
Simulation Based Job Scheduling Optimization for Batch
Workloads

Dheeraj Chahal
TCS Research

Mumbai, India

d.chahal@tcs.com

Benny Mathew
TCS Research

Mumbai, India

benny1.m@tcs.com

Manoj Nambiar
TCS Research

Mumbai, India

m.nambiar@tcs.com

ABSTRACT

We present a simulation based approach for scheduling jobs that are

part of a batch worklow. Our objective is to minimize themakespan,

deined as completion time of the last job to leave the system in

a batch worklow with dependencies. The existing job schedulers

make scheduling decisions based on available cores, memory size,

priority or execution time of jobs. This does not guarantee mini-

mum makespan since contention for resources among concurrently

running jobs are ignored.

In our approach, prior to scheduling batch jobs on physical

servers, we simulate the execution of jobs using a discrete event

simulator. The simulator considers available cores and available

memory bandwidth on distributed systems to accurately simu-

late the execution of jobs using resource contention models in a

concurrent run. We also propose simulation based job scheduling

algorithms that use underlying contention models and minimize

the makespan by optimally mapping jobs onto the available nodes.

Our approach ensures that job dependencies are adhered to during

the simulation.

We assess the eicacy of our job scheduling algorithms and

contention models by performing experiments on a real cluster.

Our experimental results show that simulation based approach

improves the makespan by 15% to 35% depending on the nature of

workload.

CCS CONCEPTS

· Computing methodologies → Modeling and simulation;

KEYWORDS

Batch jobs, makespan, job scheduling algorithms, service demand

ACM Reference Format:

Dheeraj Chahal, Benny Mathew, and Manoj Nambiar. 2019. Simulation

Based Job SchedulingOptimization for BatchWorkloads. In Tenth ACM/SPEC

International Conference on Performance Engineering (ICPE ’19), April 7ś

11, 2019, Mumbai, India. ACM, New York, NY, USA, Article 4, 8 pages.

https:⁄⁄doi.org⁄10.1145⁄3297663.3310312

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and⁄or a
fee. Request permissions from permissions@acm.org.

ICPE ’19, April 7ś11, 2019, Mumbai, India

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6239-9⁄19⁄04. . . $15.00
https:⁄⁄doi.org⁄10.1145⁄3297663.3310312

1 INTRODUCTION

Worklows representing complex applications are important in

several business and research domains such as banking, medical,

industrial automation and telecom, bioinformatics, astronomy and

earth sciences [23]. Jobs in these worklows are coupled through

control or data dependencies such that execution of a job may start

only after the execution of one or more other jobs. Moreover, these

jobs are compute or memory intensive and require high perfor-

mance computing servers. Distributed environment comprising of

high-performance servers with large number of cores, highmemory

bandwidth and high speed inter-connects are used for execution of

such worklows. A job scheduler is used to manage the resources

available in such distributed environment and schedule jobs on

these resources. However, on shared-memory multiprocessor plat-

forms, interconnects between main memory and processors be-

come bottlenecks. Moreover, diferent jobs have diferent resource

requirements and availability of these resources keeps changing as

jobs that are part of the worklow arrive and exit.

In this context, the problem of job scheduling refers to allocating

the available resources such as cores, memory, network, I⁄O to the

jobs and establish an optimal order of their execution by mapping

jobs onto the most suitable server. In such a scenario, multiple

resource aware job scheduling can result in improved performance.

Scheduling jobs in a distributed environment is a NP-hard prob-

lem even in case of two identical servers [13]. Use of meta-heuristic

approach is the most suitable option to solve job scheduling prob-

lems. However, meta-heuristic methods impose numerous chal-

lenges in real-world situations where manual tuning of parameters

is diicult or where the execution time is small. In such situations,

pure heuristics provide better solutions.

Scheduling of jobs in distributed environments have been studied

extensively. However, with the advent of new architectures having

large number of cores and high memory bandwidth, there is a need

to study the simulation based methods to address the challenges

posed by such servers and the complex workloads that run on them.

Most job schedulers are either load aware or consider contention

on only one of the resources such as CPU, IO or network. These job

schedulers are not optimal for clusters where resource requirement

vary from job to job. For example, co-scheduling multiple CPU

and⁄or memory bandwidth intensive jobs can result in contention

for these resources and need to be scheduled usingmultiple resource

aware scheduler.

In our previous work, we developed models for predicting the

execution time of CPU and memory bandwidth intensive batch

jobs when these jobs run concurrently [6, 7]. In this work, we pro-

pose job scheduling algorithms using CPU and memory bandwidth

contention models. The proposed algorithms use simulation based

Session 12: Modeling, Prediction, Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

313

https://doi.org/10.1145/3297663.3310312
https://doi.org/10.1145/3297663.3310312

approach to generate a job onto the server mapping resulting in an

improved makespan.

Our approach can be implemented successfully in scenarios

where:

(1) Worklow can be presented as a direct acyclic graph and

there are dependencies among jobs.

(2) There is more than one server available for scheduling jobs.

(3) Multiple jobs may run concurrently on the server and there

is contention for CPU and memory bandwidth.

The contributions of our work are as follows:

(1) We propose two simulation based job scheduling algorithms

to minimize the makespan of an application worklow.

(2) We propose a method to use CPU and memory bandwidth

contention models for optimal scheduling of batch work-

lows.

(3) An experimental evaluation of the scheduling algorithms

using makespan as a metric.

