
Follower Core: A Model to Simulate Large Multicore SoCs

Tanuj Agarwal
AMD India Private Limited

Bangalore, India
Tanuj.Agarwal@amd.com

Bill Jones
Advanced Micro Devices, Inc.

Fort Collins, USA
Bill.Jones@amd.com

Anasua Bhowmik
AMD India Private Limited

Bangalore, India
Anasua.Bhowmik@amd.com

ABSTRACT
Cycle accurate simulator is a critical tool for processor design
and as the complexity and the core count of the processor
increase, the simulation becomes extremely time and resource
consuming and hence not very practical. Accurate multi-core
performance estimation in realistic time is needed for making
the right design choices and make high quality performance
projections.

In this work we present a multi-core simulation model
called Follower Core, that helps us to approximate the multi-
core simulations by simulating some cores in detail and
abstracting out the other cores without reducing the overall
activities at the shared resources. This enables us to simulate all
the critical shared resources in the multi-core system accurately
and hence the detailed core can provide correct performance
estimation. The approach is applied over existing simulation
models and it reduces the simulation time significantly,
especially for long running workloads. The ‘Follower Core’
model provides an average speed up of 3x compared to baseline
and is an accurate approximation of detailed multi-core
simulations with a maximum error of 2% with the baseline model
and extends our capabilities by improving our coverage and
providing flexibilities to run mixed workloads.

CCS CONCEPTS
• Computing methodologies~Modeling and simulation
• Computer systems organization~Multicore architectures

 KEYWORDS
Follower Core; Heterogeneous Follower Core; Baseline
Simulation Methodology

ACM Reference format:

Tanuj Agarwal, Bill Jones, Anasua Bhowmik. 2019. Follower Core: A
Model to Simulate Large Multi-core SoCs. In Proceedings of 10th
ACM/SPEC International Conference on Performance Engineering (ICPE’
19), Mumbai, India, April 7-11, 2019. ACM, New York, NY, USA 8 Pages,
https://doi.org/10.1145/3297663.3309678

1 INTRODUCTION
Cycle accurate simulators play a critical role in processor

design by estimating the performance of the proposed hardware.
With every generation, the processor cores are becoming more
complex and more cores are added in the processor die to use the
available transistors more efficiently and run more threads or
applications in parallel. With the increasing complexity of the
core architecture, the simulator complexity and simulation time
is also increasing proportionally. Simulating a modern-day
processor with many such cores becomes challenging and
prohibitively time consuming. The simulation time can increase
from hours for a single core simulation to several days for a
four-core or eight-core system. Figure 1 demonstrates the
increase in run time for different simulation models for
SPECrate®2017_int_base1 [1] Integer suite. We consider a micro-
architecture similar to AMD “Zen” [3] architecture where each
core has private L1 and L2 caches and they all share the same L3
cache. The increasing run-time is a real challenge in the design
of upcoming features as the turnaround time for analysis and
debug increases.

1 SPEC, SPEC CPU, SPECint, SPECfp, and SPECrate are registered trademarks of the
Standard Performance Evaluation Corporation. See www.spec.org for more
information

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
ICPE ’19, April 7--11, 2019, Mumbai, India.
© 2019 Association of Computing Machinery.
 ACM ISBN 978-1-4503-6239-9/19/04...$15.00.
DOI: http://dx.doi.org/10.1145/3297663.3309678

Figure 1: Simulation time of SPECrate®2017_int_base
applications with varying number of cores.

