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ABSTRACT
One of the most common usage scenarios for Cloud-IoT applica-
tions is Sensing-as-a-Service, which focuses on the processing of
sensor data in order to make it available for other applications.
Auto-scaling is a popular runtime management technique for cloud
applications to cope with a varying resource demand by provi-
sioning resources in an autonomous manner. However, if an auto-
scaling system cannot provide the required resources, e.g., due to
cost constraints, the cloud application is overloaded, which impacts
its performance and availability. We present a feedback control
mechanism to mitigate and recover from overload situations by
adapting the send rate of smart devices in consideration of the
current processing rate of the cloud application. This mechanism
supports a coupling with the widely used threshold-based auto-
scaling systems. In a case study, we demonstrate the capability of
the approach to cope with overload scenarios in a realistic envi-
ronment. Overall, we consider this approach as a novel tool for
runtime managing cloud applications.
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1 INTRODUCTION
The Cloud-IoT paradigm addresses the limitations of the Internet
of Things (IoT) in terms of computation and storage capabilities
by coupling it with Cloud Computing to enable a range of usage
scenarios [3]. One of the most relevant ones in the areas of smart
home, connected vehicles or Industry 4.0 is Sensing-as-a-Service
(SensAAS), which aims to provide ubiquitous access to sensor data.

IoT platforms aim to connect the physical world with cloud solu-
tions [8]. The basic responsibilities of an IoT platform are to offer an
interface for devices to connect, receive and process their data and
provide the data to connected applications. A common architectural
design decision is to dispatch received data via message queues to
connected applications.

Traditional runtime performance management leverages the
capabilities of cloud computing by automatically scaling resources.
These so called auto-scaling systems aim to provision resources
in respect to the current resource demand as extensively surveyed
in [11]. Typically, scaling decisions are performed horizontally by
replicating resources.

However, auto-scaling systems may face limitations which ren-
der resource provisioning as prohibitive or inefficient. First, in order
to avoid high operating costs the maximum number of provision-
able resources is usually capped in practice. Second, dependencies
to external services may impose a cap on the processing rate of the
cloud application.

If the rate of receivedmessages exceeds the rate of processedmes-
sages over a long period of time, critical infrastructure components
like message queues eventually accumulate messages, resulting in
a possibly long-lasting high delay for messages and may deplete
the resources of the message broker. This may affect the Quality-
of-Service (QoS) of Cloud-IoT Applications which aim to process
recent data.

Modern message broker systems such as Pivotal RabbitMQ and
Artemis ActiveMQ are able to cope with such situations by offer-
ing backpressure techniques like discarding messages or blocking
producers based on time or resource criteria [1, 16]. However, by
discarding expired messages data is lost and by blocking producers
there is no feedback when they may send data again.

The contribution of this paper is a feedback control mechanism
which considers the current processing rate of the cloud applica-
tion in order to centrally adapt the send rate of devices. This allows
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Figure 1: Architecture of the running example. Devices con-
nect to the IoT integration middleware, which provides re-
ceived sensor data to the application.

devices to cope with the increased send interval, e.g., by aggregat-
ing instead of discarding sensor data. Due to the highly dynamic
environment we estimate the processing rate at runtime using mes-
sage queue metrics in overload situations. We aim to stabilize the
queue and the message processing delay by adapting the send rate
until the overload situation has been resolved. In order to preserve
the benefits of auto-scaling systems, we present a coupling tech-
nique for threshold-based auto-scalers. We support applications in
which data can be aggregated and each message demands the same
amount of resources. This results in a processing delay based on
the degraded send rate but mitigates an uncontrollable message
processing delay induced by a flooded queue.

We exploratorily show in a case study that the overload protec-
tion approach is able to cope with overload situations and that it
can be successfully coupled with auto-scaling systems.