In our model, we consider the homogeneous servers for sched-

uling jobs. However, the model can be applied for heterogeneous

servers as well with job characterization eforts on each unique

server. The scope of this work is limited to modeling systems with

CPU and memory bandwidth intensive workloads. The idle time

is used to represent wait on IO or RPC for remote resources. De-

tailed modeling of external resources is out of scope of this paper.

However our model can be extended to include these resources.

Our simulation approach and proposed algorithms can be inte-

grated with the existing resource management tools to improve

their job scheduling capabilities.

Rest of the paper is organized as follows. Related work is dis-

cussed in section 2. Problem statement and the worklow is ex-

plained in the section 3. Resource contention models and job sched-

uling algorithms are discussed in section 4. The experimental details

and results are discussed in section 5. Conclusion and future scope

is presented in section 6.

2 RELATEDWORK

Extensive work has been performed in last two decades in the ield

of job shop scheduling (JSS) [8] [4]. JSS is an optimization prob-

lem such that we are given n jobs J1, J2..., Jn with difering service

demands that needs to be scheduled on m diferent machines of

varying processing power so their makespan is minimized. Each job

consists of a sequence of operations which must be performed in

some order and on a speciic machine. Flexible job shop scheduling

(FJSS), an extension of JSS technique, is an important research prob-

lem in the domain of production management and combinatorial

optimization [18]. FJSS allows one job to run on more than one

machine.

Theworklow optimization problem for computer systems difers

signiicantly from the JSS and FJSS problem. There is contention

for various resources while one job is running concurrently with

other jobs on the same machine. Hence methods used for solving

JSS and FJSS problems can not be used directly for addressing the

worklow optimization problem that we are solving.

Researchers have developed techniques for cost and deadline

constrained scientiic worklow scheduling and performance pre-

diction in a cloud environment [15, 19]. Our work is diferent from

the cloud based unpredictable workloads containing worklows.

We use the proile of jobs obtained from runs in isolation as input.

Rodriguez et al. have developed algorithms for worklows using

themeta-heuristic technique, particle swarm optimization (PSO) [22].

Chen et al. used well known ant colony optimization technique for

worklow optimization and QoS requirements [9]. Yu et al. proposed

scheduling techniques for worklows using genetic algorithms [27].

These meta-heuristic techniques generate good results but may not

be used in many real-world problems where execution time is small

and systems are automated such that manual tuning is impossible.

Simulation based techniques to study workloads for distributed

systems is a popular approach. Buyya et al. developed a popular

toolkit called GridSim for modeling and simulation of distributed

resource management [5]. Zheng et al. used monte-carlo simula-

tions for stochastic DAG scheduling [28]. Practitioners use sim-

ulations for studying scheduling methods in large scale systems.

Ramaswamy et al. used monte-carlo simulations for scalable behav-

ioral emulation of extreme scale systems [21].

Researchers have developed resource aware scheduling tools

for advanced architectures. Herbein et al. developed an IO aware

scheduling approach for HPC clusters [12]. IBM has implemented

network-aware scheduling in their production resource manager

and scheduler [2]. In a similar work, Xu et al. developed poli-

cies to mitigate memory bandwidth contention using bandwidth

aware scheduling [25]. In another work, prediction accuracy and

co-scheduling performance due to cache-coherence and memory

bandwidth contention was studied in detail [10, 11]. None of these

methods account for ine job characterization of CPU and mem-

ory bandwidth requirements and how their concurrent execution

interferes with each other in a shared memory server architecture.

There exists research work on predicting the service demand

(CPU time in isolation) [14, 20], memory bandwidth requirement [24]

of jobs and efects of memory or thread placement on multi-core

shared memory parallel system [26] but very little eforts have been

made to use service demand and memory bandwidth requirements

of a job for predicting the execution time in a concurrent run using

simulation methods.

The proposed algorithms using CPU-memory bandwidth con-

tention models for co-scheduling jobs on a distributed system are

original contributions that have not been experimented earlier.

3 THEWORKFLOWMODEL AND PROBLEM
STATEMENT

Consider an application batch worklow represented by a DAG G =

(V ,E). Here Vertices V = {v1,v2, . . . ,vn } in the graph represents

multithreaded batch jobs and E is set of edges representing the

precedence among the jobs. A dependency (vi ,vj) ∈ E implies that

job vj can start execution only after vi has inished its execution.

Given that total i machines are available for scheduling repre-

sented by M = {m1,m2, ...mi }. Let n be the number of jobs in the

worklow DAG represented by V = {v1,v2,vn }. Job vj executes

on machinemi in time ETi,j . If Vj represents the jobs scheduled on

machine i , schedule length is denoted as

ETi =
∑

j ∈Vj

{Ei,j } (1)

Session 12: Modeling, Prediction, Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

314

and the makespan is

ETmax =maxi ∈M {ETi } (2)

Based on this, problem can be deined as follows. Given a DAG

G representing a batch worklow, ind job mapping for each job

vj (f or 1 ≤ j ≤ n) onto the available servermk (f or 1 ≤ k ≤ i) for

execution such that the makespan ETmax of the DAG is minimized.

4 OUR APPROACH

In this section we discuss the various steps that are part of our

approach. A high-level structural model we use is as shown in

Figure 1. We irst characterize all batch jobs in isolation. In this

work we are assuming all machines to be identical such that ETi,j
of a job vj ∈ V is same on all servers mi ∈ M . Hence we can

characterize each job only on one server. The job characterization

data includes service demand, resource utilization etc. Execution

of jobs represented as DAG is simulated using our simulator called

DESiDE [16]. DESiDE is a discrete event simulation tool which

implements CPU and memory contention model for concurrent

run of jobs.

