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ABSTRACT
Big Data and IoT applications require highly-scalable database man-
agement system (DBMS), preferably operated in the cloud to ensure
scalability also on the resource level. As the number of existing
distributed DBMS is extensive, the selection and operation of a
distributed DBMS in the cloud is a challenging task. While DBMS
benchmarking is a supportive approach, existing frameworks do
not cope with the runtime constraints of distributed DBMS and the
volatility of cloud environments. Hence, DBMS evaluation frame-
works need to consider DBMS runtime and cloud resource con-
straints to enable portable and reproducible results. In this paper we
present Mowgli, a novel evaluation framework that enables the eval-
uation of non-functional DBMS features in correlation with DBMS
runtime and cloud resource constraints. Mowgli fully automates the
execution of cloud and DBMS agnostic evaluation scenarios, includ-
ing DBMS cluster adaptations. The evaluation of Mowgli is based on
two IoT-driven scenarios, comprising the DBMSs Apache Cassan-
dra and Couchbase, nine DBMS runtime configurations, two cloud
providers with two different storage backends. Mowgli automates
the execution of the resulting 102 evaluation scenarios, verifying
its support for portable and reproducible DBMS evaluations. The
results provide extensive insights into the DBMS scalability and the
impact of different cloud resources. The significance of the results is
validated by the correlation with existing DBMS evaluation results.
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• Information systems→Database performance evaluation;
• Computer systems organization → Cloud computing;
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1 INTRODUCTION
IoT and Big Data drive the need for highly scalable and (geo-)
distributed data management. The NoSQL landscape provides dis-
tributed database management systems (DBMS) that promise to
fulfil the need for both scale and distribution and in some cases
even geo-distribution, together with non-functional properties such
as elasticity and high-availability. Additionally, cloud computing
offers the necessary mechanisms to enable scalability on resource
level. Yet, choosing the right DBMS set-up in the jungle of available
solutions is a complex task that is not done with the selection of
a well-suited DBMS1, but continues with the selection of a cloud
provider, and ends with the choice of the right size and amount of
virtual machines. The three choices influence each other [35], so
that making independent decisions may lead to sub-optimal results.
Additionally, runtime parameters, including the expected workload,
consistency requirements, and availability considerations, are influ-
encing the set-up and depend on each other: for instance, the type
of workload can influence whether a user should pay for having a
local SSD attached to their virtual machines or not [18].

While benchmarking is an established approach to select soft-
ware systems as well as hardware platforms, existing DBMS bench-
marking frameworks cannot cope with the volatility of cloud envi-
ronments [35], particularly as volatile environments demand for
reliable and reproducible benchmarking [29]. Based on these obser-
vations, we claim that even with the knowledge of the workload
and non-functional constraints, a manual selection of DBMS, cloud
provider(s), and virtual machine types cannot deliver satisfactory
results and that suitable tool support is strongly needed.

Only by this approach we are able to find an appropriate ini-
tial solution, but also keep up with DBMS version upgrades and
new DBMSs entering the market, as well as to address new cloud
providers and virtual machine types. This paper presents Mowgli, a
novel DBMS evaluation and benchmarking framework that fully
automates the whole evaluation flow from the cloud resource al-
location, DBMS deployment, workload execution and the DBMS
cluster adaptation. Its underlying orchestration engine is cloud
provider-agnostic and supports cross-cloud evaluation scenarios [5].

1in June 2018, http://nosql-databases.org lists more than 225 NoSQL database projects
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In particular, Mowgli helps answering the DBMS runtime centric
question Q1 and the cloud resource allocation centric question Q2:

Q1: "How much throughput for workloadWx can DBMS Dx
achieve with cluster size CSx , replication factor RFx , and
ensures the write-consistency ofWCx if operated on VM
type VMx in cloud Cx ?"

Q2: "Which cluster size CSx of DBMS Dx achieves the highest
throughput for workloadWx if operated with replication
factor RFx , ensuring write-consistencyWCx and running
on VM types VMx in cloud Cx if the maximum number of
available cloud resources is CR −MAXx ?

The motivation for Mowgli is our need to find a DBMS-cloud
set-up that is capable of handling an IoT scenario with a growing
number of sensors where each sensor si would issue its current
state every t seconds and no message is allowed to be dropped. This
leads to the requirement that the chosen DBMS needs to provide a
constant write throughput even in the case of failures. While this
paper does not present the final outcome of the selection process,
we apply this use case as a frame for validatingMowgli. In particular,
we validate Mowgli by applying an evaluation of two DBMSs over
three different cloud environments for write-intensive workloads.

The remainder of this paper is structured as follows: Section 2
details the challenges of DBMS evaluation while Section 3 describes
Mowgli. Section 4 presents the evaluation scenarios we use to val-
idate our approach and Section 5 analyses the evaluation results.
Section 6 discusses the usability and significance of Mowgli. Sec-
tion 7 presents related work, before Section 8 concludes.

2 DBMS EVALUATION CHALLENGES
In order to guide the DBMS selection process, the introduced ques-
tions Q1 and Q2 need to be addressed by evaluating potential DBMS.
Yet, a significant evaluation needs to consider multiple domains as
the results are affected by the applied cloud resource, DBMS run-
time and workload constraints. Hence, the evaluation approach
requires the specification of multi-domain evaluation scenarios as
depicted in Figure 1. Each evaluation domain comprises its own
set of domain specific constraints, which affect the results for the
specified evaluation objectives [35]. Consequently, domain knowl-
edge in each evaluation domain is required, which makes the DBMS
evaluation a complex and error prone task. In order to reduce this
complexity and enable the portable and reproducible evaluation
scenario execution, dedicated tool support is required. In the follow-
ing, we introduce each evaluation domain with respect to relevant
constraints and present the challenges with respect to execute
multi-domain evaluation scenarios in a portable, reproducible and
consistent manner.

2.1 DBMS Runtime Domain
With the rise of the NoSQL data models [8, 12, 22], the usage of
distributed architectures for shared-nothing DBMS has become a
common approach to provide scalability, elasticity and availabil-
ity [32]. In this context, the extent of DBMS runtime constraints
has increased as distributed DBMS aim to provide flexibility for
multiple usage scenarios [16, 20]. Common configurable runtime
properties of distributed DBMS are the replication factor, read/write
consistency settings and the sharding strategy, while there is an
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Figure 1: DBMS Evaluation Domains

extensive number of DBMS-specific runtime constraints such as
storage engines or compression algorithms. Consequently, com-
parative evaluation scenarios need to abstract the DBMS runtime
domain to general runtime constraints, enabling the specification of
consistent and portable DBMS runtime specifications [7, 29]. More-
over, the DBMS runtime specification needs to be extensible to allow
DBMS-specific evaluations based on custom constraints [6, 7].