The remainder of this paper is organized as follows: Section 2
introduces a running example in the area of connected heating.
Section 3 explores limitations of auto-scaling systems and derives
challenges. We introduce our approach in section 4. In section 5, we
present a case study for its evaluation. Section 6 gives an overview
of related work. Section 7 discusses limitations and future work
and section 8 concludes the results of the case study.

2 RUNNING EXAMPLE
Bosch offers many SensAAS services in the areas of smart home,
connected vehicles or Industry 4.0. To quickly build and deploy
such services, Bosch provides the Bosch IoT Cloud, a Platform-
as-a-Service based on Cloud Foundry1. In this paper, the running
example is based on a connected heating scenario, in which a vary-
ing number of connected heating control units periodically send
sensor data. The architecture of the example is derived from a
productively used system and closely resembles the architecture
proposed in [4].

Components. Figure 1 shows the corresponding components in
the running example. Every component is deployed on the cloud
infrastructure except for the heating units.

The Heating Unit transfers temperature sensor data at a rate
configured by the application developer. Each sensor data mes-
sage contains the average temperature within the time interval
determined by the configured rate.

The IoT Integration Middleware allows devices to connect, to
receive the data from these devices, and to provide them to con-
nected applications using a Message Queue. The Processing Service
consumes messages out of this queue in order to process and finally
persist them using an External Database. The External Database is
1https://www.cloudfoundry.org/
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Figure 2: In an overload situation the rate of arriving mes-
sages exceeds the processing rate of the cloud application.
This results in a residual load which has to be processed at
a later point of time, inducing a recovery delay.

shared across many applications and is not operated by the appli-
cation developer.

3 CHALLENGES
Cloud applications are typically managed by auto-scaling systems
at runtime. Essentially auto-scaling systems aim to cope with the
current resource demand by (de-)provisioning resources. In prac-
tice, auto-scaling systems may face limitations in the following
scenarios:

Cost-based Provisioning Constraints – In order to cap the maxi-
mum operating costs, auto-scaling systems are usually limited in
terms of the maximal number of provisionable instances.

External Resource-based Constraints – Dependencies to external
resources, e.g., a shared database system, can be a bottleneck in
such a system. Scaling resources within the operational scope of a
cloud application can be inefficient in such a case.

Figure 2 illustrates the issue associated with a limited processing
rate. When the rate of incoming messages exceeds the processing
rate, arriving messages cannot be processed immediately and have
to be placed in a queue. We call this load residual load, which has to
be processed at a later point of time, resulting in a recovery delay.

Based on these constraints we derive the following challenges
in operating such an application:

Challenge 1 – Cope with overload situations in which the resource
provisioning is saturated.

Challenge 2 – Cope with overload situations in which the provi-
sioning decisions are inefficient.

Challenge 3 – Cope with a non-empty queue degrading the mes-
sage processing delay.

4 APPROACH
Themain objective of the approach is tomitigate overload situations
of a cloud application deployed on a cloud infrastructure. In order
to mitigate or resolve an overload situation, the send rate of each
device is centrally adapted in respect to the current processing rate
of the cloud application. This results in a lower message processing
delay by reducing the residual load illustrated in figure 2.

It aims to support operating Cloud-IoT applications in sensing
scenarios, which receive and process sensor data, which induces
equal resource demand. A main requirement for this approach is a
dedicated message queue which provides received data of devices
to a connected application.

There are different factors that make an ideal send rate adap-
tation impossible in practice, e.g. monitoring and reconfiguration
delays and performance uncertainties in the highly dynamic cloud
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environment resulting in varying message processing rates. In the
following we describe how our approach copes with those influ-
ences to systematically approach an appropriate arrival rate for the
system.

4.1 Phases
The overload protection approach consists of three phases: an idle
phase, an overload protection phase and an overload recovery phase.