Figure 1: The model

The job characterization data, the number of available servers

and DAG is given as input to the simulator. The master instance of

simulator starts the execution of the worklow from the root node

in the DAG and also keeps track of remaining execution time of

each active job. On completion of the job, all successor jobs that are

eligible for the execution are derived from the DAG. For each newly

arriving job, we generate the service demand from its demand dis-

tribution [6, 7] . The execution of each new job is simulated by

another instance of simulator called the worker, using contention

models, current state of the servers and the status of currently exe-

cuting jobs on these servers. The worker simulator uses one of our

job scheduling algorithms to ind most suitable server for mapping

each of the new jobs and returns the job mapping information to

the master simulator. Master simulator maps the new job to the

server and updates the status of the server.

The simulation process starts from the root job in the DAG

and continues till all the jobs and their successors in the DAG are

simulated. At the completion of DAG simulation, an execution

schedule with job onto the server mapping is generated by the

master simulator. The job onto the server mapping generated by

the simulator can now be given to a real job scheduler for execution

on physical servers. This approach is explained in more detail in

the following sub sections.

4.1 Job Characterization

First we characterize each DAG job in isolation. We collect per

thread service demand (CPU time), number of threads, per thread

memory bandwidth requirement BWr eq , CPU utilizationUt mea-

sured at small intervals of execution of each job in the batch. Our

model characterizes service demand (SD) of each thread of a partic-

ular job individually. Since we take service demand distributions

as input, any inaccuracy or missing information during job char-

acterization can be deined from this distribution or appropriate

assumptions. Each thread of a job may have unique demand char-

acteristics due to the fact that work may not be equally divided

between threads. When CPUs are oversubscribed, the execution

time of a thread will afect the execution time of peer threads that

are part of the same job or across the jobs running concurrently.

In case the CPU utilization of a job changes during its execution,

we record the utilization at small intervals of time. The CPU utiliza-

tion data can be it in a regression function (linear, non-linear) or

represented as some distribution. While simulating the concurrent

execution of the jobs, instantaneous value of CPU utilization is

used instead of average value.

We also observe average memory bandwidth requirement of

individual thread when jobs are proiled in isolation. The memory

bandwidth requirement of a thread is observed for both local and

remote memory access. The available memory bandwidth for local

and remote memory are diferent. Latencies due to remote and local

memory access is replicated while simulating the job execution.

4.2 Job Scheduling Algorithms

A job upon completion in a DAG may spawn one or more jobs that

needs to be mapped onto servers available for execution. In this

section we discuss two heuristic algorithms called LET and MOM

that we have developed for mapping jobs onto most appropriate

servers in the distributed environment.We also describe the average

load based algorithm called SLF that we have implemented in our

simulator.

4.2.1 Least Execution Time (LET). In this approach we use least

execution time of the job on all available servers as a criterion for

mapping onto a server. On completion of a job in the DAG, new

jobs may be spawned and need to be mapped onto servers for exe-

cution. Current state of each server (number of cores available) and

remaining execution time of each job running on them is extracted.

New job vj is concurrently executed with already running jobs on

all serversM = {m1,m2,mn } and its simulated execution time

ET (vj ,mi) for 1 ≤ i ≤ n, is observed. A servermk is selected from

the set of servers such that

mk =min{ET (vj ,mi)} f or1 ≤ i ≤ n (3)

New job is mapped ontomk for execution and state of the server

is updated. The pseudocode for the algorithm is as shown in Algo-

rithm 1.

4.2.2 Min of Max (MOM). In MOM algorithm we use minimum

impact of incoming job on currently running jobs as a criterion

for mapping. We simulate the execution of new job on all servers

M = {m1,m2,mn } by running concurrently with the already

executing set of jobs Ani on machine ml . Execution time of the

longest running job on each server i.e. Tl =max {ETl (Ai ,mi)} for

Session 12: Modeling, Prediction, Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

315

Algorithm 1: LET algorithm

Data: Input DAG G = (V ,E) representing a worklow

Result: Job mapping onto the server and execution time of

the worklow

Schedule ROOT job in the DAG on a server

On completion of ROOT, ind successor jobsVj = {v1,v2, ..vm }

while Vj , EMPTY do

for each job vi in Vj do

for each serverml ,l = 1,2,3....n do
Simulate concurrent execution of the job with

active jobs and ind execution time ETl of vi
{ETl (vi ,ml)}

end

ind servermk executing vi in least time

min{ETl } f or 1 ≤ l ≤ n

Allocate job tomk and update server state

end

On completion of vi ind its successors jobs and update Vj
end

Algorithm 2: MOM algorithm

Data: Input DAG G = (V ,E) representing a worklow

Result: Job mapping onto the server and execution time of

the worklow

Schedule ROOT job in the DAG on a server

On completion of ROOT, ind successor jobsVj = {v1,v2..,vm }

while Vj , EMPTY do

for each job vi in Vj do

for each serverml ,l = 1,2,3....n do
Simulate concurrent execution of the job vi with

active jobs Ani ⊂ V on machineml

Find execution time ETl of longest running job Tl
on machine machineml

Tl =max {ETl (Ani ,ml)}

end

Find servermk where longest running job is fastest

among all serversmin(Tl) for 1 ≤ l ≤ n Allocate job to

mk and update server state

end

On completion of vi ind its successors jobs and update Vj
end

1 ≤ i ≤ n is observed. New job is mapped onto a servermk where

longest running job on any server is fastest among all the servers

i.e. min(Tl) for 1 ≤ l ≤ n. This process is repeated till all jobs

are inished in the DAG. The workload and state of the server is

updated after job allocation. The pseudo code of the algorithm is

shown in Algorithm 2.