2.2 Cloud Resource Domain
While cloud resources have become a common solution to operate
DBMS [33], cloud resource offerings are getting more heteroge-
nous with respect to the offered compute resource type; compute
resource sizing; storage backends; control over tenant isolation and
control over locations [4]. Especially for DBMS, storage backends
are important as remote storage makes it easier to scale out a DBMS
but network latency and bandwidth can limit the DBMS perfor-
mance. Dedicated storage reduces these limitations, but a failure of
a physical server decreases availability and failover mechanisms
are required [1]. Hence, evaluation scenarios have to include ex-
isting cloud resource offers by abstracting provider specific details
and enabling a consistent and portable cloud resource specifica-
tion [29, 35].

2.3 DBMS Workload Domain
DBMS workloads emulate heterogenous application domains, from
synthetic create, read, update, delete (CRUD) operations over more
realistic Online Transaction Processing (OLTP) to novel Hybrid
Transaction-Analytical Processing (HTAP) workloads [35]. While
realistic workloads increase the significance of the results, they typ-
ically make use of DBMS-specific features, which limits their field
of use [31]. In addition, each workload implementation provides
its own set of workload constraints, which have direct impact on
the results. Hence, workload specifications for comparative DBMS
evaluations require portable workloads to compare different DBMS
against the evaluation objectives [6, 29]. DBMS-specific scenarios
need to support realistic workloads to enable the in-depth evalua-
tion of DBMS-specific features [6, 31]. Respectively, the workload
specification has to abstract common workload constraints to en-
able comparative and DBMS-specific workload specifications.

2.4 Evaluation Scenario Execution
The consistent specification of evaluation scenarios considering the
introduced domains requires abstract evaluation templates that are
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Figure 2: DBMS Evaluation Process

enriched with the concrete domain constraints. This enables the
portable and reproducible execution of evaluation scenarios. Yet,
the manual execution of such multi-domain evaluation scenarios is
a complex and error prone process. Each domain requires detailed
knowledge on its own and the entire evaluation process comprises
a sequence of multiple interdependent evaluation tasks as depicted
in Figure 2. Consequently, a supportive framework is required
that automates the evaluation process and fulfils the established
requirements of DBMS evaluation [6, 7, 21, 29, 35]:

Ease of use (R1) : The deployment and configuration of the
framework needs to be simple and it needs to provide user-
friendly interfaces to specify and execute the evaluation
scenarios [6, 7, 21, 29]

Portability (R2): In order to execute the evaluation scenarios
for different domain properties, the framework has to ab-
stract technical implementations of each evaluation domain
and map the high-level evaluation scenarios to concrete tech-
nical implementations for each evaluation domain [21, 35]

Reproducibility (R3): The framework needs to provide com-
parable evaluation scenario templates, which ensure the
deterministic execution for concrete domain constraints [6,
29, 35]

Automation (R4): The automated execution of multi-domain
evaluation scenarios requires the orchestration of evaluation
tasks across all domains to ensure the reproducibility and
portability [35]. In addition, complex evaluation objectives
such as elasticity or availability require the DBMS cluster
adaptation at evaluation runtime [36].

Significance (R5): In order to enable significant results by
applying realistic domain constraints, the framework needs
to support comparative and realistic workloads, commercial
cloud resource offerings and relevant DBMS [6, 29, 35]

Extensibility (R6): As each evaluation domain is constantly
evolving, the framework needs to provide an extensible ar-
chitecture and interfaces that allow the easy integration
of future domain specific constraints and evaluation objec-
tives [7, 21, 29, 35].

3 MOWGLI
In the following, we present the multi-domain evaluation frame-
work Mowgli2 that builds upon existing DBMS evaluation con-
cepts [34]. Mowgli automates the entire evaluation process shown
in Figure 2 by enabling the definition and execution of portable
and reproducible evaluation scenarios via a loosely coupled and
2https://omi-gitlab.e-technik.uni-ulm.de/mowgli
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extensible evaluation framework. It does so by exploiting the fea-
tures of cloud orchestration tools (COTs) [5] and combines them
with an extensible DBMS catalogue, an auto-generated cloud re-
source catalogue and a workload catalogue. The architecture of
Mowgli is depicted is in Figure 3. Evaluation templates define the
required input of an abstract evaluation scenario and reach the
system through the Evaluation API. In its current state, Mowgli
supports the abstract sensor storage evaluation scenario to address
Q1 and Q2. The specification of elasticity and availability related
evaluation scenarios is subject to ongoing work.

3.1 Evaluation Templates
Each evaluation template comprise three different types of sub-
templates3, which are listed in Table 1-3. The Tables list the ab-
stract domain constraint and Mowgli’s supported parameter range.
Domain constrains and their parameter range can be customized
due to Mowgli’s extensible architecture.

The DBMS runtime template includes use-case specific DBMS
runtime configurations in a DBMS agnosticmanner, which are listed
in Table 1. Hence, it describes the desired distribution requirements.
It requires the mandatory configuration options cluster topology,
cluster size and replication factor and offers optional DBMS-specific
configurations options. The cloud resource templates describes the
required compute and storage resources in a cloud provider agnostic
way as shown in Table 2. Using this type of agnostic description of
both non-functional properties of the DBMS and resources is key to
making evaluations portable between DBMS and cloud providers,
but also fosters reproducibility of evaluation results. Finally, the
workload template listed in Table 3 specifies the desired load on the
system by referring to known DBMS benchmarks through unified
configuration properties which are extended by benchmark specific
properties such as read/write consistency settings, DBMS driver
settings and request distribution.