The idle phase is the state in which the overload protection ap-
proach does not take any action. If the overload protection approach
recognizes an overloaded situation of the cloud application, it tran-
sits to the overload protection phase. In this phase, the approach
adapts the send rate of smart devices using the estimated processing
rate of the cloud application. If the overload situation is resolved,
the approach transits to the overload recovery phase. In this phase,
the overload protection approach increases the send rate of the
smart devices in order to smoothly recover the original send rate. If
this results in an overload situation, it transits back to the overload
protection phase. If the send rate is successfully restored, without
inducing an overload situation, it transits to the idle phase.

4.2 Overload Situations
By providing received sensor data to the cloud application, the
message queue is directly affected by an imbalance between the
rate of received and processed messages. For this reason we use
metrics of the message queue as indicators for overload situation.
Modern message broker systems, such as RabbitMQ, support the
monitoring of the followings metrics:

• Queue Length – Number of messages in the queue.
• Queueing Delay – Time the leading message has spent in
the queue.

• Queue Arrival Rate – Number of messages entering the
queue during a time unit.

• Queue Departure Rate – Number of messages leaving the
queue during a time unit.

Typically, messages are processed in a First-Come-First-Serve
(FCFS) manner. If the queue arrival rate exceeds the queue departure
rate the queue eventually accumulates messages. Based on the FCFS
policy, received messages must wait until preceding messages have
been processed, which is reflected by the queueing delay. The QoS
might be expressed by the queueing delay, subsequently a longer
delay may lead to Service-Level-Agreement (SLA) violations. We
consider a cloud application as overloaded, if the queue length or
the queueing delay have surpassed a certain threshold, which is
provided by the application developer. In the following we describe
this threshold asTM whereM is the underlying metric. For example,
TQueueLength = 1 means that the cloud application is considered to
be overloaded if the queue length is greater than 1.

4.3 Estimation of the Cloud Application’s
Processing Rate

We estimate the current processing rate of the cloud application
to decide on a suitable send rate for the smart devices. This makes
the approach more flexible, because we can accommodate cases in
which we do not know the actual processing rate, e.g., when the

rate is capped by external services. If the rate of incoming messages
exceeds the processing rate of the cloud application, the message
queue eventually gets filled with messages resulting in a non-zero
length. In this case we assume that the cloud application processes
messages at full capacity, which renders the queue departure rate
as a proxy-metric for its processing rate. Additionally, we check,
whether the estimated performance is smaller than the current
queue departure rate, which indicates that the estimated processing
rate is too small. Therefore, we refine the estimation in this case.

4.4 Calculation of the Adapted Send Rate of
Devices

Based on the assumption that each sensor data demands the same
amount of resources on the cloud application, we predict the cur-
rently supported send rate S’ of each device at a time t using the
cloud application’s estimated processing rate RCloudApplication and
the number of connected devices NDevices such that:

S ′(t) :=
RCloudApplication(t)

NDevices(t)

We cap the send rate S ′ if it exceeds the default send rate Sdefault :

S ′cap(t) := min
(
S ′(t), Sdefault

)
4.5 Send Rate Adaptation within the Phases
During the overload protection phase, the goal is to mitigate or
resolve an overload situation. The calculated send rate of the devices
is based on the processing rate of the cloud application. However,
we reduce it further in this phase, in order to let a non-empty
queue recover. This reduces the queueing delay, resulting in a lower
message processing latency. For this reason we introduce a factor
kprotect < 1 for reducing the send rate in the overload protection
phase, therefore ensuring that the queue size decreases over time:

S ′protect (t) := S ′cap(t) · kprotect

If an overload situation is resolved, we want to smoothly transit
the adapted send rate back to the default send rate Sdefault . For this
reason, we set the send rate S ′recover during the recovery phase to
S ′protect at the beginning of the recovery phase. We then increase
the send rate by a factor krecover > 1 in iterations of length T :

S ′recover (t) := S ′recover (t −T ) · krecover

This factor allows to handle an underestimation in the processing
rate of the cloud application, since S ′recover (t) converges to the actual
processing rate of the cloud application.

