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ABSTRACT 
Cycle accurate simulator is a critical tool for processor design 
and as the complexity and the core count of the processor 
increase, the simulation becomes extremely time and resource 
consuming and hence not very practical. Accurate multi-core 
performance estimation in realistic time is needed for making 
the right design choices and make high quality performance 
projections.  

In this work we present a multi-core simulation model 
called Follower Core, that helps us to approximate the multi-
core simulations by simulating some cores in detail and 
abstracting out the other cores without reducing the overall 
activities at the shared resources.  This enables us to simulate all 
the critical shared resources in the multi-core system accurately 
and hence the detailed core can provide correct performance 
estimation. The approach is applied over existing simulation 
models and it reduces the simulation time significantly, 
especially for long running workloads. The ‘Follower Core’ 
model provides an average speed up of 3x compared to baseline 
and is an accurate approximation of detailed multi-core 
simulations with a maximum error of 2% with the baseline model 
and extends our capabilities by improving our coverage and 
providing flexibilities to run mixed workloads. 
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1 INTRODUCTION 
Cycle accurate simulators play a critical role in processor 

design by estimating the performance of the proposed hardware. 
With every generation, the processor cores are becoming more 
complex and more cores are added in the processor die to use the 
available transistors more efficiently and run more threads or 
applications in parallel. With the increasing complexity of the 
core architecture, the simulator complexity and simulation time 
is also increasing proportionally. Simulating a modern-day 
processor with many such cores becomes challenging and 
prohibitively time consuming. The simulation time can increase 
from hours for a single core simulation to several days for a 
four-core or eight-core system. Figure 1 demonstrates the 
increase in run time for different simulation models for 
SPECrate®2017_int_base1 [1] Integer suite. We consider a micro-
architecture similar to AMD “Zen” [3] architecture where each 
core has private L1 and L2 caches and they all share the same L3 
cache. The increasing run-time is a real challenge in the design 
of upcoming features as the turnaround time for analysis and 
debug increases.   

                                                                 
1 SPEC, SPEC CPU, SPECint, SPECfp, and SPECrate are registered trademarks of the 
Standard Performance Evaluation Corporation.  See www.spec.org for more 
information 
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Figure 1: Simulation time of SPECrate®2017_int_base 
applications with varying number of cores. 
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An accurate single core simulation cannot estimate the 
performance of a multi-core processor even when copies of same 
application are run on all cores, since the multi-core processor 
performance is heavily dependent on the usage of shared 
resources like last level cache, memory system and bandwidth. 
We concentrate on the ‘RATE’ behavior where all cores run the 
same benchmark with unique address spaces and no data sharing 
between the cores. Figure 2 shows the absolute percentage 
variation of some important first order statistics from the 
corresponding average value for a 4-core simulation of the 
SPECrate®2017_int_base [1] and SPECint®_rate_base2006 [2] 
binaries. We chose the statistics to be IPC (instructions 
committed per cycle), instruction dispatch, data cache, private 
L2, shared LLC and memory requests. It can be observed that the 
variation of these statistics among cores are very small implying 
that the cores behave similarly.  Hence it is possible to infer the 
behavior of all cores by studying the behavior of one core when 
the same application is run on all cores. Therefore, if we can 
model the contention and interference at the shared resources by 
abstracting out a few cores, then we can reduce the multi-core 
simulation time and complexity significantly without sacrificing 
the accuracy of the performance projection of the full system. 

We propose a multi-core simulation methodology, ‘Follower 
Core’ that can be implemented in an existing cycle accurate 
simulator model by simulating a subset of cores in detail and 
abstracting out the others. The contributions of this work are 
following, 
1. The ‘Follower Core’ simulation methodology helps us to get 

a significant reduction in simulation time for multi-core 
simulation. 

2. It has a good correlation with the detailed simulation model. 
3. We propose a ‘Heterogenous Follower Core’ model which 

helps us to provide a good correlation as we scale the 
number of cores. It also provides us the flexibility to run 
different applications together on a multi-core system 
where the applications have different characteristics.  

The rest of the paper is organized as follows. Section 2 deals 
with relevant work and highlights the previous efforts to speed 
up multi-core simulation. Section 3 discusses our proposed 
‘Follower Core' model in detail and the associated challenges. 