3.2 Catalogues
Catalogues enable the mapping from abstract evaluation scenario
templates to executable experiments. The DBMS catalogue contains

3Exemplary input templates are publicly availablehttps://omi-gitlab.e-technik.uni-ulm.
de/mowgli/getting-started/tree/icpe2019/examples
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Table 1: DBMS Runtime Template

Constraint Parameter Range
DBMS Dx ∈ {RDBMS,NoSQL,NewSQL}

Cluster Topology CTx ∈

{data center , cross data center }

Cluster Size CSx ∈ {3..n}
Replication Factor RFx ∈ {n <= CSx }

Custom Configuration CCx ∈ {key = value}

Table 2: Cloud Resource Template

Constraint Parameter Range

Cloud API Cx ∈ {OpenStack,
EC2,Gooдle Compute}

Location VM − Lx ∈ {rack,
availability zone, reдion}

vCores VM −Cx ∈ {2..n}
RAM (in GB) VM −Mx ∈ {2..n}
Storage Capacity (GB) VM − SCx ∈ {20..n}
Storage Type VM − STx ∈ {HDD, SDD,Remote}

Table 3: Workload Template

Constraint Parameter Range
Type WTx ∈ {YCSB,TPC −C}

Runtime (in seconds) WRx ∈ {60..n}
Client instances WCx ∈ {1..n}
Client threads WCx ∈ {1..n}
Network WNx ∈ {public,private}

Write Consistency WCx ∈ {low,medium,hiдh}

Read Consistency RCx ∈ {low,medium,hiдh}

mappings from DBMS templates to concrete configurations. In par-
ticular, based on the DBMS catalogues, Mowgli is able to configure
and run different DBMS in the way specified in the DBMS templates.
Currently, Mowgli supports Apache Cassandra4, Couchbase5, Mon-
goDB6, Riak 7 and CockroachDB8.

Similarly, the cloud resource catalogue provides a mapping from
cloud resource templates to actual cloud resources. As defining this
mapping is cumbersome and repetitive, we use the resource discov-
ery features of the COT Cloudiator [4, 15]. For each cloud credential
stored at Cloudiator, it automatically creates the cloud-provider
specific resource entries in its catalogue as well as a cloud-provider
agnostic representation thereof that is referenced byMowgli’s cloud
resource templates.

Finally, the workload catalogue captures concrete implementa-
tions of workloads. Its entries specify what kind of load to issue
on the DBMS and in what order. Mowgli supports the Yahoo Cloud
4http://cassandra.apache.org/
5https://www.couchbase.com/
6https://www.mongodb.com/
7http://basho.com/products/riak-kv/
8https://www.cockroachlabs.com/

Serving Benchmark (YCSB) [11] and a DBMS-specific implemen-
tation of the TPC-C workload9. For our evaluation, we make use
of the YCSB as it enables the emulation of a write–heavy sensor
storage workload.

3.3 Evaluation Process
Using the catalogues, Mowgli is able to map the concrete scenario
parameters received through the evaluation-API to the abstract
sensor storage scenario specification and create an executable eval-
uation scenario. The entire execution of a specified evaluation sce-
nario is automated by the evaluation orchestrator that orchestrates
the tasks depicted in Figure 2. Therefore, an evaluation scenario is
internally implemented as workflow with sequential, conditional
and parallel tasks. The workflow of the introduced sensor storage
scenario is implemented as a subset of the introduced evaluation
tasks of Figure 2 using sequential and parallel tasks. In the follow-
ing, the workflow tasks executed by the evaluation orchestrator are
presented together with the involved components of Mowgli.

T_1: allocating cloud resources for each evaluation iteration
viaCloudiator that enacts the cloud provider specific requests

T_2: deploying and configuring the DBMS cluster by fetching
the DBMS deployment scripts from the DBMS catalogue and
passing them to Cloudiator to deploy the DBMS cluster on
the allocated cloud resources

T_3.1 measuring system and DBMS metrics during each run
via the runtimemonitor. The runtimemonitor is implemented
by the time-series DBMS InfluxDB10

T_3.2 distributing the workload execution across the specified
workload-API instances

T_4 releasing the cloud resource after the each evaluation iter-
ation via Cloudiator and repeating task (1)-(4) according to
the scenario parameters

T_5 collecting and processing of the evaluation results as fol-
lows: the measurement collector collects basic performance
metrics such as throughput and latency, provided by the
applied workload; a scenario-specific objective processor com-
putes composedmetrics such as scalability [11], elasticity [17],
availability [36] or the cloud resource and distribution im-
pact [35] by correlating the performance metrics with the
applied DBMS runtime and cloud resource specifications
provided by the metadata collector

As the implementation of the sensor storage scenario does not
require the adaptation of the DBMS cluster at evaluation runtime,
T_3.3 is omitted. Although, Mowgli is able to support the adaptation
of the DBMS cluster at runtime by specifying adaptation tasks
that use metrics of the runtime monitor as adaptation trigger and
Cloudiator to adapt the DBMS cluster.

4 SENSOR STORAGE EVALUATION
SCENARIOS

In order to validate the Mowgli framework, we apply the sensor
storage scenario and seek help in answering questions Q1 and Q2.
Consequently, we define the sensor storage template and apply

9https://github.com/cockroachdb/loadgen
10https://docs.influxdata.com/influxdb
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Q1 and Q2 specific domain constraints. This section details the
choice of DBMSs, their runtime configuration, the selection of
cloud resources as well as the sensor workload specification.

4.1 DBMS Specification
For the validation of the DBMS runtime centric Q1, we select
Apache Cassandra [27] and Couchbase as DBMSs. The cloud re-
source centric Q2 is validated by using Apache Cassandra. Both
are popular NoSQL DBMSs11. They provide a flexible data model
and a multi-master architecture that supports automated shard-
ing and horizontal scalability. They only have limited support for
complex queries, but for write-heavy workloads, this is negligible.
Furthermore, both DBMSs have already been subject to scalability
evaluations with respect to read-update workloads and achieved
promising results [24, 26, 37]. Also, the availability of other eval-
uation scenarios allows us to cross-check the results reported by
Mowgli for read-update workloads (not part of this paper but car-
ried out with a preliminary version of Mowgli [37]). Apache Cas-
sandra applies the column-oriented data model, while Couchbase
applies the document-oriented data model [8]. Table 4 describes
the relevant runtime specifications for the selected DBMSs based
on the introduced runtime constraints (cf. Table 1). Other options
are supported, but have not been used for the results presented in
this paper. By default, Mowgli configures a DBMS instance to use
50% of the available memory for its operation.