4.6 Coupling with Auto-Scaling Systems
Cloud applications are usually operated with auto-scaling systems,
which aim for provisioning resources to cope with the current re-
source demand. The overload protection approach adapts the send
rate of devices and thus reduces the workload on the cloud appli-
cation. Due to these complementary goals, we propose a coupling
of both strategies in order to minimize interfering effects. When
the overload protection approach recovers the queue and thus re-
duces both queue length and queueing delay, an auto-scaling system
which uses these metrics may, for example, falsely assume an idle
service and deprovision resources. To avoid such interference we
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turn the auto-scaling system off during the overload protection and
recovery phase and turn it on again, when the overload situation
has been resolved. We propose two coupling techniques in order to
decide when to activate the overload protection approach:

Overload-based. In this solution, a recognized overload situation
is the sole trigger for activating the overload protection approach.

State-Aware. The auto-scaling system signals whether its scal-
ing decisions are saturated to leverage its capabilities until it has
reached its provisioning limit. That means that we extend the tran-
sition condition from the idle to the overload protection phase by
additionally checking if the auto-scaling system has reached its
provisioning limits.

4.7 Feedback Control Signaling
The adaptation of the devices should not induce additional load
on the infrastructure or the cloud applications, because this could
possibly nullify the advantages of the device adaptation. For this
reason we propose to adapt the send rate of a device utilizing
the acknowledgment of communication protocols like HTTP after
sending sensor data by injecting the adapted send rate.

5 CASE STUDY FOR VALIDATION
The rationale of this case study is to investigate if the proposed
approach is able to cope with the challenges defined in section 3.We
study the running example in a productively used environment—the
Bosch IoT Cloud—in order to include the influence of disturbance
factors such as measurement errors, control delays and estimation
errors of the processing rate. The structure of the case study is
described in [18].

5.1 Research Questions
We refine the objectives of the case study into a set of research
questions. The first research question refers to the qualities of the
overload protection approach in a scenario without a simultane-
ously operated auto-scaling system.

RQ1 – To which degree are overload situations mitigated?
(i) How does the approach affect the message processing delay

and the number of processed messages?
(ii) How is it influenced by the severity of the overload situation?
The second research question focuses on the coupling with auto-

scaling systems:

RQ2 – To which degree are overload situations mitigated in a
coupled scenario.
(i) How does the approach affect the message processing delay

and the number of processed messages?
(ii) How is it influenced by the severity of the overload situation?
(iii) How is it influenced by the type of coupling?

5.2 Methodology
Experimental Setup. We implemented a lightweight IoT platform

which provides a REST API for the smart devices. As illustrated
in figure 3, we utilize this IoT Integration Middleware to retrieve
the number of connected heating units and for adapting their send
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Figure 3: Experimental Setup. Devices, Middleware and Ap-
plication are deployed on the Bosch IoT Cloud.
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Figure 4: Example overload shares. For the same load, a pro-
visioning of 4 replicas leads to an overload share of 25 %, 2
replicas lead to an overload share of 65 %.

rate. We are able to retrieve message queue metrics by utilizing
the capabilities of RabbitMQ. In this setup, we simulate the heating
units as virtual entities, deployed as microservices on the Bosch IoT
Cloud, which periodically send sensor data. The cloud application
consists of a scalable microservice which has a configurable service
time to simulate the calls to the external database. Furthermore
it consumes messages out of the RabbitMQ message queue. All
components are deployed on the Bosch IoT Cloud.

Severity of overload situations. In this case study we consider
overload situations which occurs due to provisioning caps. In order
to quantify the severity of an overload situation we calculate the ra-
tio of messages which can not be processed without queueing with
maximum resource provisioning to the total number of produced
messages. We call this ratio the overload share. Figure 4 illustrates
this approach.