Session 11: Performance Analysis and Simulation ICPE ’19, April 7–11, 2019, Mumbai, India

293

An accurate single core simulation cannot estimate the
performance of a multi-core processor even when copies of same
application are run on all cores, since the multi-core processor
performance is heavily dependent on the usage of shared
resources like last level cache, memory system and bandwidth.
We concentrate on the ‘RATE’ behavior where all cores run the
same benchmark with unique address spaces and no data sharing
between the cores. Figure 2 shows the absolute percentage
variation of some important first order statistics from the
corresponding average value for a 4-core simulation of the
SPECrate®2017_int_base [1] and SPECint®_rate_base2006 [2]
binaries. We chose the statistics to be IPC (instructions
committed per cycle), instruction dispatch, data cache, private
L2, shared LLC and memory requests. It can be observed that the
variation of these statistics among cores are very small implying
that the cores behave similarly. Hence it is possible to infer the
behavior of all cores by studying the behavior of one core when
the same application is run on all cores. Therefore, if we can
model the contention and interference at the shared resources by
abstracting out a few cores, then we can reduce the multi-core
simulation time and complexity significantly without sacrificing
the accuracy of the performance projection of the full system.

We propose a multi-core simulation methodology, ‘Follower
Core’ that can be implemented in an existing cycle accurate
simulator model by simulating a subset of cores in detail and
abstracting out the others. The contributions of this work are
following,
1. The ‘Follower Core’ simulation methodology helps us to get

a significant reduction in simulation time for multi-core
simulation.

2. It has a good correlation with the detailed simulation model.
3. We propose a ‘Heterogenous Follower Core’ model which

helps us to provide a good correlation as we scale the
number of cores. It also provides us the flexibility to run
different applications together on a multi-core system
where the applications have different characteristics.

The rest of the paper is organized as follows. Section 2 deals
with relevant work and highlights the previous efforts to speed
up multi-core simulation. Section 3 discusses our proposed
‘Follower Core' model in detail and the associated challenges.

We provide the experimental setup and benchmarks used for
evaluation in Section 4 and present the results in Section 5.
Section 6 discusses the additional advantages of our
methodology and Section 7 concludes our work.

2 RELEVANT WORK
Several approximation techniques have been proposed for

multi-core performance projection whose accuracy varies with
hardware architecture and workloads. Hassan et al. [4]propose a
synthetic trace-based cache only simulation model using the
adaptation of Least Recently Used Stack Model (LRUSM) [5]
techniques. This catches the temporal and spatial locality
patterns and generate phases to simulate a cache hierarchy and
are further reduced using the two state Markov chain model.
While this technique is efficient and provides a significant
reduction in runtime, we observe several shortcomings to this
approach as well. The cache traffic is susceptible to changes in
the core and hence collecting cache traces can be a non-trivial
task. For example, changing the front-end features like branch
predictors can impact the timings of cache traces. Any changes
to the core may require changing traces as well, which would
require efficient synchronization between teams and may lead to
ambiguity in results. This method is effective only when the core
performance is deterministic and smaller traces can be used to
verify the specific scenarios in the cache.

Kanaujia et al. [6] proposed a simulation model, Fast MP,
where they try to exploit the RATE behavior or the homogeneity
of the workloads. All cores show a similar behavior for SPEC
applications, hence simulation results of one is like all the others.
They propose a model where they simulate one real core in
detail and use abstract cores for the rest of simulation. The
abstract cores copy the memory traffic from the real core and
send it to memory to generate realistic memory traffic for the
complete multi-core system. They have studied their model on
the SPEC CPU 2000 [9] Integer suite over a multi-core machine.
They have showed that the model has a reasonable correlation
for a two and four core machines for most benchmarks.
However, the correlation becomes significantly worse (max
miscorrelation 38%) as they increase the number of cores to 8.
They have used a large private L2 cache (8MB per core) which
reduces the overall traffic at shared memory resources.

Our ‘Follower Core’ model is based on the similar principle
as the Fast MP base model. Instead of large private L2 we have
used much smaller private L2 (512KB) and a larger shared L3.
Although our model receives significantly more shared LLC
accesses compared to Fast MP configuration, it shows highly
accurate correlation for the contemporary
SPECrate®2017_int_base and SPECint®_rate_base2006 [1,2]
benchmarks. We have also studied combination of workloads
where benchmarks behaviors vary across cores. The details of
which are provided in the later section.

