-space exploration of models

of control systems which involves solving many small to medium

size LPs, by showing significant performance improvement.
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