4.2.3 Smallest Load First (SLF). Average load based scheduling

is a popular approach used by most of the job schedulers for load

balancing. We have implemented SLF in our simulation tool and

compared it with the performance of the above mentioned algo-

rithms with it. Unlike the LET and MOM algorithms, worker simu-

lation instance is not required since load information of each server

is already available with master. In this approach, we calculate the

load Ll on each server inM = {m1,m2,mn } instantaneously

Ll =
No. o f threads on the server

No. o f cores on the server
(4)

New job is scheduled on a servermk with minimum load among

all servers

mk =min{Ll ,ml } f or 1 ≤ l ≤ n (5)

4.3 CPU and Memory Contention Model

Once an appropriate server has been identiied for the new job,

it is added to the current pool of jobs running on that server in

the simulator. In our previous works we have developed CPU and

memory contention models [6, 7] for predicting the execution time

of a job in a batch when multiple jobs start at the same time. We

improved and extended these models in the current work while sim-

ulating the concurrent execution of worklow jobs. These models

are discussed here.

Figure 2: CPU and memory contention model

Figure 3: Execution of threads in small intervals

4.3.1 CPU contention model. During its execution, a thread

migrates between between multiple states. In our model we assume

that when a thread is ready for execution, it is mapped onto a core

for execution (Figure 2). A thread acquires core to execute for some

time and then migrates to an idle state by releasing the core to

perform some work e.g. IO, rpc etc. The completion time of a thread

is sum total of time spent by thread in diferent states. In our CPU

contention model we divide the total execution time EThi j of each

thread Ji j of a job i with j threads in n small intervals of size time

T such that EThi j = n ∗T as shown in Figure 3. In each interval,

thread is executing in the CPU for some duration and is idle for

the remaining time of the interval. The time for which the thread

acquires the CPU is derived from the CPU utilization observed for

the thread in isolation. The busy time tbusy and the idle time tidle
of a thread in an interval is derived from the CPU utilization Ut at

time t

tbusy = Ut ∗T (6)

Session 12: Modeling, Prediction, Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

316

tidle = (1 −Ut) ∗T (7)

We replicate the behavior of real operating system by including

the luctuations in the idle time and busy time. Also, we do not

want all threads to start or go to idle state at the same time. Hence

we choose average tbusy and tidle randomly from the distribution

as follows

tbusy = [(1 − σ) ∗ tbusy , (1 + σ) ∗ tbusy] (8)

tidle = [(1 − σ) ∗ tidle , (1 + σ) ∗ tidle] (9)

Where σ represents the standard deviation in CPU utilization as

observed in small intervals during job characterization in isolation.

In our experiments time interval used was .1s. We did not see any

improvement in the results by reducing interval length further.

4.3.2 Memory contention model. While a thread is executing

using a core, it exchanges the data by reading and writing to the

memory. If the total bandwidth requirement of a thread BWr eq

exceeds the available bandwidth BWavail per thread in a core, the

busy time tbusy of the thread in an interval gets extended by a

factor σbw (Figure 4)

σbw = (BWr eq − BWavail)/BWavail (10)

The available bandwidth BWavail is measured from the maxi-

mum bandwidth BWmax available on the server and the number

of threads Thi running.

BWavail = BWmax /Thi (11)

In case there is thread and memory binding and data is retrieved

from local mode, a threadś busy time in an interval gets extended

due to memory bandwidth contention as

tbusy = Ut ∗T (1 + σbw) (12)

However, in the absence of thread and memory binding, threads

in a job may access data from a remote memory as well. Based on

the research work done by Bardhan et al. [3], our simulator also

assumes that in the absence of any thread and memory binding,

25% of all threads in a job access data from a remote memory node.

Similar behavior was observed by us in our previous work [7].

The additional time due to data retrieval from remote memory δr
as compared to retrieval time from local memory δl results in an

overhead δrl

δr l = δr /δl (13)

The busy time of a thread in such a state is given as

tbusy = Ut ∗T (1 + σbw ∗ δr l) (14)

Figure 4: Execution of threads with memory contention in

small intervals

4.4 Simulation Model

We enhanced our discrete event simulation tool called DESiDE to

implement job scheduling algorithms, CPU and memory contention

models as discussed in the sections 4.3 and 4.2 respectively. We have

extended DESiDE to accept worklows as a DAG. The proile of each

job including per thread bandwidth requirement, CPU utilization

etc. as discussed in the section 4.1 is also given as input to the

simulation tool. We use processor sharing with time slicing in

DESiDE for simulating execution of multi-threaded concurrent jobs.

Simulation tool is initialized with the sever information including

number of cores, maximum memory bandwidth in the server.

As discussed earlier in the contention model description, total

execution time of threads is divided in small intervals. At the begin-

ning of each interval, total bandwidth available and the remaining

execution of threads is calculated. If available memory bandwidth

is less than the required bandwidth of a thread, its execution time

is dilated according to equations 12 and 14.

We run two instances of DESiDE called master and worker. Each

job entering the simulator invokes arrival function in the master

instance of DESiDE. Master saves the current state of simulation on

all servers and invokes the worker instance. The worker instance

executes job scheduling algorithms to ind the most suitable server

for execution. The master instance schedules the job on the server

and updates the state of the server. The simulation process contin-

ues till all jobs in the DAG are processed. At the end of simulation a

job onto server mapping sequence is generated with the estimated

time of execution of each individual job and the makespan of the

DAG. The job mapping generated using simulation is executed with

a real job scheduler.