Evaluating the quality of the overload protection. One of the main
goals of the overload protection approach is to reduce the mes-
sage processing delay in overload situations. Additionally, it should
stabilize the queue as a critical infrastructure component. For this
reason we measure the average queueing delay, queue length and
send interval during an experiment. Furthermore, we quantify the
throughput in terms of the total number of processed messages dur-
ing an experimental run, whereas each experiment run is observed
for the same duration. Since our experimental setup is within a sin-
gle cloud infrastructure, the message processing delay comprises
the average queueing delay and the send interval but does not
include the network latency as it is negligible. In order to derive
the suitability of the overload protection we compare these values
with values obtained in a similar setup without activated overload
protection, which we declare as baseline. If not stated otherwise,
the baseline describes a static and maximum provisioned system.

Session 2: Cloud Computing  ICPE ’19, April 7–11, 2019, Mumbai, India

54



Workload. We introduce connectivity patterns to describe the
changing number of connected devices over time. The workload on
the system results from the number of connected devices and their
send rate. Therefore the number of devices is given by the experi-
mental setup whereas the send rate can be reconfigured during the
experiment resulting in a dynamic workload. We select a pattern
which we deem as challenging with some minor and a single major
peak. It is illustrated in figure 3. Based on the concrete test setup it
is stretched in terms of the number of devices and duration.

Auto-Scaling Setup. We use a threshold-based rules auto-scaling
system, which is one of the most popular auto-scaling techniques
in industry. We customize the auto-scaling system to offer an inter-
face for (de-)activation and to provide the information, whether its
provisioning decisions are saturated. In our setup we scale a sin-
gle microservice which simulates external service calls by waiting
for a configurable time. As shown in [7] message queue metrics
are suitable in scaling I/O-intensive microservices and for this rea-
son we rely on the queue length as the performance metric of the
auto-scaling system. We configure the auto-scaling system for each
experimental run as follows:

• Performance Metric: Queue Length
• Upper Threshold: 10
• Lower Threshold: 0
• Minimal Instances: 1
• Maximal Instances: Experiment-based

Based on our experience, this threshold combination achieves in
a range of experimental setups a high degree of elasticity in terms
of the measures proposed in [9].

Configuration of the Overload Protection Approach. We config-
ure the parameters of the overload protection approach based on
our experience. For each experimental setup we use the following
configuration:

• Protection Multiplicator: kprotect = 0.98
• Recovery Multiplicator: krecover = 1.1
• Overload Recognition Metric: Queue Length
• Overload Recognition Threshold:TQueueLength = 1 if not
stated otherwise

Experiment Runs. We set the duration of each experiment to
texperiment = 5.5 minutes. Based on our experience, the Bosch IoT
Cloud is a highly reactive cloud infrastructure which performs
scaling decisions within a few seconds. For this reason the duration
is sufficient to perceive important effects. Furthermore we configure
each microservice instance to process a maximum of 5.5msg

sec and
set the default send rate of a simulated thing to be Sdefault = 2msg

sec .

5.3 Results
To answer both research questions we execute a set of experiments
with varying overload severities for different runtime management
scenarios.

The first research question is adressed by using the overload
protection approach in a static provisioning scenario, which we
declare as Overload Protection (only). For the second research
question we focus on two types of coupling: the first type requires

Metric Baseline A.-S. O.P. Coup. Coup. (S.-A.)

Processed Messages 6453.6 6405.9 5855.0 5738.0 5499.1
Avg. Queue Length 545.2 654.3 2.2 120.2 25.2
Avg. Q.-Delay [sec] 21.5 25.1 5.0 13.2 6.4
Max. Q.-Delay [sec] 66.6 79.8 6.9 43.8 8.4
Avg. Send-Inter. [sec] 0.5 0.5 0.63 0.61 0.65
Max. Send-Inter. [sec] 0.5 0.5 1.27 1.12 1.26
Provisioned Instances 6.5 4.0 6.5 3.6 3.78
A.-S. = Auto-Scaling, O.P. = Overload Protection, Coup. = Coupled, S.-A. = State-Aware

Table 1: Metrics for different strategies across all overload
shares.

the auto-scaling system to exchange the information if scaling deci-
sions are saturated, thus we describe this coupling as state-aware.
The second type simply checks the overload condition to activate
the overload approach. In this setup we increase the threshold for
the overload recognition to TQueueLength = 250 in order to leverage
the capabilities of the auto-scaling system before activating the
overload protection mechanism.