Due to the architectural similarities of both DBMSs comparable
cluster topologies, cluster sizes and replication factors can be de-
fined. Yet, they differ when it comes to persistence configuration at
client side. Apache Cassandra applies write ahead logging (WAL),
while Couchbase does not. Instead, it caches records directly in
memory and persists them to disk asynchronously. Couchbase pro-
vides the configuration option to enforce replicating a record to
n replica nodes via replicateTo or persisting the record to disk of
n replica nodes via persistTo. For Apache Cassandra we can con-
figure the amount of replicas where an item has to be written to
the WAL and the in-memory cache. Consequently, the write consis-
tency configurations can not be exactly mapped for both DBMSs.
For Apache Cassandra, we select the write consistency levels ANY,
ONE, TWO 12 while for Couchbase, we select the following options:
NONE (replicateTo=NONE and persistTo=NONE) confirms a write
as successful after the record has been transmitted. R-ONE (repli-
cateTo=1) ensures that the record is written to the cache of at least
one replica node, and P-ONE (persistTo=1) ensures that the record
is persisted to the disk of at least on replicate node.

4.2 Cloud Resource Specification
The portability of our approach is verified by using cloud resources
of two different cloud providers. For answeringQ1, we applyMowgli
to three different cloud resource configurations as outlined in Ta-
ble 5: OS_SSD and OS_REMOTE run on a private, OpenStack-based
cloud13 (version Pike) with full and isolated access to all physical
and virtual resources. All physical hosts in the OS_SSD availability

11https://db-engines.com/en/ranking
12https://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlConfigConsistency.
html
13https://www.openstack.org/

Table 4: DBMS Runtime Specifications

Specification Spec_CA Spec_CB
Dx Apache Cassandra Couchbase
Version 3.11.2 5.0.1 community
CTx data center data center
CS −Q1x 3,5,7,9 3,5,7,9
CS −Q2x 3,6,9 -
RFx 3 3
WClow ANY NONE
WCmedium ONE R-ONE
WChiдh TWO P-ONE

zone have two dedicated SSDs in Raid-0 configuration. Physical
hosts with the OS_REMOTE configuration share one storage server
with RAID-6 set-up and magnetic disks. Network bandwidth be-
tween physical hosts and the remote storage is 10G. EC2_REMOTE
runs Amazon EC2 VM instances in the Frankfurt region and the
availability zone eu-central-1. The selected EC2 instance type is
t2.medium14 and each VM is provisioned with a Remote Storage
GP2 SSD EBS volume. For the evaluation the comparable VM type
VM −Tsmall is selected, which is available in OpenStack and EC2.
Each VM type is composed by the tuple vCores, RAM and storage
capacity as listed in Table 2.

Table 5: Q1 - Cloud Resource Specifications

Specification OS_SSD OS_REMOTE EC2_REMOTE
Cx OpenStack OpenStack EC2
VM − Lx Ulm Ulm Frankfurt
VM −Tsmall 2 vCores, 4GB RAM, 50GB disk
VM − STx SSD Remote Remote
VM −OSx Ubuntu Server 16.04
VM − NETx private

To emphasize Mowgli’s capabilities of evaluating the impact of
cloud resources in the context of Q2, OpenStackwith the availability
zones OS_SSD and OS_REMOTE is selected. Using this private
cloud allows the specification of custom VM types and the in-depth
analysis of the cloud resource impact. We define an exemplary
maximum resource poolCR−MAXx and specify the respective VM
types as listed in Table 6. These VM types are applied toCS−Q23,6,9
to accordingly match the maximum resource pool.

4.3 Workload Specification and Metrics
For our evaluation, we use YCSB version 0.12.015, which is inte-
grated in Mowgli (cf. Section 3) and allows the specification of a
write-heavy workload required by Q1 and Q2. Besides, relying on
the widely used YCSB, allows us to validate our results against
published results.

The specification is such that the workload is issued through
one independent virtual machine running in the same environment
14https://aws.amazon.com/ec2/instance-types/
15https://github.com/brianfrankcooper/YCSB/releases/tag/0.12.0
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Table 6: Q2 - Cloud Resource Specifications

Specification OS_SSD_Q2 OS_REMOTE_Q2
Cx OpenStack OpenStack
VM − Lx Ulm Ulm
CR −MAXx 18 vCores; 36GB RAM
VM −Tlarдe 6 vCores, 12GB RAM, 50GB disk
VM −Tmedium 3 vCores, 6GB RAM, 50GB disk
VM −Tsmall 2 vCores, 4GB RAM, 50GB disk
VM − STx SSD Remote
VM −OSx Ubuntu Server 16.04
VM − NETx private

as the DBMS instances. This virtual machine is configured with 8
vCores, 16GB memory and 20GB of remote storage disk, running
Ubuntu Server 16.04. It uses a cloud-internal network to commu-
nicate with the DBMS cluster. Table 7 contains the relevant YCSB
specifications. The DBMS-specific consistency settings in Table 4
are mapped to the respective YCSB binding for Apache Cassandra
and Couchbase.

The YCSB provides the performancemetrics latency and through-
put. As Q1 and Q2 are throughput related, the latency metrics are
collected but not used for processing composed metrics. For ad-
dressing Q1, the scalability metric is computed by calculating the
throughput increase with respect to the cluster size. For Q2, the
throughput increase with respect to the defined different VM types
and cluster sizes is computed to analyse the cloud resource and
distribution impact.

Table 7: Workload Specifications

Specification YCSB_Sensor_Workload
YCSB instances 1 (per cloud)
Threads (per instance) 16
Network private
MAX_Runtime 1,800s
Number of records 4,000,000
Record size 5KB
Operations distribution 100% write
YCSB Binding cassandra/couchbase2

5 MOWGLI EVALUATION
This section presents the results of the sensor storage scenario
evaluation. The analysis of the results first focuses on the DBMS
runtime centric Q1 by analysing performance and scalability and
second on the cloud resource centric Q2 by analysing the impact of
different VM types and cluster sizes.

For Q1, the DBMS specifications Spec_CA and Spec_CB in combi-
nationwith the cloud resource configurationsOS_SSD, OS_REMOTE
and EC2_REMOTE and the YCSB_Sensor_Workload results in 72
evaluation scenarios specifications. The Q2 results are based on
the DBMS specifications Spec_CA and Spec_CB with the cloud
resource configurations OS_SSD_MAX, OS_REMOTE_MAX and

the YCSB_Sensor_Workload, resulting in 18 evaluation scenarios
specifications.