We provide the experimental setup and benchmarks used for 
evaluation in Section 4 and present the results in Section 5. 
Section 6 discusses the additional advantages of our 
methodology and Section 7 concludes our work. 

2 RELEVANT WORK 
Several approximation techniques have been proposed for 

multi-core performance projection whose accuracy varies with 
hardware architecture and workloads. Hassan et al. [4]propose a 
synthetic trace-based cache only simulation model using the 
adaptation of Least Recently Used Stack Model (LRUSM) [5] 
techniques. This catches the temporal and spatial locality 
patterns and generate phases to simulate a cache hierarchy and 
are further reduced using the two state Markov chain model. 
While this technique is efficient and provides a significant 
reduction in runtime, we observe several shortcomings to this 
approach as well. The cache traffic is susceptible to changes in 
the core and hence collecting cache traces can be a non-trivial 
task. For example, changing the front-end features like branch 
predictors can impact the timings of cache traces. Any changes 
to the core may require changing traces as well, which would 
require efficient synchronization between teams and may lead to 
ambiguity in results. This method is effective only when the core 
performance is deterministic and smaller traces can be used to 
verify the specific scenarios in the cache.  

Kanaujia et al. [6] proposed a simulation model, Fast MP, 
where they try to exploit the RATE behavior or the homogeneity 
of the workloads. All cores show a similar behavior for SPEC 
applications, hence simulation results of one is like all the others. 
They propose a model where they simulate one real core in 
detail and use abstract cores for the rest of simulation. The 
abstract cores copy the memory traffic from the real core and 
send it to memory to generate realistic memory traffic for the 
complete multi-core system.  They have studied their model on 
the SPEC CPU 2000 [9] Integer suite over a multi-core machine. 
They have showed that the model has a reasonable correlation 
for a two and four core machines for most benchmarks. 
However, the correlation becomes significantly worse (max 
miscorrelation 38%) as they increase the number of cores to 8. 
They have used a large private L2 cache (8MB per core) which 
reduces the overall traffic at shared memory resources.   

Our ‘Follower Core’ model is based on the similar principle 
as the Fast MP base model.  Instead of large private L2 we have 
used much smaller private L2 (512KB) and a larger shared L3. 
Although our model receives significantly more shared LLC 
accesses compared to Fast MP configuration, it shows highly 
accurate correlation for the contemporary 
SPECrate®2017_int_base and SPECint®_rate_base2006 [1,2] 
benchmarks.  We have also studied combination of workloads 
where benchmarks behaviors vary across cores. The details of 
which are provided in the later section. 

3 FOLLOWER CORE MODEL 

In this section we discuss the details of the ‘Follower Core’ 
model where a multi-core system is simulated without 
simulating all the cores in details.  As observed in Figure 2, when 

Figure 2: Core level first order statistics normalized to     
average simulation values. 
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Figure 3: Follower Core Implementation. 

the same application is run on different cores at the same time, 
the cores have a similar behavior and they generate similar 
cache and memory traffic. This is the base principle of ‘Follower 
Core’ methodology. In this model, one or few cores are 
simulated with full details and the L2 cache traffic generated by 
the detailed core(s) is replicated to the cache hierarchies of the 
other cores. To maintain an equivalence with the detailed multi-
core simulation (referred as Baseline), we need to take care that, 
- Address spaces for all cores are exclusive. This helps us to 
eliminate any false sharing and maintain the RATE behavior.  
- The phase behavior between cores is similar to the Baseline 
model.  

Figure 3 shows the block diagram of the implementation of 
‘Follower Core’ in a 4 core CPU model where all the cores share 
last level L3 cache (LLC). In this model one core is simulated in 
complete detail which we call as ‘main core’. The cache 
hierarchies of other cores follow the main core and they see the 
traffic being generated from a dummy core, hence termed as 
‘Follower Core(s)’. Detailed model for private L2 caches, shared 
LLC, interconnect(s) and memory system is included in the 
model without any changes. In the setup shown in Figure 3, we 
have used a single main core and 3 follower cores to model a 4-
core system.  