In summary we compare the following approaches, whereas
maximum instances describes the maximum number of provision-
able instances depending on the overload share of the concrete
experimental setup:

• Baseline: No overload protection, static provisioning with
maximum instances.

• Overload Protection (only): Overload protection, static
provisioning with maximum instances.

• Auto-Scaling (only): Auto-Scaler only, initial 1 instance
and provisioning capped at maximum instances.

• Coupled: Overload protection coupled with Auto-Scaler.
Activation by overload threshold.

• Coupled (State-Aware): Overload protection coupled with
Auto-Scaler. Activation by saturated provisioning and over-
load threshold.

Figure 5 show the results for each approach, whereas table 1
summarize it.

In the following we discuss each result for each setup indepen-
dently, to finally conclude it:

Baseline. By statically provisioning instances without adapting
the send rate the baseline reaches the highest number of processed
messages. However, since it has no mechanism to mitigate overload
situations it also results in a considerably high average queueing
delay of 23.0 secs.

Auto-Scaling (only). This setup aims to reduce the operating
costs of the cloud application by provisioning resources only if re-
quired. For this reason it is expected to be overall similar to Baseline.
However, due to delays in monitoring and reconfiguration the auto-
scaling system may degrade the number of processed messages
within the experimental duration and may increase the queueing
delay. The results of both setups are similar, which demonstrates
the quality of the auto-scaling system and the infrastructure. The
degradation of the queueing delay is on average 15.6 % whereas the
processed messages are reduced by 1.1 %. Furthermore it reduces
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Figure 5: Average processed messages, queueing delay and
send interval in different scenarios.

the provisioned instances by an average of 36.3 % resulting in lower
operating costs.

Overload Protection (only). Relying on a static provisioning with
the overload protection approach results in a consistently low av-
erage queueing delay of 5.0 secs with a reduction of processed
messages of 11.1 %. Across all overload shares the maximum in-
crease in the send interval is 0.76 secs and on average 0.14 secs,
resulting in an overall low message processing delay.

Coupled. This scenario results in a reduced average number of
processed messages by 11.9 % whereas the queueing delay is re-
duced by an average of 40.5 %. Across all overload shares the maxi-
mum increase in the send interval is 0.62 secs. The average queueing
delay is with 13.7 secs between Overload Protection (only) and
Baseline.

Coupled (State-Aware). Activating the overload protection after
the auto-scaling system has reached its provisioning limits results
in a consistently low average queueing delay of 6.53 secs with
a reduction of processed messages of 16.7 %. The send interval
is increased by a maximum of 0.75 secs and on average by 0.17
secs. Furthermore by utilizing an auto-scaling system it reduces the
operating costs by reducing the provisioned instances by a total
of 38.7 %, which is below the average instances of Auto-Scaling
(only) by reducing the residual load.

Conclusion. The case study has shown, that the approach per-
forms well in an isolated and coupled setup in preventing the mes-
sage infrastucture from getting overloaded. We conclude the first
research question by emphasizing the strong reduction of the queue-
ing delay. In contrast, the reduction of the send rate is on average
18 %, resulting in a comparatively low message processing delay.
Using a state-aware coupled setup offers a high degree of overload
protection for all overload shares and reduces the costs compared
to a static provisioned setup by efficiently utilizing an auto-scaling
system.

5.4 Discussion
The presented case study has shown that the proposed overload
protection is able to cope with the challenges in an isolated and
coupled setup, consistently reaching a low message processing
delay, expressed by a low and stabilized queueing delay with a
comparatively low increment of the send interval, below 1 second
on average. We have shown, that the approach results in a through-
put reduction, since the residual load, as illustrated in figure 2, is
reduced by increasing the send interval, which results in a lower
number of messages to be processed. In order to quantify the costs
of the throughput and send rate reduction the application’s needs
should be considered.