As Mowgli allows to specify the repetition of each scenario ex-
ecution for n ∈ N times, we configure Mowgli to execute each
scenario five times to verify the automated repeatability and to
strengthen the significance of the results by providing the standard
deviation as well as the minimum and maximum values. The run-
time of a single evaluation is limited to 30 minutes, which is allows
to the DBMS to stabilize and execute internal compaction processes.
Likewise, Mowgli allows to specify custom runtime settings.

From system monitoring we ensure that the following properties
hold for all evaluations: (1) The workload generator is not a bottle-
neck as the CPU load never exceeds 60%. (2) The network between
the workload generator and DBMS cluster is not becoming a bottle-
neck, as the consumed network bandwidth is below the evaluated
maximum available bandwidth. (3) The workload generator creates
sufficient load to saturate the CPU resources of at least the 3-node
clusters, i.e. the average CPU load of each node is > 90%.

The following sections present the throughput results as the
average throughput over all five executions including standard
deviation as well as global minimum and global maximum over all
executions.

5.1 Q1 - DBMS Performance and Scalability
In the following, the results of Q1 are analysed for the concrete
evaluation domain properties: "Which DBMS DCA,CB achieves the
highest throughput for workloadWYCSB_Sensor if operated with
with cluster size CS3,5,7,9, replication factor RF3, and ensures the
write-consistency ofWClow ,medium,hiдh by running on VM type
VMsmall in cloud COS_SSD ,OS_REMOTE ,EC2_REMOTE?"

We group the results by cloud type (OS_SSD, OS_REMOTE,
EC2_REMOTE). For each cloud type, we discuss the performance
impact of cluster size and write consistency. The scalability is anal-
ysed computing the average throughput increase from the 3-node
cluster to the 9-node cluster whereby the average throughput of
the 3-node cluster represents the baseline.

5.1.1 OpenStack SSD Results. The Apache Cassandra results de-
picted in Figure 4 show that write consistency only has a slight
impact on the performance for all cluster sizes. It is surprising that
ANY as the weakest consistency provides less throughput than
ONE for the 5-7-9-node clusters. With respect to the scalability, the
throughput scales with growing cluster sizes, e.g. a scale-up of 19%
is achieved from a 3-9 node cluster with write consistency ONE as
listed in Table 8. The highest scalability factor of 31% is achieved
for the write consistency TWO.

The results for Couchbase depicted in Figure 5 show significant
differences depending on the applied write consistency. While the
NONE configuration (not providing any guarantees at all) for a 3-
node cluster achieves only 5% less throughput compared to 9-node
Apache Cassandra cluster, we see massive drops in throughput
when applying R-ONE and P-ONE. For R-ONE, the throughput
for the 3-node cluster drops by 62% and for the 9-node cluster by
66% compared to NONE. For P-ONE it decreases by 92% compared
to NONE and by 80% compared to R-ONE for the 3-node cluster.
With respect to scalability, Table 8 shows that Couchbase achieves
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Figure 4: Q1 - Cassandra - OpenStack SSD Storage
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Figure 5: Q1 - Couchbase - OpenStack SSD Storage

a scale-up from 3–9 nodes for the write consistency NONE of 60%,
for R-1 of 43% and P-1 of 113%.

Table 8: Scalability - OpenStack SSD Storage

Apache Cassandra
Consistency 3-nodes 5-nodes 7-nodes 9-nodes
ANY 100% +4% +6% +17%
ONE 100% +6% +12% +19%
TWO 100% +11% +20% +31%

Couchbase
Consistency 3-nodes 5-nodes 7-nodes 9-nodes
NONE 100% +6% +17% +60%
R-1 100% +13% +38% +43%
P-1 100% +33% +53% +113%

5.1.2 OpenStack Remote Storage Results. The evaluation scenarios
on OpenStack with remote storage also comprise 3–9 node. Yet, the
use of remote storage makes expect that the overall performance of
a write-heavy workload will suffer due to concurrent use of storage.

The graphs for Apache Cassandra depicted in Figure 6 show
indeed less throughput than for the SSD case. It also shows that a
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Figure 6: Q1 - Cassandra - OpenStack Remote Storage
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Figure 7: Q1 - Couchbase - OpenStack Remote Storage

larger cluster size does not improve the throughput because the sin-
gle remote storage server represents the shared resource and results
in a bottleneck (cf. Section 4.2). Increasing the cluster size from 3
to 9 nodes even results in a scale-up of -27% for write consistency
ANY as listed in Table 9.

Also Couchbase depicted in Figure 7 achieves less throughput for
all write consistency levels compared to the SSD case. Even though
it uses asynchronous writes and no WAL, the write rate is limited
and outstanding writes decrease throughput. While, from 3-7 nodes
Couchbase still achieves a scale-up for NONE and R-ONE as the
cache size and number of disk writers increases with the number of
nodes as listed in Table 9, for the 9-node cluster the scalability factor
is negative and the variance in the results increases. For P-ONE, the
throughput stays on a constant level of 230 ops/s for 3-9 nodes.

5.1.3 EC2 Remote Storage Results. The EC2 results of Cassandra
(cf. Figure 8) show the analogue performance impact of the write
consistency as for the OpenStack results, i.e. ANY and ONE are in
similar ranges where TWO results in 10% less throughput compared
to ONE, independent of the cluster size. While the provisioned
EC2 VMs use remote storage, the results show a clear scale-up
from 3 to 9 nodes, e.g. 90% for ONE as shown in Table 10. Hence,
the EC2 remote storage infrastructure does not impose the same
bottleneck as OS_REMOTE. The Couchbase results, depicted in
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Table 9: Scalability - OpenStack Remote Storage

Apache Cassandra
Consistency 3-nodes 5-nodes 7-nodes 9-nodes
ANY 100% -25% -15% -27%
ONE 100% -7% -26% -22%
TWO 100% +11% -17% -8%

Couchbase
Consistency 3-nodes 5-nodes 7-nodes 9-nodes
NONE 100% +52% +68% 5%
R-1 100% +20% +21% -10%
P-1 100% +1% +9% -8%
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Figure 8: Q1 - Cassandra - EC2 Remote Storage
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Figure 9, verify the findings that the EC2 remote storage does not
impose a bottleneck. For P-ONE, we see a scale-up of 68% from 3 to
9 nodes. Further, as in the OS cases, Couchbase shows a significant
drop in performance with higher consistency levels.