3 FOLLOWER CORE MODEL

In this section we discuss the details of the ‘Follower Core’
model where a multi-core system is simulated without
simulating all the cores in details. As observed in Figure 2, when

Figure 2: Core level first order statistics normalized to
average simulation values.

Session 11: Performance Analysis and Simulation ICPE ’19, April 7–11, 2019, Mumbai, India

294

Figure 3: Follower Core Implementation.

the same application is run on different cores at the same time,
the cores have a similar behavior and they generate similar
cache and memory traffic. This is the base principle of ‘Follower
Core’ methodology. In this model, one or few cores are
simulated with full details and the L2 cache traffic generated by
the detailed core(s) is replicated to the cache hierarchies of the
other cores. To maintain an equivalence with the detailed multi-
core simulation (referred as Baseline), we need to take care that,
- Address spaces for all cores are exclusive. This helps us to
eliminate any false sharing and maintain the RATE behavior.
- The phase behavior between cores is similar to the Baseline
model.

Figure 3 shows the block diagram of the implementation of
‘Follower Core’ in a 4 core CPU model where all the cores share
last level L3 cache (LLC). In this model one core is simulated in
complete detail which we call as ‘main core’. The cache
hierarchies of other cores follow the main core and they see the
traffic being generated from a dummy core, hence termed as
‘Follower Core(s)’. Detailed model for private L2 caches, shared
LLC, interconnect(s) and memory system is included in the
model without any changes. In the setup shown in Figure 3, we
have used a single main core and 3 follower cores to model a 4-
core system.

The main core simulates the complete front-end pipeline
with all stages. We chose the L1-L2 boundary as the interface for
replicating and generating the traffic at follower cores. As seen
in Figure 2, the behavior of primary L1 cache (DC/IC cache) is
uniform across the cores and thus incorporating it in our model
does not provide with any added simulation benefits. Therefore,
the first level primary caches are considered part of detailed
main core in this work. Selecting the shared LLC boundary as
the boundary for follower core traffic generation speeds up our
simulation but abstracts out the phase level variation
encountered at the shared cache in a detailed simulation. We
observe that for memory intensive benchmarks, performance of
private L2 cache can be sensitive to shared LLC and memory
latency and thus the L1-L2 cache boundary becomes the
interface for follower cores.

The L1 misses generated by the main core are stored in the
follower core(s) buffers which are then processed to generate the
traffic at their L1-L2 interface. These buffers are implemented

through linked lists and follow the strict FIFO order. Apart from
the address, the follower core buffers store the critical
information for each transaction like the type of request
(Data/Instruction/Prefetch), time it was issued, logical core
number (in case of simultaneous multi-threading) etc. While
these addresses are processed and sent to their respective L2
caches the follower cores considers all this information for
converting into appropriate requests and tracking them. The L1-
L2 interface boundary at the follower core is modeled similarly
to the real core maintaining all the resource and design
constraints. This makes sure that the follower cores generate the
L2 traffic similar to the Baseline and do not flood their L2 caches
and shared resources with premature requests.

This setup helps us to generate a full system traffic with a
high degree of accuracy. The model preserves the performance
dependence between different CPU modules. The shared
resources see the traffic as if it was generated by all real cores
and are simulated accordingly. Simultaneously, the main core’s
performance is also dependent on the shared resource
characteristics and memory bandwidth and latency. Any change
in one is reflected over other as in a detailed Baseline model. For
examples, prefetchers can be extremely sensitive to both
core/engine and memory latency. The follower core takes care
that the prefetcher behavior is captured accurately taking both
into account. Similarly, any dependency of the fetch or branch
prediction on the cache/memory latency, is reflected accurately
as well.