We have shown that a common type of auto-scaling system—
threshold-based auto-scalers—can be combined with the overload
protection approach. This is especially the case for situations where
the auto-scaler discloses information aboutwhether its provisioning
is saturated or not, and to a lesser degree where the overload protec-
tion approach considers the overload recognition threshold Tmetric
only. Especially the state-aware coupling peforms nearly equally
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well as a static provisioning with maximum instances, demonstrat-
ing the capability of this approach to successfully unify both run-
time strategies with their complementary goals.

Altogether, we consider the presented approach as a novel tool
for the application developer to manage the performance, costs and
availability of the system in situations where a variable load on
the system is expected. However, the application developer has to
design a system that is able to cope with the send rate reduction,
e.g. by letting the smart devices reconfigure their data processing
behavior. Overall, this might affect the validity of the data, which
we assume to be strongly dependent on the application’s require-
ments. If an overload situation occur some applications may require
current data, even if it is pre-processed, whereas other application
require a high data resolution, even if the data is delayed. In case
of economical provisioning limitations, the application developer
should be aware, that the degradation of the QoS caused by a send
rate reduction may be more expensive than raising these limits.

5.5 Threats to Validity
In this section, we discuss the validity of the results of our case
study according to the guidelines given by Runeson and Höst [18].

Internal validity. In our case study we observed the influence of
a send rate adaptation on performance qualities of the cloud appli-
cation. Across many experimental setups—both with and without
coupling with an auto-scaling system—we experienced a similar ef-
fect on the overall system: the send rate adaptation reduces the load
on the system which we derive mainly by observing the message
queue. Since we operate the message queue in an isolated setup we
exclude the possibility of an influence by an unknown factor.

External validity. The case study is built according to a typical
architecture for cloud solutions in the area of SensAAS. We selected
a connectivity pattern that allow us to observe the approach in
minor and major overload situations. We deem the complexity
of the pattern as sufficient to reveal the influence of disturbance
factors on the quality of the adaptation. Furthermore we evaluated
the coupling with a commonly used auto-scaling system in this
case study. Since the smart devices in our case study are virtual
entities, deployed as microservices on the cloud infrastructure, the
network latency is expected to be much less than in a productive
system. Because a higher network latency results in a delay of
the adaptation, this may lead to a reduction of the responsiveness
of our approach. In conclusion, based on this setup we expect a
generalizability of the findings for similar cloud solution which
receive and process data from smart devices.

Construct validity. By focusing on message queue metrics to de-
rive the quality of the overload protection we measure a critical
infrastructure component which is affected by overload situations.
Furthermore, by relying on metrics provided by the message broker
technology we observe metrics which directly reflect the perfor-
mance characteristics of the queue.

Reliability validity. By describing the experimental setup in de-
tail we expect the results to be similar when replicated. However,
we consider the cloud infrastructure to not be easily replicable

which may affect the quality of auto-scaling and the network laten-
cies between the deployed components. Therefore, we conclude a
qualitative reproducibility of the findings in this case study.

6 RELATEDWORK
Current runtime management is focused mainly on auto-scaling
systems, which are extensively surveyed in [11] and [17]. For this
reason we focus on feedback control mechanism in Cloud-IoT sce-
narios. Furthermore, we discuss how our approach relates to control-
theory-based methods and to other types of resource management
in Cloud-IoT scenarios, namely edge and fog computing.

A feedback control mechanism is proposed in [15] to provide
energy-efficient and network-friendly field sensing, by detecting
conditions and accordingly controlling the sensing frequency.While
it reduces the sensing rate it does not consider the state of the edge
or cloud server which renders it unsuitable for overload protection.

In [14] a technique is presented to extend the operating life of
power-constrained devices by an adaptive message rate. By using a
message cache lengthy loss in sensor data is avoided. This approach
can also cope with network outages by utilizing the cache in order
to re-dispatch it on a restored network.