5 EXPERIMENTS

Firstly, we performed simulations for worklows provided as DAGs

using our algorithms and compared the results of our simulation

experiments. Then, to verify the applicability of these algorithms

in the production environment, we used the same DAG with server

mapping generated during simulation and conducted experiments

on physical servers using a job scheduler. Results of our experiments

are discussed below.

5.1 Experimental Setup

In all our experiments we used Intel Xeon servers running centOS

6.0 Linux system. The simulator DESiDE ran on a single server and

simulated execution of DAG on clusters of diferent sizes. We also

tested job mapping generated by simulator using our algorithms

on clusters of 2, 3 and 4 physical servers. Each server had 56 logical

cores and 80GB⁄s local memory bandwidth available.

We used an in-house job scheduler called PARLANCE to run the

experiments on physical servers. PARLANCE is a proprietary tool

that implements average load based scheduling by default but can be

programmed to follow user deined job onto the server mappings.

Its performance is comparable to other popular job scheduling

algorithms that use average load based scheduling strategy such as

LSF job scheduler [1]. It has in-built capabilities that allow users to

deine job constraints and dependencies among jobs.

Session 12: Modeling, Prediction, Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

317

Figure 5: DAG of 50 jobs (DAG-1) and 100 jobs (DAG-2) used in experiments. Colors denote average job bandwidth requirement

(red: 7.9-10.5 GB/s, green: 5.4-7.9 GB/s , blue: 3.6-5.4 GB/s , purple: 0-3.6GB/s)

No. of Servers
Simulation time(s)

DAG-1 DAG-2

2 40 89

3 56 100

4 73 156

5 92 190

Table 1: No. of servers vs simulation time for DAG-1 and

DAG-2 using LET and MOM

STREAM benchmark [17] was used to create various batch work-

lows for our experiments. The STREAM benchmark workload per-

forms four diferent vector operations namely copy, add, scalar,

triad. These operations are CPU, memory bandwidth intensive and

most suitable for testing our contention models and scheduling

algorithms. We generate 36 unique STREAM benchmark jobs by

varying the number of iterations performed and number of threads

in each job. Number of threads per job varies from 4 to 28 and band-

width requirement per thread varies from 3.6 GB⁄s to 10.5 GB⁄s. We

constructed DAG of 50 jobs (DAG-1) and 100 jobs (DAG-2) using

these 36 unique STREAM jobs. DAG-1 and DAG-2 used for our

experiments are shown in Figure 5.

We proiled each of these STREAM jobs in isolation. Service

demand, CPU utilization and memory bandwidth of each thread in

each job was recorded at ixed intervals.

5.2 Simulations

We evaluated and compared our scheduling algorithms by per-

forming simulations using our tool DESiDE . We instantiate the

simulator with direct acyclic graphs containing 50 and 100 jobs i.e.

DAG-1 and DAG-2. Apart from the DAG, DESiDE’s input is the job

characterization data. This data includes service demand of each

thread, number of threads, memory bandwidth requirement of each

thread and CPU utilization. Simulation starts with the root job in

the DAG. On completion of a job, DESiDE refers to the DAG to ind

new jobs to be spawned. Using various algorithms discussed in the

section 4.2, DESiDE maps the job onto the server.

Concurrent execution of jobs on multiple servers is simulated

by the tool as described in section 4.4. On completion of the DAG

processing, expected completion time of individual job, makespan

 1000

 1500

 2000

 2500

 3000

2 3 4

M
a

k
e

s
p

a
n

 o
f

th
e

 D
A

G
(s

)

No. of Servers

SLF
LET

MOM

(a)

 2500

 3000

 3500

 4000

 4500

 5000

2 3 4

M
a

k
e

s
p

a
n

 o
f

th
e

 D
A

G
(s

)

Number of Servers

SLF
LET

MOM

(b)

Figure 6: Comparison of job scheduling algorithms using

simulator with diferent cluster sizes (a) 50 job DAG (b) 100

job DAG

of the whole DAG and job onto the server mapping is generated

as an output. Simulations were conducted for cluster size of 2, 3

and 4 servers. Execution of jobs on each server was simulated with

56 logical cores and 8̃0GB⁄s memory bandwidth. The simulations

were repeated with three diferent seeds and the average makespan

was calculated. In case job onto the server mapping changes with

diferent seeds, we repeat the simulations till the dominant mapping

is identiied. Simulation time for DAG-1 and DAG-2 using LET and

MOM algorithms on cluster size of 2,3,4 and 5 servers is as shown

in Table 1. We observe that with increase in the number of servers,

the simulation time also increases. Since we are generating a static

schedule, this simulation time is acceptable. In case of dynamic

scheduling, optimizations like parallel worker simulators, thread

pool of simulators, IPC mechanisms can be used.

Figure 6a shows the comparison of makespan observed using our

algorithms with DAG-1. MOM algorithm shows an improvement

of approximately 5%, 13% and 12% over SLF using 2, 3 and 4 server

clusters respectively. LET shows an improvement of 3%, 5% and 8%

over SLF using 2, 3 and 4 servers respectively. Similar results were

observed with DAG-2 containing 100 jobs as shown in Figure 6b.

