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ABSTRACT
In this paper, we provide a comprehensive, memory-centric charac-
terization of the SPEC CPU2017 benchmark suite, using a number of
mechanisms including dynamic binary instrumentation, measure-
ments on native hardware using hardware performance counters
and operating system based tools.

We present a number of results including working set sizes, mem-
ory capacity consumption and memory bandwidth utilization of
various workloads. Our experiments reveal that, on the x86_64 ISA,
SPEC CPU2017 workloads execute a significant number of mem-
ory related instructions, with approximately 50% of all dynamic
instructions requiring memory accesses. We also show that there is
a large variation in the memory footprint and bandwidth utilization
profiles of the entire suite, with some benchmarks using as much as
16 GB of main memory and up to 2.3 GB/s of memory bandwidth.

We perform instruction distribution analysis of the benchmark
suite and find that the average instruction count for SPEC CPU2017
workloads is an order of magnitude higher than SPEC CPU2006
ones. In addition, we also find that FP benchmarks of the suite have
higher compute requirements: on average, FP workloads execute
three times the number of compute operations as compared to INT
workloads.
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1 INTRODUCTION
The study of computer architecture and system design depends on
the availability of workloads that are able to faithfully represent
contemporary and future applications of a given vertical. In the CPU
domain, Standard Performance Evaluation Corporation (SPEC) has
been releasing the SPEC CPU suite for close to three decades now.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’19, April 7–11, 2019, Mumbai, India
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6239-9/19/04. . . $15.00
https://doi.org/10.1145/3297663.3310311

These benchmarks have become the standard for any researcher or
commercial entity wishing to benchmark their architecture or for
exploring new designs.

The latest offering of SPEC CPU suite, SPEC CPU2017, was re-
leased in June 2017 [8]. SPEC CPU2017 retains a number of bench-
marks from previous iterations but has also added many new ones
to reflect the changing nature of applications. Some recent stud-
ies [21, 24] have already started characterizing the behavior of
SPEC CPU2017 applications, looking for potential optimizations to
system architectures.

In recent years the memory hierarchy, from the caches, all the
way to main memory, has become a first class citizen of computer
system design. The last decade has seen a renewed interest in the
architectural design space exploration of main memory, including
novel additions to the existing interfaces and architecture (JEDEC,
DDR3, DDR4, DDR5) [4, 13, 22, 25]. Not only this, exploration of
emergingmemory technologies like Phase ChangeMemory, MRAM
etc., to find their space in the memory hierarchy has also been
carried out [17, 20]. Researchers have started exploring emerging
memory technologies to be used in both cache and main memory
architectures [6, 19, 27, 28].

SPEC 2006 [14] played an important role in these explorations.
Innovations to cache and memory hierarchies have been explored
using these workloads by either (i) selecting individual workloads
from the suite, or (ii) creating multi-programmed workload mixes,
with varying memory behavior. This selection was made possible
by already available studies characterizing the memory behavior
patterns SPEC 2006 suite [16].

However, there is no existing work that characterizes the mem-
ory hierarchy behavior of the SPEC 2017 suite. In this paper, we
bridge this gap in the literature by making the following important
contributions:

(1) Across the SPEC CPU2017 suite, we provide a holistic char-
acterization of the dynamic instruction execution profiles
of different workloads, for both Rate and Speed categories,
and observe that most workloads have a large number of
memory related operations: close to 50% on average across
the suite.

(2) We provide a detailed analysis of the memory behavior of
various benchmarks, using a combination of dynamic in-
strumentation tools (Pin/Pintools), hardware performance
counters and operating system level tools. We report the
overall working set size, memory bandwidth consumption,
and memory resident working set sizes of various workloads.

The rest of the paper is organized as follows. Section 2 gives a back-
ground of CPU2017 benchmarks. Section 3 proposes the methodol-
ogy used to characterize the benchmarks. Section 4 and 5 analyze
the benchmarks at an instruction and memory level, respectively.
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Table 1: SPEC CPU2017 Benchmarks
Benchmark Domain Inputs
perlbench Perl Interpreter Interprets SpamAssassin, MHonArc, and an internal script

gcc GNU C Compiler C source code file compiled with different optimizations
mcf Route Planning Solves large-scale minimum cost flow problem

omnetpp Discrete Event Simulation Simulates a 10 Gb Ethernet network
xalancbmk XML to HTML Conversion XML documents to HTML, text, and other XML types

x264 Video Compression Compresses portions of Blender Open Movie Project’s "Big Buck Bunny"
deepsjeng Artificial Intelligence Plays Chess variants employing alpha-beta tree search

leela Artificial Intelligence Computer Go featuring Monte Carlo tree search
exchange2 Artificial Intelligence Recursively solves 27 9x9 Sudoku puzzles

xz General Data Compression Tar archive, database of ClamAV signatures and a file with text and image data
bwaves Explosion Modeling Simulates blast waves in 3D

cactuBSSN Physics: Relativity Uses BSSN formulation of Einstein equation and employs finite differencing in space
namd Molecular Dynamics 92224 atom simulation of Apolipoprotein A-I
parest Biomedical Imaging 3D reconstruction of interior of a body using multiple 2D observations
povray Ray Tracing Renders a 2560x2048 pixel image of a chess board with pieces
lbm Fluid Dynamics Simulates flow of an incompressible fluid in 3D
wrf Weather Forecasting Simulates the January 2000 North American Blizzard

blender 3D Rendering and Animation Simulates reduced version of the Weybec Crazy Glue shot 3 data set to image
cam4 Atmosphere Modeling Atmospheric Component of the NCAR Earth System
pop2 Wide-scale Ocean Modeling Ocean Component of the NCAR Earth System

imagick Image Manipulation Performs various transformations on input images
nab Molecular Dynamics Models molecules with varying number of atoms

fotonik3d Computational Electromagnetics Employs finite-difference time-domain method for the Maxwell equations
roms Regional Ocean Modeling A free-surface, hydrostatic, primitive equation model