We need to ensure proper modeling of buffers and address
conversion schemes. Maintaining each core has an exclusive
address space and address conversion in that space eliminates
any false sharing behavior. Similarly, improper address
conversion can lead to artificial conflicts. For example, if the
cache requests are generated to same LLC index then we can see
thrashing of some indexes while others are being unused leading
to higher LLC miss rates. Therefore, choosing a proper address
conversion algorithm is critical to minimize such scenarios. In
our model, address conversion is done using specific masks
which are generated after a detailed analysis of workload
behavior. It maintains that the traffic from each core is within its
address space and avoids any false conflicts.

Correlating the phase behavior between the detailed Baseline
model and ‘Follower Core’ is a challenging task. Phase behavior
is mostly observed in memory intensive workloads. In a detailed
baseline simulation of memory intensive workloads the core
performance is heavily dependent on the performance of
memory system. The contention at shared cache, interconnects
and memory is high, which can cause the execution speed of
cores to differ as they can observe different memory latencies at
different stages of program. The ‘Follower Core’ is a highly
synchronous model where all the follower cores have a fixed
delay with respect to main core. As a result, the traffic from the
follower core(s) will be injected after a specific duration,
therefore maintaining a constant phase at the L1-L2 boundary.
To counter the problem, we make the follower core delays to be
configurable, that is, depending on the benchmark behavior we
can tune the phase between detailed main core and follower

Session 11: Performance Analysis and Simulation ICPE ’19, April 7–11, 2019, Mumbai, India

295

cores. This helps us to approach the detailed Baseline behavior
with a reasonable degree of accuracy.

3.1 Heterogenous Follower Core Model
As we scale the multi-core simulation model to higher

number of cores, we find that the phase difference between cores
increases and becomes unpredictable with some cores leading in
some phases and vice-versa. Introducing delays in the follower
cores do not capture this behavior properly as the phase
differences between the cores are not uniform and predicatable.
We propose a ‘Heterogenous Follower Core’ model which
simulates more than one main cores in detail to capture the
randomness originated in such scenarios. Figure 4 shows a
‘Heterogenous Follower Core’ setup which consists of two main
cores and two follower cores. Each main core drives a follower
core. If there are differences originating due to the performance
of memory system, it would be reflected at the detailed core and
they will start to exhibit a phase difference with each other. The
follower core(s) that replicate the traffic will also incorporate
these phases and will be much more accurate compared to a

single main core model. In fact, this modelling scheme can
capture the phase variations quite efficiently and reduces the
simulation error seen among its predecessor scheme. While the
model is slower compared to its predecessor, the speedup is still
significant, saving us days for extensively long simulations. The
model simulates larger multi-core systems more accurately and
also enables us to simulate hetergenous workloads environment
where applications with different characteristics are run
together in the multicore system.

Table 1. Micro-architectural Configuration
Core Organization 4 core, 2 way SMT

Primary Cache
(Per Core)

Split, Data cache 32KB, Instruction
cache 64KB

Secondary Cache
(Per Core)

8 way, 512K Private Cache

Last level cache 16 way, 8MB, shared among 4-cores

Memory
bandwidth

8 DDR channels, 2400 MHz

4 EXPERIMENTAL SETUP
We present our results using our proprietary in-house cycle

accurate trace-based simulator that implements all details of the
core, cache hierarchy and memory system. We simulate a four-
core CPU architecture inspired from AMD “Zen” architecture [3]
and micro-architecture details are summarized in Table 1.

We simulate the state of art SPEC binaries,
SPECrate®2017_int_base [1] and SPECint®_rate_base2006 [2].
These binaries have an efficient mix of compute and memory
intensive benchmarks that simulate and analyze all the critical
components of any hardware design. The
SPECrate®2017_int_base [1] binaries are ‘aocc’ [7] compiled and
the SPECint®_rate_base2006 [2] binaries are ‘gcc’ compiled
using the ‘-O2’ flag.

5 RESULTS
In this section we compare the ‘Follower Core’ model against

the detailed Baseline model which simulates all the real cores.
We evaluate the ‘Follower Core’ simulation model for simulation
‘Accuracy’ and ‘Speedup’.