MOM algorithm shows an improvement of approximately 3%, 9%

and 9% over SLF for 2, 3, 4 servers respectively. LET also performs

better than SLF with an improvement of approximately 3%, 5%, 5%

in the makespan for 2, 3, 4 servers respectively. Based on these re-

sults we can conclude that among three algorithms, MOM performs

Session 12: Modeling, Prediction, Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

318

(a) (b) (c)

Figure 8: Comparison of expected execution time of individual jobs of DAG-2 on a cluster size of 3 servers using (a) SLF (b)

LET (c) MOM

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

MOM LET SLF JS

M
a

k
e

s
p

a
n

 o
f

D
A

G
 (

s
)

Algorithms

Makespan

(a)

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

MOM LET SLF JS

M
a

k
e

s
p

a
n

 o
f

D
A

G
 (

s
)

Algorithms

Makespan

(b)

Figure 7: Makespan observed using job mapping generated

by the simulator for MOM, LET and SLF and executed with

real job scheduler PARLANCE on a cluster of three servers.

Makespan generated by PARLANCE in default mode (JS) is

used as a baseline

better than LET and SLF. We do not see large improvement when

resource availability is very low, which is the case when there are

only 2 servers. This is due to the fact that all resources are used to

full capacity and there is very little scope for performance improve-

ment. Also makespan does not improve further when resources are

under-subscribed as in case of 4 servers.

5.3 Experimental Evaluation

Our objective is to generate an optimal job onto server mapping

sequence using simulations that can be executed using any job

scheduler. We tested the accuracy of our contention model and

simulation algorithms by scheduling the same DAGwith simulation

generated job server mapping using our in-house job scheduler

PARLANCE.

We generated job onto the server mapping with MOM, LET and

SLF algorithms using DESiDE. The job mapping sequence gener-

ated with simulator for these algorithms is then executed using

PARLANCE. Each experiment was repeated 5 times. We also ran

PARLANCE in the default mode, henceforth called JS, without user

speciied mapping and compared with our algorithms.

Figure 7 shows the makespan comparison of our algorithms us-

ing the real job scheduler on a cluster of three servers. As shown in

Figure 7a, makespan generated using MOM results in the minimum

makespan followed by LET, SLF and JS. We observed an improve-

ment of 25%, 15% and 13% over JS for DAG-1 using MOM, LET and

SLF mapping respectively. Similar results were observed for DAG-2

(Figure 7b). We observed an improvement of 35%, 24% and 21% in

comparison to PARLANCE default schedule JS using MOM, LET

and SLF respectively.

Although both SLF and PARLACE use average load based sched-

uling policy but we see a signiicant diference in the makespan

with job mapping predicted by simulation using SLF and actual

measurement run using PARLANCEwith SLF routing (JS) as shown

in Figure 7 . This has been traced to the manner in which load is

calculated for SLF scheduling is PARLANCE. PARLANCE used the

UNIX load average to determine which server is least loaded. This

is the average CPU load over the last minute. In case several depen-

dent jobs are launched at the same time, the load will not change

when checked for each of these dependent jobs. So as long as there

are suicient cores available, all dependent jobs are likely to be

launched on the same server.

However in DESiDE, to calculate CPU load we take the instan-

taneous value of CPU utilization. This means that when a job is

scheduled to launch on a particular server, the load average is instan-

taneously updated. Other jobs that are to be launched at the same

simulation time will ind this server loaded and will be launched

on other less loaded servers.

When the job onto server mapping from simulated SLF is given

as input to PARLANCE, the diference is reduced to 5%. This shows

close match between experimental and simulated SLF results (see

SLF data in Figure 6a and 7a for 3 servers) .

Figure 8 shows the comparison of execution time of individual

jobs using SLF, LET and MOM algorithm for DAG-2. The LET

algorithm maps new job to a server where its own execution time

is minimum without considering its efect on execution time of

already running jobs. This job placement policy may afect the

execution time of critical jobs in the sequence and can result in

higher makespan i.e. inish time of the last job in the DAG. However,

MOM algorithm mapping ensures minimum efect of newly placed

jobs on the execution time of pre-running jobs. As a result critical

jobs that have many dependent jobs are relatively unafected by

newly placed jobs. This is clearly visible in highlighted interval in

Figure 8c which shows more concurrently running jobs and lower

makespan time as compared to SLF and LET in igure 8a and 8b.

6 CONCLUSION

In this work we have proposed simulation based scheduling algo-

rithms to ind an optimal job mapping onto servers which results

Session 12: Modeling, Prediction, Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

319

in an improved overall execution time of a batch worklow repre-

sented as a DAG. We have compared simulation results generated

using our algorithms with the execution of the worklow using a

real job scheduler. The experimental results show that job mapping

generated using least execution time and min of max algorithms

minimize makespan of a DAG.

The proposed algorithms are resource aware and generate a job

mapping by simulating the concurrent execution of jobs. Simula-

tions are performed using a discrete event simulation tool called

DESiDE which implements our CPU and memory contention mod-

els. Since the two heuristic algorithms are multiple resource aware,

they give better results than SLF, which is only CPU aware. The

proposed approach can be integrated with real schedulers for real

life applications such as bioinformatics, physics, earth science etc.

Our approach is based on CPU and memory bandwidth contention

models and modeling IO intensive jobs is work in progress.

We have limited our experiments to a cluster of 4 servers only

but this approach can be used with large clusters by parallelizing

the worker instance to reduce the simulation time.

In future, we intend to embed the simulator in our job scheduler

so that a job is immediately placed on the server when appropriate

server for its execution is determined by the simulator.