The main core simulates the complete front-end pipeline 
with all stages. We chose the L1-L2 boundary as the interface for 
replicating and generating the traffic at follower cores. As seen 
in Figure 2, the behavior of primary L1 cache (DC/IC cache) is 
uniform across the cores and thus incorporating it in our model 
does not provide with any added simulation benefits. Therefore, 
the first level primary caches are considered part of detailed 
main core in this work. Selecting the shared LLC boundary as 
the boundary for follower core traffic generation speeds up our 
simulation but abstracts out the phase level variation 
encountered at the shared cache in a detailed simulation. We 
observe that for memory intensive benchmarks, performance of 
private L2 cache can be sensitive to shared LLC and memory 
latency and thus the L1-L2 cache boundary becomes the 
interface for follower cores.  

The L1 misses generated by the main core are stored in the 
follower core(s) buffers which are then processed to generate the 
traffic at their L1-L2 interface. These buffers are implemented 

through linked lists and follow the strict FIFO order. Apart from 
the address, the follower core buffers store the critical 
information for each transaction like the type of request 
(Data/Instruction/Prefetch), time it was issued, logical core 
number (in case of simultaneous multi-threading) etc. While 
these addresses are processed and sent to their respective L2 
caches the follower cores considers all this information for 
converting into appropriate requests and tracking them. The L1-
L2 interface boundary at the follower core is modeled similarly 
to the real core maintaining all the resource and design 
constraints. This makes sure that the follower cores generate the 
L2 traffic similar to the Baseline and do not flood their L2 caches 
and shared resources with premature requests.  

This setup helps us to generate a full system traffic with a 
high degree of accuracy. The model preserves the performance 
dependence between different CPU modules. The shared 
resources see the traffic as if it was generated by all real cores 
and are simulated accordingly. Simultaneously, the main core’s 
performance is also dependent on the shared resource 
characteristics and memory bandwidth and latency. Any change 
in one is reflected over other as in a detailed Baseline model. For 
examples, prefetchers can be extremely sensitive to both 
core/engine and memory latency. The follower core takes care 
that the prefetcher behavior is captured accurately taking both 
into account. Similarly, any dependency of the fetch or branch 
prediction on the cache/memory latency, is reflected accurately 
as well.  

We need to ensure proper modeling of buffers and address 
conversion schemes. Maintaining each core has an exclusive 
address space and address conversion in that space eliminates 
any false sharing behavior. Similarly, improper address 
conversion can lead to artificial conflicts. For example, if the 
cache requests are generated to same LLC index then we can see 
thrashing of some indexes while others are being unused leading 
to higher LLC miss rates. Therefore, choosing a proper address 
conversion algorithm is critical to minimize such scenarios. In 
our model, address conversion is done using specific masks 
which are generated after a detailed analysis of workload 
behavior. It maintains that the traffic from each core is within its 
address space and avoids any false conflicts.  

Correlating the phase behavior between the detailed Baseline 
model and ‘Follower Core’ is a challenging task. Phase behavior 
is mostly observed in memory intensive workloads. In a detailed 
baseline simulation of memory intensive workloads the core 
performance is heavily dependent on the performance of 
memory system. The contention at shared cache, interconnects 
and memory is high, which can cause the execution speed of 
cores to differ as they can observe different memory latencies at 
different stages of program. The ‘Follower Core’ is a highly 
synchronous model where all the follower cores have a fixed 
delay with respect to main core. As a result, the traffic from the 
follower core(s) will be injected after a specific duration, 
therefore maintaining a constant phase at the L1-L2 boundary.  
To counter the problem, we make the follower core delays to be 
configurable, that is, depending on the benchmark behavior we 
can tune the phase between detailed main core and follower 
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cores. This helps us to approach the detailed Baseline behavior 
with a reasonable degree of accuracy. 