5.1 Accuracy
The most important aspect of any approximation techniques

is simulation accuracy which we described as the error between
the baseline full system simulation and the ‘Follower Core’
models. The error measures the correlation between the two
models and ideally, we want an error close to 0%.

5.1.1 IPC (Instructions Committed Per Cycle)
For any performance projection, IPC is the most important
metric and we begin by matching the IPC for two simulation
models. Figure 5 shows the error in IPC for ‘Follower Core’

Figure 4: Heterogenous Follower Core Model.

Figure 5: Percentage variation in IPC for a Follower core model compared to detailed 4-core full system model.

Session 11: Performance Analysis and Simulation ICPE ’19, April 7–11, 2019, Mumbai, India

296

model, compared to the baseline model.
The IPC reported by the ‘Follower Core’ model matches closely
with the all real core simulation model. Overall, the
SPECrate®2017_int_base and SPECint®_rate_base2006
benchmarks have an error margin of 0.26% and 0.38%
respectively. The compute intensive benchmarks have a better
correlation than the memory intensive benchmarks. Most
benchmarks have less than 1.5% miscorrelation in IPC. The
memory intensive benchmarks like ‘429.mcf’ and
‘483.xalancbmk’ show a higher IPC miscorrelation due to the
difference in phase behavior between the all real cores and the
‘Follower Core’ models. The IPC miscorrelation of ‘429.mcf’ and
‘483.xalancbmk’ from SPECint®_rate_base2006 suite can be
reduced by increasing delays between the main core and
follower cores. Apart from delays, the simulation accuracy can
also be increased by using a ‘Heterogenous Follower Core’
model having two main cores as shown later.
5.1.2 Other first order statistics
 We now investigate the difference with respect to some other
important first order statistics to show the correlation between
the ‘Follower Core’ and Baseline models. We present the
difference in requests per thousand instructions (pti) for L2
cache, Last level cache and memory system.

Figure 6 shows the percentage difference in each first order
statistic between the ‘Follower Core’ model and Baseline. We
focus on benchmarks that have an absolute IPC error greater
than 0.5%. From Figure 6 we find that most of the benchmarks

show a negligible variation except ‘464.h264ref’ from the
SPECint®_rate_base2006 suite which has a very high number of
L2 requests. The LLC requests and request to memory system
(LLC misses) also match quite closely between the two models,
with an absolute maximum difference less than 1.5%. The
difference in memory latency cycles for LLC misses is a good
representative of the difference of the phase between the two
models as the overall statistic for cache and memory requests
also matches closely with an average difference of around 2%
and a maximum difference of 7%. We have also observed that the
memory intensive benchmarks have a higher memory latency
difference compared to compute intensive benchmarks.

5.2 Speedup
The main objective of the ‘Follower Core’ model is to achieve

significant reduction in simulation time compared to all core
model. Figure 7 shows the speedup of ‘Follower Core’ model
over the baseline all core simulation. Overall, we see a 3x
speedup for a 4-core model, with the maximum speedup of 4.5x
and a minimum speedup of 2x. As we increase the number of
cores to eight, we observe that an average speed-up of 4x, with a
maximum speed-up of 7x. Similar trends are observed for
SPECint®_rate_base2006 suite. Since the ‘Follower Core’ model
saves the simulation time by reducing the core simulation time,
we find that the compute intensive benchmarks have a higher
speedup compared to memory intensive benchmarks. The
memory intensive benchmarks spend a considerable time at the

Figure 6: Percentage variation in First order statistics between Follower Core Model and Baseline System.

Figure 7: Simulation Speedup for Follower Core Model.

Session 11: Performance Analysis and Simulation ICPE ’19, April 7–11, 2019, Mumbai, India

297

LLC and memory system apart from cores, that is why we see
that the savings is low. For some of the memory intensive
benchmarks, we see that the simulation time is order of days,
thus a speed-up of 2-3x also saves a minimum simulation time of
1 day per simulation, which improves the turnaround time for
analyzing and fixing simulation bugs and issues considerably.