REFERENCES
[1] [n. d.]. IBM LSF. http:⁄⁄ls11-www.cs.tu-dortmund.de⁄people⁄hermes⁄manuals⁄

LSF⁄users.pdf. Accessed: 2018-10-25.
[2] [n. d.]. IBM Network-aware scheduling. https:⁄⁄www.ibm.com⁄support⁄

knowledgecenter⁄en⁄SSETD4_9.1.3⁄lsf_admin⁄pe_network_aware_sched.html.
Accessed: 2018-10-25.

[3] S. Bardhan and D. A.MenascÃľ. 2015. Predicting the Efect of Memory Contention
in Multi-Core Computers Using Analytic Performance Models. IEEE Trans.
Comput. 64, 8 (Aug 2015), 2279–2292. https://doi.org/10.1109/TC.2014.2361511

[4] S. Binato, W. J. Hery, D. M. Loewenstern, and M. G. C. Resende. 2002. A Grasp for
Job Shop Scheduling. Springer US, Boston, MA, 59–79. https://doi.org/10.1007/
978-1-4615-1507-4_3

[5] Rajkumar Buyya and Manzur Murshed. [n. d.]. GridSim: a toolkit for the
modeling and simulation of distributed resource management and schedul-
ing for Grid computing. Concurrency and Computation: Practice and Ex-

perience 14, 13âĂŘ15 ([n. d.]), 1175–1220. https://doi.org/10.1002/cpe.710
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.710

[6] Dheeraj Chahal and Benny Mathew. 2018. PROWL: Towards Predicting the
Runtime of Batch Workloads. In Companion of the 2018 ACM/SPEC International
Conference on Performance Engineering, ICPE 2018, Berlin, Germany, April 09-13,
2018. 199–200. https://doi.org/10.1145/3185768.3186407

[7] Dheeraj Chahal, Benny Mathew, and Manoj K. Nambiar. 2018. Predicting the
Runtime of Memory Intensive Batch Workloads. In The 47th International Con-
ference on Parallel Processing, ICCP 2018, Workshop Proceedings, Eugene, OR, USA,
August 13-16, 2018. 45:1–45:8. https://doi.org/10.1145/3229710.3229756

[8] Imran Ali Chaudhry and Abid Ali Khan. [n. d.]. A research survey: review
of lexible job shop scheduling techniques. International Transactions in Op-
erational Research 23, 3 ([n. d.]), 551–591. https://doi.org/10.1111/itor.12199
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/itor.12199

[9] Wei-neng Chen and Jun Zhang. 2009. An Ant Colony Optimization Approach to
a Grid Worklow Scheduling Problem With Various QoS Requirements. 39 (01
2009), 29–43.

[10] Andreas De Blanche and Thomas Lundqvist. 2014. A methodology for estimating
co-scheduling slowdowns due to memory bus contention on multicore nodes.
In Proceedings of the IASTED International Conference on Parallel and Distributed
Computing and Networks, PDCN 2014 :. 216–223. https://doi.org/10.2316/P.2014.
811-027

[11] Andreas de Blanche and Thomas Lundqvist. 2015. Addressing characterization
methods for memory contention aware co-scheduling. The Journal of Supercom-
puting 71, 4 (01 Apr 2015), 1451–1483. https://doi.org/10.1007/s11227-014-1374-8

[12] Stephen Herbein, Dong H. Ahn, Don Lipari, Thomas R.W. Scogland, Marc Stear-
man, Mark Grondona, Jim Garlick, Becky Springmeyer, and Michela Taufer. 2016.
Scalable I/O-Aware Job Scheduling for Burst Bufer Enabled HPC Clusters. In
Proceedings of the 25th ACM International Symposium on High-Performance Par-
allel and Distributed Computing (HPDC ’16). ACM, New York, NY, USA, 69–80.
https://doi.org/10.1145/2907294.2907316

[13] Hesam Izakian, Ajith Abraham, and Vaclav Snasel. 2009. Performance compari-
son of six eicient pure heuristics for scheduling meta-tasks on heterogeneous
distributed environments. Neural Network World 19, 6 (2009), 695.

[14] Ajay Kattepur and Manoj Nambiar. 2015. Performance Modeling of Multi-tiered
Web Applications with Varying Service Demands. 2015 IEEE International Parallel
and Distributed Processing Symposium Workshop (IPDPSW) 00 (2015), 415–424.
https://doi.org/doi.ieeecomputersociety.org/10.1109/IPDPSW.2015.28

[15] Maciej Malawski, Gideon Juve, Ewa Deelman, and Jarek Nabrzyski. 2012. Cost-
and Deadline-constrained Provisioning for Scientiic Worklow Ensembles in
IaaS Clouds. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC ’12). IEEE Computer Society
Press, Los Alamitos, CA, USA, Article 22, 11 pages. http://dl.acm.org/citation.
cfm?id=2388996.2389026

[16] Benny Mathew and Dheeraj Chahal. 2017. DESiDE: Discrete Event Simulation
Developers Environment. In Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering (ICPE ’17). ACM, New York, NY, USA,
173–174. https://doi.org/10.1145/3030207.3053672

[17] John D. McCalpin. 1991-2007. STREAM: Sustainable Memory Bandwidth in High
Performance Computers. Technical Report. University of Virginia, Charlottesville,
Virginia. http://www.cs.virginia.edu/stream/ A continually updated technical
report. http://www.cs.virginia.edu/stream/.