5.1.4 Comparative DBMSAnalysis. Comparing bothDBMSs, Apache
Cassandra achieves better throughput if strong write consistency
is required. Couchbase achieves the highest throughput in total if
the weakest write consistency NONE is applied, while for R-ONE

Table 10: Scalability - EC2 Remote Storage

Apache Cassandra
Consistency 3-nodes 5-nodes 7-nodes 9-nodes
ANY 100% +49% +79% +85%
ONE 100% +54% +91% +90%
TWO 100% +56% +82% +92%

Couchbase
Consistency 3-nodes 5-nodes 7-nodes 9-nodes
NONE 100% +49% +71% +76%
R-1 100% -3% -39% -24%
P-1 100% +20% +43% +68%

the throughput is constantly lower (OpenStack SSD, EC2) or simi-
lar (OpenStack Remote) to Apache Cassandra; P-ONE constantly
achieves lower throughput than Apache Cassandra. Hence, Apache
Cassandra should be preferred if write consistency is required while
Couchbase should be preferred if maximum throughput is required
and data inconsistency or (partial) data loss is tolerable.

With respect to scalability, both DBMSs scale with increasing
cluster sizes, if there is no bottleneck on the cloud resource level.
Yet, the scale-up degree depends heavily on the applied DBMS
runtime configurations and cloud resource configurations.

With respect to the cloud resource configuration, Apache Cassan-
dra achieves better throughput with SSD storage backends as WAL
generates synchronous I/O for each write operation. In contrast,
in the case of Couchbase, the applied storage backend affects the
results of NONE and R-ONE only secondary. Consequently, only
the throughput of P-ONE seems to be correlated to the storage.

5.2 Q2 - Cloud Resource Allocation and
Distribution Impact

In the following, we analyse the results of Q2 for the concrete
evaluation domain properties:

"Which cluster size CS3,6,9 of DBMS DCA achieves the highest
throughput for workloadWYCSB_Sensor if operated with replica-
tion factor RF3, ensuring write-consistencyWClow ,medium,hiдh
and running on VM types VMsmall ,medium,larдe in cloud
COS_SSD ,OS_REMOTE if the maximum number of available cloud
resources is CR −MAX18 vCores ,36GB RAM ?"

The results are grouped by OS_SSD_Q2 and OS_REMOTE_Q2
as listed in Table 6. For each cloud type, we discuss the impact of
cluster size in correlation to the VM type and storage backend.

5.2.1 OpenStack SSD Results. The results depicted in Figure 10
show that the 3-node cluster on large VMs achieve the highest
throughput. These results are expected as larger cluster sizes require
additional network and coordination operations. Yet, the three node
cluster also shows the highest throughput variance which indicates
potentially suboptimal placement of the large VMs on the same
physical server or interfering load of other VMs. Yet, an analysis
would require the correlation of physical server monitoring with
the Mowgli results, which is currently not supported and depends
on provider specific monitoring information.
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Figure 10: Q2 - Cassandra - SSD Storage
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Figure 11: Q2 - Cassandra - Remote Storage

The relative throughput impact of the selected VM type and clus-
ter size is listed in Table 11 where the average throughput of the
3-node cluster with VM type large represents the baseline. It is note-
worthy that the throughput for write consistency TWO can even
be increased by using more and less powerful nodes (e.g. 6-node
cluster on VM type medium), which increases the internal writer
threads. This indicates that the write performance configurations
of the vanilla Apache Cassandra installation are underprovisioned
for the large VM size and provide optimisation capabilities.

Table 11: SSD Storage & Distribution Impact

Apache Cassandra
Consistency 3-nodes large 6-nodes

medium
9-nodes small

ANY 100% -7% -18%
ONE 100% -4% -16%
TWO 100% +2% -3%

5.2.2 OpenStack Remote Results. Figure 11 depicts the through-
put of Apache Cassandra with respect to the three specified VM
types and the remote-storage backend. The results clearly show

that larger cluster sizes decrease the throughput as the shared usage
of the remote-storage imposes a bottleneck. The relative through-
put decrease is listed in Table 12 where the average throughput
of the 3-node cluster represents the baseline. In addition, these
results verify the negative scale-up results for Apache Cassandra
(cf. Section 5.1.1).

Table 12: Remote Storage & Distribution Impact

Apache Cassandra
Consistency 3-nodes large 6-nodes

medium
9-nodes small

ANY 100% -29% -43%
ONE 100% -28% -40%
TWO 100% -16% -30%

5.2.3 Comparative Resource Allocation Analysis. Comparing the
different VM types and storage backends first shows that allocating
larger VM types with small cluster sizes provides better throughput
than large clusters of small VMs due to additional communication
and coordination overhead. Yet, the latter can improve the availabil-
ity in case of physical hardware failure if the VMs are distributed
equally across the physical infrastructure. Mowgli eases the deter-
mination of the performance versus availability tradeoff. Second, as
cloud resources are typically shared amongst multiple tenants, in-
terferences can impact the performance or even limit the scalability
as shown for the remote storage in the Ulm OpenStack. Mowgli en-
ables the extensive evaluation of cloud resources for the operation
of DBMS to identify potential bottlenecks and interferences.

6 DISCUSSION
Within this section, first we discuss the advantages and limitations
of Mowgli in order to answer Q1, Q2 and similar questions based
on the introduced requirements towards a multi-domain evaluation
framework (cf. Section 2.4). Second, we validate the significance of
our results by comparing them to related evaluation results and dis-
cuss how Mowgli can improve their portability and reproducibility.

6.1 Mowgli Feature Analysis
Ease of use (R1):While Mowgli comprises multiple loosely cou-
pled services, its deployment of all five components is automated via
Docker16 and its configuration is based on six parameters. Mowgli
provides a simple graphical as well as a REST-based interface. With
the presented evaluation results we verified the usability of Mowgli
for DBMS runtime and cloud resource specific evaluation scenar-
ios. The specification of the sensor storage scenario comprises 16
template properties, separated by four DBMS properties, five cloud
resource properties and seven workload properties17. Our expe-
riences show that undergraduate students can be taught to use
Mowgli in the order of less than a day.

Portability (R2): In the context of answeringQ1 andQ2, the sen-
sor storage scenario is applied to two DBMS, two cloud providers,
three different storage backends and three VM types, which shows
16https://omi-gitlab.e-technik.uni-ulm.de/mowgli/docker
17Excluding YCSB binding specific properties for Apache Cassandra/Couchbase
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that Mowgli eases the evaluation portability between different
DBMS or cloud resources. While the DBMS catalogue abstracts
the deployment of the DBMS, still thorough DBMS-specific knowl-
edge is required to extend the DBMS catalogue. Similarly, extending
cloud resource templates or adding new cloud providers requires
knowledge of the Cloudiator framework.