5.3 Scalability
We now analyze the performance of ‘Follower Core’ model

as we increase the number of cores. For the eight-core system we
have assumed that four cores share the last level cache and
therefore there are two instances of LLCs both connected to the
same memory system. In the previous section, we observed that
the speed-up increases as we increase the number of cores.

However, the simulation accuracy of the ‘Follower Core’
model for an 8-core system drops compared to the four-core
system as shown in Figure 8. We observe that there is a
significant IPC miscorrelation between Follower Core and a
detailed eight-core simulation model especially for memory
intensive benchmarks like “505.mcf_r” and “520.omnetpp_r”.
This is due to the phase difference exhibited by the cores in a full
system simulation which also increases as we simulate more
cores. As a result, there is a mismatch at the shared resources
causing miscorrelation between the two models.

To reduce the miscorrelation, we use a heterogenous
‘Follower Core’ model as described in Section 3. The model is
able to capture the phase variations with the help of two main
cores and reduces the miscorrelation between the ‘Follower
Core’ and Baseline model. Since the ‘Heterogenous Follower
Core’ model simulates two detailed cores, the simulation time
increases reducing the gains achieved in simulation speedup.
However, we are still able to achieve a minimum speedup of 2x
and reduce the error margins to a maximum of 2.5% for
“505.mcf_r” and “520.omnetpp_r” as shown in Figure 8 and
Figure 9.

6 ADDITIONAL ADVANTAGES OF FOLLOWER
CORE MODEL

The section discusses the additional benefits and extended
capabilities of the ‘Follower Core’ model besides providing fast
and accurate simulation.

6.1 Simulation Coverage
As the hardware designs become more and more complex,

tracing a workload with higher thread counts becomes
challenging. The process is complex, cumbersome, time
consuming and requires a critical validation to obtain an
accurate representation of a workload. Lahiri et al. [8] analyze
the tracing process of any new workload that must be added
to existing repertoire of workload traces. They describe the steps
and hurdles associated to trace any new workload which can be
critical to any new hardware architecture.

The ‘Follower Core’ model provides us with the flexibility to
run higher thread counts even when traces for high thread count

Table 2. Categorization of Mixed Workload and the Variation In Performance Between Benchmarks

Category
Type B1:B2 Benchmark Characteristics

B1 B2 IPC LLC
Request

LLC
Misses

Type Bandwidth
Requirement

Category-1 High High 1.3 1.5 1.4 High >2GBps
Category-2 High Medium 2 2 3 Medium 0.5-1.5
Category-3 High Low 2.7 5 8 Low <0.5GBps

Figure 8: Percentage Variation in IPC for a Follower core model compared to Baseline 8-core system.

Figure 9: Speed-up of Heterogenous Follower Core
Model compared to Baseline 8-core system.

Session 11: Performance Analysis and Simulation ICPE ’19, April 7–11, 2019, Mumbai, India

298

are not available for some workloads. This helps us to provide
the accurate performance projections for these workloads.