In [10], the authors present a congestion control method based on
an improved Random Early Discard (RED) algorithm. This approach
depends on probabilities to drop packets whereas we utilize the
current applications processing rate to reduce the arrival rate.

An overview over various IoT congestion control algorithms
used at transport layer is presented in [13] with a special focus on
TCP. It concludes with the need for novel transport layer protocol,
which is more in line with the requirements of devices. We deem
our approach as a type of congestion control at application layer.

In [12], Maggio et al. give an overview of the space of decision-
making strategies for self-adaptive systems. Particularly, control-
theoretical self-optimization of systems has been proposed to man-
age the behavior and resources of a system under changes in the
system’s environment. For the presented approach, a formalization
and analysis could give insight into the antagonizingmechanisms at
play, namely the feedback control and the auto-scaling. While build-
ing these models is still tedious, there exists research on automating
their extraction and application [5, 6]. We plan to look further into
applying formal methods to gain insight into our system and how
transient effects which we observed in our experiments, such as
adaptation delays, impact their behavior.

Edge or fog computing [2, 19] is the concept of computing closer
to the data source at the network edge instead of the centralized
cloud, thus reducing processing latencies and required network
bandwidth. This is also used to reduce the load on cloud solutions,
like the presented approach, for example by aggregating or by
preprocessing the data in a suitable way. However, we are not
aware of a systematic method to change the send rate of devices
dynamically at runtime that incorporates with existing edge or
fog computing approaches. We propose to incorporate the method
presented in this paper to utilize an additional degree of freedom
in the way the load on the system is managed in a fog or edge
computing scenario.
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7 FUTUREWORK
In the current state, the approach aims to mitigate and recover from
overload situations based on limitations of the processing rate of
the cloud application occurring during run-time.

However, in practice provisioning limits are configured based
on economic considerations. For this reason we see in future the
inclusion of cost functions for provisioning and send rate reduction
as an enabler for a more sophisticated coupling of both. This allows
an application developer to balance the costs induced by a send rate
reduction with the costs caused by the provisioning. The balancing
can either take place at design- or run-time.

In the current approach we adapt the send rate equally for all
devices. However, some applications may have smart things with
different sensor data priorities, which we deem as a sensible exten-
sion for this approach.

Our approach assumes that data that arrives with a reduced send
rate entails the same resource demand per received data packet.
Therefore, the reduction in resource demand is reduced approxi-
mately with the same factor as the send rate. This may not be a valid
assumption for all cloud solutions. To consider this, the approach
needs a more sophisticated model of the resource demands in order
to adapt the send rate accordingly.

One of the main limitations of the current approach lies in the
adaptation of smart devices which send sensor data in an event-
based manner. In such scenarios the reconfiguration of the smart
devices is much more complex and should be integrated, for exam-
ple, by configuring the device’s threshold that has to be passed to
send out data. This results in a more complex relationship between
a send rate adjustment and its effect on the workload.

8 CONCLUSION
In this paper we proposed a feedback control mechanism to miti-
gate and recover from overload situations by adapting the send rate
of smart devices. We have shown by the example of a case study
that the overload protection approach is able to cope with over-
load situations, resulting in a low message processing delay, but
a reduced number of processed messages. This is applicable both
when coupled with auto-scalers as well as in isolation for statically
provisioned systems. Furthermore it is able to cope with monitoring
and reconfiguration delays and estimation errors in the processing
rate of the cloud application. By estimating the processing rate
of the cloud application and refining it in overload situations, the
approach is able to dynamically adapt to changes in the environ-
ment. The presented approach supports application developers in
runtime managing cloud applications in terms of reliability, costs
and performance. We consider the overload protection approach
as an additional tool in operating cloud solutions. In future work,
we aim to extend the approach to allow cost optimization in terms
of operating costs of provisioned resources and QoS degradation
costs caused by adapting the send rate.
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