Reproducibility (R3): Using our existing templates3, the de-
terministic reproduction of our validation scenario on any of the
supported DBMS or cloud providers is a matter of minutes.

Automation (R4): DBMS fully automates the evaluation pro-
cess based on customizable evaluation tasks by orchestrating the
cloud resource allocation, DBMS deployment, workload execution,
system monitoring and releasing cloud resources. It automates the
collection of workload-specific performance metrics as well as the
system and DBMS metrics during the evaluation execution. It also
provides advanced processing and visualization support for the
sensor storage scenario. Custom processing and visualization task
are supported by implementing new objective processors.

Significance (R5): In its current state, Mowgli supports two
major cloud providers, i.e. EC2 and Google Compute as well as
OpenStack for private clouds. With respect to the DBMS domain,
five common DBMS are supported (cf. Section 3.2). Regarding the
workload domain, the YCSB enables comparable evaluation scenar-
ios by simple synthetic workloads. In order to enable more in-depth
evaluation scenarios for DBMS-specific features, additional work-
loads such as TPC-C, HTAP or trace-based workloads need to be
integrated into Mowgli. As a first step into this direction, a prelimi-
nary TPC-C workload implementation has been integrated.

Extensibility (R6): As outlined in Section 3, Mowgli builds
upon loosely coupled components, which interact via REST-based
interfaces. Hence, the framework is prepared for extending ded-
icated components, e.g. the workload-API with additional work-
loads or extending supported DBMS in the DBMS catalogue. In
order to add a new evaluation scenario, the evaluation orchestrator
needs to be extended by (1) defining a new evaluation workflow by
building upon the existing tasks or by implementing new ones; (2)
defining a new evaluation scenario template by building upon the
existing DBMS configurations and cloud resource templates; (3) im-
plementing the mapping from the scenario template to the scenario
workflow. Consequently, thorough domain specific knowledge is re-
quired as the Mowgli components can only provide the conceptual
technical abstraction but the domain specific commands are still
required. The extensibility of Mowgli has been demonstrated by
extending the current evaluation scenario (targeting performance
and scalability) to elasticity [37] and availability [36].

6.2 Evaluation Result Verification
With the growing impact of distributed DBMSs, performance and
scalability evaluations are a widely addressed research topic. Conse-
quently, we compare existing DBMS evaluation results with our re-
sults to validate their correctness with respect to Q1 and Q2. Hereby,
we only consider research publications and no white papers due
to their questionable scientific neutrality. Further, we only select
results for Apache Cassandra and Couchbase that evaluate the scal-
ability of different DBMS cluster sizes and rely on the YCSB as work-
load. Optionally, the results are created on cloud resources. Several

published results evaluate the performance of Apache Cassandra
and Couchbase with the YCSB [2, 19, 23, 24, 38, 39]. Yet, only a few
evaluate their scalability based on different cluster sizes [11, 30]
and by using cloud resources [26, 37], which consolidates the need
for Mowgli in order ease the DBMS evaluation by portable and
reproducible evaluation scenarios. In the following these results
are analysed and compared to our results in chronological order.

An evaluation of the early version 0.5.0 of Apache Cassandra
has been conducted with the initial YCSB [11]. The evaluations are
carried out on a proprietary private cloud middleware and with
Cassandra cluster sizes from 2 to 12 nodes. While the results are
based on read-heavy and read-update workloads, they also verify
the scalability of Cassandra with growing cluster sizes.

The result of [30] execute a write-heavy YCSB workload against
2 to 14 Cassandra nodes on physical hardware. Similar to our re-
sults, Cassandra shows a throughput increase with growing cluster
sizes. Yet, the results of [30] show a nearly linear scalability of
Apache Cassandra which due to disabled replication and scaling
YCSB client instances and threads relative to the cluster size. Hence,
the Cassandra cluster is always saturated while in our scenario a
constant workload is applied, which saturates only a 3-node cluster.
Yet, our presented evaluation scenario can easily be adapted to scale
the workload in relation to the cluster size.

The previous evaluations [30] are reproduced by [26], replacing
the physical resources with cloud resources on EC2 with remote
storage. Similar to [30], the results show a nearly linear scalability
of Cassandra by increasing the workload relative to the cluster
size, which verifies our Apache Cassandra results on EC2. In addi-
tion, [26] evaluate the performance impact based on the selected
cloud storage backend configurations, which accompanies our re-
sults with respect to the SSD and remote storage results. In this
context, [26] emphasize the need but also the complexity to evaluate
different cloud resource configurations.

In a preliminary version of Mowgli, the scalability of Cassan-
dra and Couchbase was evaluated by read-heavy and read-update
workloads by using one VM type and one storage backend [37]
on a dedicated host in the OpenStack cloud at Ulm. The results
confirm the scalability of Couchbase and Cassandra with growing
cluster sizes. Yet, the results are carried out without replication
and the lowest consistency settings. The impact of VM resource
configurations including storage backends have not been analysed.

The comparative analysis of existing evaluation results, verifies
the significance of Mowgli as the scalability of Apache Cassandra
and Couchbase is verified. In addition, the impact of the selected
storage backend is confirmed. Yet, the analysis also shows that
reproducing existing evaluations is a time consuming and error
prone task, as the required domain properties might not be docu-
mented or have changed over time. This also limits the portability
as existing evaluations do not provide any abstraction of the evalu-
ation domains. Hence, porting existing evaluation results becomes
a challenging task [26]. Therefore, Mowgli enables the reproducible
and portable evaluation execution for multi-domain scenarios.

7 RELATEDWORK
Since the era of RDBMS, their selection is guided by domain-specific
benchmarks that have evolved together with distributed DBMSs.
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The need for portable and reproducible evaluations then led to
the integration of existing benchmarks into evaluation frameworks,
which extend the sole workload generation by DBMS runtime fea-
tures to cover more complex evaluation domains [7, 35].

7.1 Benchmarks
Benchmarks are applied to evaluate non-functional features of
DBMSs by artificial or trace-based workloads, producing evaluation
metrics [21]. While traditional DBMS benchmarks mainly target the
performance, recent benchmarks also target non-functional features
of distributed DBMSs, such as scalability, elasticity, consistency and
availability [35]. The workload domain of DBMS benchmarks is
distinguished between OLTP, Online Analytical Processing (OLAP)
and the recently evolving HTAP.