6.2 Mixed Workloads Simulation Capabilities
Contemporary datacenters and cloud-based environment run

different benchmarks on the same system simultaneously. While
analyzing the performance of any upcoming design feature, it
would be good to see its capabilities on such mixed -workload
scenarios. The ‘Heterogeneous Follower Core’ model helps us
simulate these scenarios accurately. The ‘Heterogenous Follower
Core’ can execute multiple detailed cores and provides us with
the capabilities to run two or more different benchmarks at the
same time. The follower cores can replicate the corresponding
main cores and hence the shared resources can see realistic
scenarios, where they are constrained by different requirements.
Such arrangements help us to analyze the critical resources like
shared last level cache or memory system in greater detail and
help us to find solutions that can be useful to optimize
performance in such situations. These capabilities help to
analyze the bottlenecks that can be found at later stages of
design and facilitates a superior design process. We profile the
SPECrate®2017_int_base binaries according to their micro-
architectural characteristics. We emphasize over the shared
resource parameters, like LLC accesses, LLC misses and memory
bandwidth utilization to categorize them as high, medium and
low to indicate the pressure over shared resources. We mix
different binaries for all possible combinations and try to
replicate scenarios where individual benchmarks have a different
shared resource requirement. The requirements can be
conflicting, where we see one benchmark hurting the
performance of other or supporting where the performance of
both benchmarks improves. Table 2 shows the categorization of
individual benchmarks (B1 and B2) and the broad categories
obtained by mixing benchmarks. The average variation in the
characteristics of the two benchmarks in each category is
provided in Table 2. As we can see as the benchmarks have
similar characteristics the performance and shared resource
requirements are similar. We mix two benchmarks and replicate
their copies over the four-core system in equal proportions. This
helps us to replicate a contemporary behavior where the
benchmarks can affect the performance of one another.

Figure 10 represents the correlation between the a
‘Heterogenous Follower Core’ simulation compared to a four-
core baseline system running a mixed workload suite. The
different benchmarks in each combination is run on a separate
core. The ‘Follower Core’ model matches the baseline system
quite closely for the mixed workloads with an error margin of
less than 1% for IPC. The first order statistics are also similar to
Baseline model which means that the ‘Follower Core’ model is
able to capture and preserve the variations of mixed workloads
effectively. The speedup observed for a ‘Heterogenous Follower
Core’ model is 2x compared to Baseline.

7 CONCLUSION
‘Follower Core’ is an excellent simulation methodology that

can approximate the multi-core simulations accurately and
provide a significant speed-up compared to detailed model. It is a
generic methodology that sits on top of any existing simulation
framework and can be easily incorporated to generate accurate
multi-core simulation results. Our results show that ‘Follower
Core’ is able to capture the phase level variations seen in the
detailed simulation effectively and helps to improve pre-silicon
projection results through a quick turn-around time. It also helps
us in increasing our simulation coverage. The ‘Heterogenous
Follower Core’ improves the model further by reducing error
margins as we scale the number of cores. It provides us with a
framework that can run contemporary mixed workloads with a
high degree of accuracy.

We evaluated our framework with RATE kind of behavior
however the model can be extended to simulate data sharing
applications as well. Our experiments show that the ‘Follower
Core’ model is fast and accurate till eight cores. This model is
highly scalable, and it is capable of simulating beyond eight
cores as well.

REFERENCES

[1] SPECrate®2017_int_base benchmarks,
https://www.spec.org/cpu2017/

[2] SPECint®_rate_base2006 benchmarks,
https://www.spec.org/cpu2006/

Figure 10: Correlation between the Heterogenous Follower Core and Baseline model for a mixed workload suite.

Session 11: Performance Analysis and Simulation ICPE ’19, April 7–11, 2019, Mumbai, India

299

[3] Michael Clarke, 2016. A new x86 core architecture for next
generation of computing, Hot Chips: A Symposium on High
Performance Chips

[4] Hassan Rahman, 2007. Synthetic Trace-Driven Simulation
of Cache Memory, Advanced Information Networking and
Applications Workshops, AINAW’07

[5] R. L. Mattson, 1970. Evaluation Techniques for Storage
Hierarchies, IBM System Journal

[6] Shobhit Kanujia, 2006. Fast MP: A Multi-core simulation
methodology, Workshop on Modeling, Benchmarking and
Simulation, Boston, Massachusetts

[7] The AOCC Compiler, https://developer.amd.com/amd-aocc/
[8] Kanishka Lahiri, 2017. Fast IPC estimation for performance

projections using proxy suites and decision trees, IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS)

[9] SPEC CPU 2000 Integer benchmarks,
https://www.spec.org/cpu2000/

Session 11: Performance Analysis and Simulation ICPE ’19, April 7–11, 2019, Mumbai, India

300