3.1 Heterogenous Follower Core Model 
As we scale the multi-core simulation model to higher 

number of cores, we find that the phase difference between cores 
increases and becomes unpredictable with some cores leading in 
some phases and vice-versa. Introducing delays in the follower 
cores do not capture this behavior properly as the phase 
differences between the cores are not uniform and predicatable. 
We propose a ‘Heterogenous Follower Core’ model which 
simulates more than one main cores in detail to capture the 
randomness originated in such scenarios. Figure 4 shows a 
‘Heterogenous Follower Core’ setup which consists of two main 
cores and two follower cores. Each main core drives a follower 
core. If there are differences originating due to the performance 
of memory system, it would be reflected at the detailed core and 
they will start to exhibit a phase difference with each other. The 
follower core(s) that replicate the traffic will also incorporate 
these phases and will be much more accurate compared to a 

single main core model. In fact, this modelling scheme can 
capture the phase variations quite efficiently and reduces the 
simulation error seen among its predecessor scheme.  While the 
model is slower compared to its predecessor, the speedup is still 
significant, saving us days for extensively long simulations. The 
model simulates larger multi-core systems more accurately and 
also enables us to simulate hetergenous workloads environment 
where applications with different characteristics are run 
together in the multicore system.  

Table 1. Micro-architectural Configuration 
Core Organization 4 core, 2 way SMT 

Primary Cache      
(Per Core) 

Split, Data cache 32KB, Instruction 
cache 64KB 

Secondary Cache 
(Per Core) 

8 way, 512K Private Cache 

Last level cache 16 way, 8MB, shared among 4-cores 

Memory 
bandwidth 

8 DDR channels, 2400 MHz 

 

  

4 EXPERIMENTAL SETUP 
We present our results using our proprietary in-house cycle 

accurate trace-based simulator that implements all details of the 
core, cache hierarchy and memory system. We simulate a four-
core CPU architecture inspired from AMD “Zen” architecture [3] 
and micro-architecture details are summarized in Table 1. 

We simulate the state of art SPEC binaries, 
SPECrate®2017_int_base [1] and SPECint®_rate_base2006 [2]. 
These binaries have an efficient mix of compute and memory 
intensive benchmarks that simulate and analyze all the critical 
components of any hardware design. The 
SPECrate®2017_int_base [1] binaries are ‘aocc’ [7] compiled and 
the SPECint®_rate_base2006 [2] binaries are ‘gcc’ compiled 
using the ‘-O2’ flag. 

5 RESULTS 
In this section we compare the ‘Follower Core’ model against 

the detailed Baseline model which simulates all the real cores. 
We evaluate the ‘Follower Core’ simulation model for simulation 
‘Accuracy’ and ‘Speedup’. 

5.1 Accuracy 
The most important aspect of any approximation techniques 

is simulation accuracy which we described as the error between 
the baseline full system simulation and the ‘Follower Core’ 
models. The error measures the correlation between the two 
models and ideally, we want an error close to 0%. 
 
5.1.1 IPC (Instructions Committed Per Cycle) 
For any performance projection, IPC is the most important 
metric and we begin by matching the IPC for two simulation 
models. Figure 5 shows the error in IPC for ‘Follower Core’ 

Figure 4: Heterogenous Follower Core Model. 

Figure 5: Percentage variation in IPC for a Follower core model compared to detailed 4-core full system model. 
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model, compared to the baseline model.  
The IPC reported by the ‘Follower Core’ model matches closely 
with the all real core simulation model. Overall, the 
SPECrate®2017_int_base and SPECint®_rate_base2006 
benchmarks have an error margin of 0.26% and 0.38% 
respectively. The compute intensive benchmarks have a better 
correlation than the memory intensive benchmarks. Most 
benchmarks have less than 1.5% miscorrelation in IPC. The 
memory intensive benchmarks like ‘429.mcf’ and 
‘483.xalancbmk’ show a higher IPC miscorrelation due to the 
difference in phase behavior between the all real cores and the 
‘Follower Core’ models. The IPC miscorrelation of ‘429.mcf’ and 
‘483.xalancbmk’ from SPECint®_rate_base2006 suite can be 
reduced by increasing delays between the main core and 
follower cores. Apart from delays, the simulation accuracy can 
also be increased by using a ‘Heterogenous Follower Core’ 
model having two main cores as shown later. 
5.1.2 Other first order statistics 
   We now investigate the difference with respect to some other 
important first order statistics to show the correlation between 
the ‘Follower Core’ and Baseline models. We present the 
difference in requests per thousand instructions (pti) for L2 
cache, Last level cache and memory system. 