Performance benchmarks of the OLTP andOLAP domains for the
relational data model are provided by the transaction performance
council (TPC)18, namely TPC-C19 and TPC-H20. Building upon
these, HTAPBench enables HTAP workloads for the relational data
model [10]. For the NoSQL data models, the YCSB [11] is widely
used for performance and scalability benchmarks. Advancements
of YCSB such as YCSB+T and YCSB++ focus on the performance
of transactions in NoSQL models [13] and on the consistency of
distributed NoSQL DBMSs [28] respectively. While the YCSB work-
loads target artificial CRUD operations, web-application workloads
are presented by OLTP-Bench [14] and BG [3]. BenchFoundry [6]
presents a trace-based workload generator for realistic workloads.

Existing benchmarks cover a variety of workload domains, which
enables significant DBMSs evaluations. Hence, our framework does
not focus on the definition of a new benchmark rather than on
integrating existing benchmarks to enable DBMS runtime-driven
and resource-driven evaluation scenarios.

7.2 Cloud-centric DBMS Evaluations
A multitude of modern DBMS evaluations has been conducted
within the recent years based on existing benchmarks. Yet, only a
subset of these evaluations focus on cloud-related aspects. Origi-
nally, YCSB evaluated the performance and scalability of Apache
Cassandra, Apache HBase and Yahoo PNUTS in Yahoo’s data cen-
ter [11]; yet, only for read- and update-heavy workloads running
on a static pool of physical resources. Building upon YCSB, cloud-
centric evaluations have been conducted: [26] focus on the scala-
bility and elasticity of Apache Cassandra and HBase for different
cluster sizes on Amazon EC2 with different remote storage back-
ends. Also [24] build upon fixed EC2 resources for evaluating the
performance impact of different consistency configurations for
Apache Cassandra, MongoDB and Riak. A private OpenStack cloud
is used by [37] to evaluate the scalability and elasticity of Apache
Cassandra, Couchbase andMongoDB under varying workload sizes.

While these results prove the scalability of Apache Cassandra and
Couchbase with respect to read-heavy and read-update workloads,
the scalability of write-heavy workloads has not been evaluated,
especially with respect to different cloud resource offerings and
storage backends. Yet, even as these evaluation results provide a

18http://www.tpc.org/information/benchmarks.asp
19http://www.tpc.org/tpcc/default.asp
20http://www.tpc.org/tpch/default.asp

thorough technical explanation, their reproducibility is limited and
error-prone due to the complexity of the involved domains, i.e. cloud
computing, distributed DBMSs and benchmarks. Hence, [26, 37]
highlight the need for more sophisticated DBMS evaluation to
ensure reproducibility, portability and significance.

7.3 Evaluation Frameworks
While the portability and reproducibility of evaluation results has
been emphasized for a long time [21], its compliance becomes even
more challenging with the evolving technologies. Hence, build-
ing only upon benchmarks for distributed DBMSs in the cloud is
not sufficient to enable reproducible, portable and comparable re-
sults which take into account the runtime configurations [7, 35].
Therefore, evaluation frameworks need to provide additional fea-
tures such as evaluation orchestration, resource abstraction and
the specification of portable evaluation scenarios [7, 35].

[25] presents an evaluation framework that builds upon the
YCSB and enables the evaluation of Amazon’s DBaaS offerings and
Apache Cassandra with a focus on scalability and the performance
impact of different consistency configurations. Yet, the framework
does not abstract the DBMSs deployment and the cloud resource of-
ferings. Hence, the framework is not supporting portable evaluation
scenarios and cannot be applied to different cloud providers and
cloud resources. A cloud-resource centric framework is presented
by [9], which provisions cloud resources, orchestrates applications,
executes generic micro-benchmarks and monitors the execution
performance. While this framework focuses on evaluating cloud
resources based on resource-specific micro-benchmarks, DBMS
evaluation and cloud resources for DBMS are not in its scope.

Hence, current evaluation frameworks either focus on the bench-
mark execution and DBMS runtime configuration or on the cloud
resource benchmarking in general, Mowgli combines both aspects
and automates the full evaluation execution. This enables the defini-
tion and execution of portable and comparable evaluation scenarios
for different cloud resources and DBMSs.

8 CONCLUSION
Big Data and IoT demand for distributed and scalable database man-
agement systems (DBMS). Cloud resources provide these scalability
demands on the resource level. Yet, operating a DBMS in the cloud
is a challenging task, due to immense number of DBMSs and cloud
resource offerings. While DBMS evaluation guides this task, current
approaches do not consider DBMS runtime and cloud resource con-
straints, limiting evaluation portability and reproducibility. Hence,
we present Mowgli that enables portable and reproducible evalua-
tions in a consistent manner. Mowgli provides abstract evaluation
scenario templates, which are mapped to DBMS runtime and cloud
resource configurations and executed automatically by allocating
cloud resources, deploying DBMS cluster, executing the workload
and adapting the DBMS cluster.

We evaluate the usability of Mowgli by applying an IoT-driven
evaluation scenario for Apache Cassandra and Couchbase that first
focusses on their performance and scalability with respect to the
runtime constraints cluster size and write consistency and second,
focuses on the impact of the allocated cloud resources in correlation
to the cluster size. Both DBMSs are evaluated on three resource
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configurations comprising Amazon EC2 and a private OpenStack.
The executed 102 evaluation scenarios verify the portability and
reproducibility byMowgli and allow the correlation between DBMS
runtime constraints and cloud resources. Both DBMSs show a scale-
up for growing cluster sizes and the performance of Cassandra
correlates with the applied storage while the performance of Couch-
base heavily depends on the applied write consistency level. The
significance of Mowgli is verified by evaluating its features against
established requirements of DBMS evaluation and by comparing
the collected results against existing evaluation results.

While Mowgli provides a powerful tool to guide the way through
the DBMS jungle, a holistic DBMS recommendation system building
upon machine learning and artificial intelligence is subject to ongo-
ing work. Furthermore, availability evaluation scenarios emulating
cloud resource failures and sudden workload peaks are ongoing
work. With respect to the workload domain, ongoing work investi-
gates into hybrid transaction-analytical processing workloads and
their impact on the DBMS runtime and cloud resource constraints.
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