[18] Maroua Nouiri, Abdelghani Bekrar, Abderezak Jemai, Smail Niar, and Ahmed Chi-
heb Ammari. 2018. An efective and distributed particle swarm optimization
algorithm for lexible job-shop scheduling problem. Journal of Intelligent Manu-
facturing 29, 3 (01 Mar 2018), 603–615. https://doi.org/10.1007/s10845-015-1039-3

[19] I. Pietri, G. Juve, E. Deelman, and R. Sakellariou. 2014. A Performance Model
to Estimate Execution Time of Scientiic Worklows on the Cloud. In 2014 9th
Workshop on Worklows in Support of Large-Scale Science. 11–19. https://doi.org/
10.1109/WORKS.2014.12

[20] J. F. PÃľrez, G. Casale, and S. Pacheco-Sanchez. 2015. Estimating Computational
Requirements in Multi-Threaded Applications. IEEE Transactions on Software En-
gineering 41, 3 (March 2015), 264–278. https://doi.org/10.1109/TSE.2014.2363472

[21] Ajay Ramaswamy, Nalini Kumar, Aravind Neelakantan, Herman Lam, and Greg
Stitt. 2018. Scalable Behavioral Emulation of Extreme-Scale Systems Using
Structural Simulation Toolkit. In Proceedings of the 47th International Conference
on Parallel Processing (ICPP 2018). ACM, New York, NY, USA, Article 17, 11 pages.
https://doi.org/10.1145/3225058.3225124

[22] Maria Alejandra Rodriguez and Rajkumar Buyya. 2014. Deadline Based Resource
Provisioningand Scheduling Algorithm for Scientiic Worklows on Clouds. IEEE
Transactions on Cloud Computing 2 (2014), 222–235.

[23] Jyoti Sahni and Deo Prakash Vidyarthi. 2018. A Cost-Efective Deadline-
Constrained Dynamic Scheduling Algorithm for Scientiic Worklows in a Cloud
Environment. IEEE Transactions on Cloud Computing 6 (2018), 2–18.

[24] W.Wang, J. W. Davidson, andM. L. Sofa. 2016. Predicting the memory bandwidth
and optimal core allocations formulti-threaded applications on large-scale NUMA
machines. In 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA). 419–431. https://doi.org/10.1109/HPCA.2016.7446083

[25] D. Xu, C. Wu, and P. Yew. 2010. On mitigating memory bandwidth contention
through bandwidth-aware scheduling. In 2010 19th International Conference on
Parallel Architectures and Compilation Techniques (PACT). 237–247.

[26] R. Yang, J. Antony, P. P. Janes, and A. P. Rendell. 2008. Memory and Thread
Placement Efects as a Function of Cache Usage: A Study of the Gaussian
Chemistry Code on the SunFire X4600 M2. In 2008 International Symposium
on Parallel Architectures, Algorithms, and Networks (i-span 2008). 31–36. https:
//doi.org/10.1109/I-SPAN.2008.13

[27] Jia Yu and Rajkumar Buyya. 2006. Scheduling Scientiic Worklow Applications
with Deadline and Budget Constraints Using Genetic Algorithms. Sci. Program.
14, 3,4 (Dec. 2006), 217–230. http://dl.acm.org/citation.cfm?id=1376960.1376967

[28] Wei Zheng and Rizos Sakellariou. 2013. Stochastic DAG scheduling using a
Monte Carlo approach. J. Parallel and Distrib. Comput. 73, 12 (2013), 1673 –
1689. https://doi.org/10.1016/j.jpdc.2013.07.019 Heterogeneity in Parallel and
Distributed Computing.

Session 12: Modeling, Prediction, Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

320

http://ls11-www.cs.tu-dortmund.de/people/hermes/manuals/LSF/users.pdf
http://ls11-www.cs.tu-dortmund.de/people/hermes/manuals/LSF/users.pdf
https://www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.3/lsf_admin/pe_network_aware_sched.html
https://www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.3/lsf_admin/pe_network_aware_sched.html
https://doi.org/10.1109/TC.2014.2361511
https://doi.org/10.1007/978-1-4615-1507-4_3
https://doi.org/10.1007/978-1-4615-1507-4_3
https://doi.org/10.1002/cpe.710
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.710
https://doi.org/10.1145/3185768.3186407
https://doi.org/10.1145/3229710.3229756
https://doi.org/10.1111/itor.12199
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/itor.12199
https://doi.org/10.2316/P.2014.811-027
https://doi.org/10.2316/P.2014.811-027
https://doi.org/10.1007/s11227-014-1374-8
https://doi.org/10.1145/2907294.2907316
https://doi.org/doi.ieeecomputersociety.org/10.1109/IPDPSW.2015.28
http://dl.acm.org/citation.cfm?id=2388996.2389026
http://dl.acm.org/citation.cfm?id=2388996.2389026
https://doi.org/10.1145/3030207.3053672
http://www.cs.virginia.edu/stream/
https://doi.org/10.1007/s10845-015-1039-3
https://doi.org/10.1109/WORKS.2014.12
https://doi.org/10.1109/WORKS.2014.12
https://doi.org/10.1109/TSE.2014.2363472
https://doi.org/10.1145/3225058.3225124
https://doi.org/10.1109/HPCA.2016.7446083
https://doi.org/10.1109/I-SPAN.2008.13
https://doi.org/10.1109/I-SPAN.2008.13
http://dl.acm.org/citation.cfm?id=1376960.1376967
https://doi.org/10.1016/j.jpdc.2013.07.019

	Abstract
	1 Introduction
	2 Related Work
	3 The workflow model and Problem statement
	4 Our approach
	4.1 Job Characterization
	4.2 Job Scheduling Algorithms
	4.3 CPU and Memory Contention Model
	4.4 Simulation Model

	5 experiments
	5.1 Experimental Setup
	5.2 Simulations
	5.3 Experimental Evaluation

	6 Conclusion
	References