Figure 6 shows the percentage difference in each first order 
statistic between the ‘Follower Core’ model and Baseline. We 
focus on benchmarks that have an absolute IPC error greater 
than 0.5%. From Figure 6 we find that most of the benchmarks 

show a negligible variation except ‘464.h264ref’ from the 
SPECint®_rate_base2006 suite which has a very high number of 
L2 requests. The LLC requests and request to memory system 
(LLC misses) also match quite closely between the two models, 
with an absolute maximum difference less than 1.5%. The 
difference in memory latency cycles for LLC misses is a good 
representative of the difference of the phase between the two 
models as the overall statistic for cache and memory requests 
also matches closely with an average difference of around 2% 
and a maximum difference of 7%. We have also observed that the 
memory intensive benchmarks have a higher memory latency 
difference compared to compute intensive benchmarks.  

5.2  Speedup 
The main objective of the ‘Follower Core’ model is to achieve 

significant reduction in simulation time compared to all core 
model. Figure 7 shows the speedup of ‘Follower Core’ model 
over the baseline all core simulation. Overall, we see a 3x 
speedup for a 4-core model, with the maximum speedup of 4.5x 
and a minimum speedup of 2x. As we increase the number of 
cores to eight, we observe that an average speed-up of 4x, with a 
maximum speed-up of 7x. Similar trends are observed for 
SPECint®_rate_base2006 suite. Since the ‘Follower Core’ model 
saves the simulation time by reducing the core simulation time, 
we find that the compute intensive benchmarks have a higher 
speedup compared to memory intensive benchmarks. The 
memory intensive benchmarks spend a considerable time at the 

Figure 6: Percentage variation in First order statistics between Follower Core Model and Baseline System. 

Figure 7: Simulation Speedup for Follower Core Model. 
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LLC and memory system apart from cores, that is why we see 
that the savings is low. For some of the memory intensive 
benchmarks, we see that the simulation time is order of days, 
thus a speed-up of 2-3x also saves a minimum simulation time of 
1 day per simulation, which improves the turnaround time for 
analyzing and fixing simulation bugs and issues considerably.  

5.3  Scalability 
We now analyze the performance of ‘Follower Core’ model 

as we increase the number of cores. For the eight-core system we 
have assumed that four cores share the last level cache and 
therefore there are two instances of LLCs both connected to the 
same memory system. In the previous section, we observed that 
the speed-up increases as we increase the number of cores.  

However, the simulation accuracy of the ‘Follower Core’ 
model for an 8-core system drops compared to the four-core 
system as shown in Figure 8. We observe that there is a 
significant IPC miscorrelation between Follower Core and a 
detailed eight-core simulation model especially for memory 
intensive benchmarks like “505.mcf_r” and “520.omnetpp_r”. 
This is due to the phase difference exhibited by the cores in a full 
system simulation which also increases as we simulate more 
cores. As a result, there is a mismatch at the shared resources 
causing miscorrelation between the two models. 

To reduce the miscorrelation, we use a heterogenous 
‘Follower Core’ model as described in Section 3. The model is 
able to capture the phase variations with the help of two main 
cores and reduces the miscorrelation between the ‘Follower 
Core’ and Baseline model. Since the ‘Heterogenous Follower 
Core’ model simulates two detailed cores, the simulation time 
increases reducing the gains achieved in simulation speedup. 
However, we are still able to achieve a minimum speedup of 2x 
and reduce the error margins to a maximum of 2.5% for 
“505.mcf_r” and “520.omnetpp_r” as shown in Figure 8 and 
Figure 9.  

6 ADDITIONAL ADVANTAGES OF FOLLOWER 
CORE MODEL 

The section discusses the additional benefits and extended 
capabilities of the ‘Follower Core’ model besides providing fast 
and accurate simulation. 

6.1 Simulation Coverage 
As the hardware designs become more and more complex, 

tracing a workload with higher thread counts becomes 
challenging. The process is complex, cumbersome, time 
consuming and requires a critical validation to obtain an 
accurate representation of a workload. Lahiri et al. [8] analyze 
the tracing process of any new workload that must be added  
to existing repertoire of workload traces. They describe the steps 
and hurdles associated to trace any new workload which can be 
critical to any new hardware architecture.  

The ‘Follower Core’ model provides us with the flexibility to 
run higher thread counts even when traces for high thread count 

Table 2. Categorization of Mixed Workload and the Variation In Performance Between Benchmarks 

Category 
Type B1:B2 Benchmark Characteristics 

B1 B2 IPC LLC 
Request 

LLC 
Misses 

Type Bandwidth 
Requirement 

Category-1 High High 1.3 1.5 1.4 High >2GBps
Category-2 High Medium 2 2 3 Medium 0.5-1.5 
Category-3 High Low 2.7 5 8 Low <0.5GBps 

Figure 8: Percentage Variation in IPC for a Follower core model compared to Baseline 8-core system. 

Figure 9: Speed-up of Heterogenous Follower Core 
Model compared to Baseline 8-core system. 
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are not available for some workloads. This helps us to provide 
the accurate performance projections for these workloads. 

6.2 Mixed Workloads Simulation Capabilities 
Contemporary datacenters and cloud-based environment run 

different benchmarks on the same system simultaneously. While 
analyzing the performance of any upcoming design feature, it 
would be good to see its capabilities on such mixed -workload 
scenarios. The ‘Heterogeneous Follower Core’ model helps us 
simulate these scenarios accurately. The ‘Heterogenous Follower 
Core’ can execute multiple detailed cores and provides us with 
the capabilities to run two or more different benchmarks at the 
same time. The follower cores can replicate the corresponding 
main cores and hence the shared resources can see realistic 
scenarios, where they are constrained by different requirements. 
Such arrangements help us to analyze the critical resources like 
shared last level cache or memory system in greater detail and 
help us to find solutions that can be useful to optimize 
performance in such situations. These capabilities help to 
analyze the bottlenecks that can be found at later stages of 
design and facilitates a superior design process. We profile the 
SPECrate®2017_int_base binaries according to their micro-
architectural characteristics. We emphasize over the shared 
resource parameters, like LLC accesses, LLC misses and memory 
bandwidth utilization to categorize them as high, medium and 
low to indicate the pressure over shared resources. We mix 
different binaries for all possible combinations and try to 
replicate scenarios where individual benchmarks have a different 
shared resource requirement. The requirements can be 
conflicting, where we see one benchmark hurting the 
performance of other or supporting where the performance of 
both benchmarks improves. Table 2 shows the categorization of 
individual benchmarks (B1 and B2) and the broad categories 
obtained by mixing benchmarks. The average variation in the 
characteristics of the two benchmarks in each category is 
provided in Table 2. As we can see as the benchmarks have 
similar characteristics the performance and shared resource 
requirements are similar. We mix two benchmarks and replicate 
their copies over the four-core system in equal proportions. This 
helps us to replicate a contemporary behavior where the 
benchmarks can affect the performance of one another.  

Figure 10 represents the correlation between the a 
‘Heterogenous Follower Core’ simulation compared to a four-
core baseline system running a mixed workload suite. The 
different benchmarks in each combination is run on a separate 
core. The ‘Follower Core’ model matches the baseline system 
quite closely for the mixed workloads with an error margin of 
less than 1% for IPC. The first order statistics are also similar to 
Baseline model which means that the ‘Follower Core’ model is 
able to capture and preserve the variations of mixed workloads 
effectively. The speedup observed for a ‘Heterogenous Follower 
Core’ model is 2x compared to Baseline. 

7 CONCLUSION 
‘Follower Core’ is an excellent simulation methodology that 

can approximate the multi-core simulations accurately and 
provide a significant speed-up compared to detailed model. It is a 
generic methodology that sits on top of any existing simulation 
framework and can be easily incorporated to generate accurate 
multi-core simulation results. Our results show that ‘Follower 
Core’ is able to capture the phase level variations seen in the 
detailed simulation effectively and helps to improve pre-silicon 
projection results through a quick turn-around time. It also helps 
us in increasing our simulation coverage. The ‘Heterogenous 
Follower Core’ improves the model further by reducing error 
margins as we scale the number of cores. It provides us with a 
framework that can run contemporary mixed workloads with a 
high degree of accuracy.  

We evaluated our framework with RATE kind of behavior 
however the model can be extended to simulate data sharing 
applications as well. Our experiments show that the ‘Follower 
Core’ model is fast and accurate till eight cores. This model is 
highly scalable, and it is capable of simulating beyond eight 
cores as well. 
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