Table 2: System Configuration
Model 40-core Intel Xeon E5-2698 v4

CPU Frequency 2.2GHz
L1i cache 8-way, 32 KB
L1d cache 8-way, 32 KB
L2 cache 8-way, 256 KB
L3 cache Shared 20-way, 50 MB

Cache line size 64 Bytes
Main Memory 505 GB, DDR4

Dynamic Frequency Scaling On

Section 6 discusses the benchmarks which are newly added to the
SPEC CPU suite. Finally, we discuss the related works in Section 7
and conclude in Section 8.

2 SPEC CPU2017
SPEC CPU is a widely acknowledged suite of CPU benchmarks,
which is used for testing the performance of processor and memory
systems. A number of versions of SPEC have been released over
the years, with the latest version, released in 2017. CPU2017 [1]
considers state-of-the-art applications, organizing 43 benchmarks
into four different sub-suites: 10 rate integer (INTRate), 10 speed
integer (INTSpeed), 13 rate floating point (FPRate) and 10 speed
floating point (FPSpeed). The speed and rate suites vary in work-
load sizes, compile flags and run rules. SPECspeed measures the
performance by executing a single copy of each benchmark, with an
option of using multiple OpenMP threads, providing a measure of
single thread performance. This performance is typically measured
by metrics like IPC (Instructions Per Cycle). On the other hand,
SPECrate measures the throughput of an overall chip, possibly with
multiple cores, by running multiple, concurrent copies of the same
benchmark with OpenMP disabled. Most applications in CPU2017
have both rate and speed versions (denoted as 5nn.benchmark_r
and 6nn.benchmark_s, respectively), except for namd, parest, povray
and blender, which only have the rate versions, and pop2, which
only has a speed version. Similar to CPU2006, CPU2017 has been
provided with three input sets: test (to test if executables are func-
tional), train (input set built using feedback-directed optimization
and used for training binaries), and ref (timed data set of the real

applications, which is intended for a reportable run). CPU2017
benchmarks and their input sets are described in Table 1.

3 METHODOLOGY
To study the characteristics of CPU2017 workloads, we used a num-
ber of tools to analyse their behavior. The analysis in this paper
is based on the x86_64 instruction set. The binaries for the work-
loads were created using the default, SPEC recommended compiler
flags [2] (gcc -O3), using compilation scripts which ship with
CPU 2017. Speed workloads are compiled to use 4 OpenMP threads,
while rate workloads were executed with a single instance of the
benchmark. We use Pin [23], a dynamic binary instrumentation
framework available for both 32 and 64 bit versions of the instruc-
tion set. Pin provides a rich set of APIs that can be used to study
various characteristics of program behavior at the Instruction Set
Architecture (ISA) level. These APIs are used to create a number of
tools, called Pintools, with each capable of carrying out a certain
type of analysis. In this study, we use the following pintools: ldst
(dynamic register/memory operand pattern profiler), opcodemix
(dynamic opcode mix profiler), and dcache (a functional simulator
of data cache).

For gathering information about workload behavior with real
hardware, we use perf, a performance analysis tool [9], and ps [3],
an OS utility to collect process level memory related data for various
workloads. Table 2 presents the configuration of the machine used
to run experiments for Pin-based, hardware-counter and system-
level experimentation and data collection. All the benchmarks were
executed till completion.

4 INSTRUCTION PROFILE
Analysis of the instruction profiles is a good mechanism for under-
standing a benchmark’s behavior and locating potential sources of
bottlenecks in hardware and software. To that end, we first study
the dynamic instruction count, instruction distribution and the
runtime performance of CPU 2017 workloads.

Dynamic Instruction Count: Figure 1 depicts the dynamic instruc-
tion count, a count of total number of instructions executed by the
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Figure 1: Dynamic Instruction Count. (Clusters from L to R: INTRate, INTSpeed, FPRate, FPSpeed)

(a) Instruction Distribution

(b) Opcode Distribution

Figure 2: Instruction Profile. (Clusters from L to R: INTRate, INTSpeed, FPRate, FPSpeed)

workload. Each benchmark is divided into its constituent work-
loads, depending on the input set. These results were collected
using perf’s hardware event instructions. We note that the average
instruction count for SPEC CPU2017 workloads is 22.19 trillion
(1.4 quadrillion in total) which is an order of magnitude higher

than the SPEC CPU2006 [14, 16]. We also observe that the FPSpeed
suite has a much larger dynamic instruction count with respect
to others sub-suites, with bwaves_s executing as many as 382 tril-
lion instructions. In general, Speed workloads have 1.5-10 × more
instructions than the corresponding Rate ones, and floating point
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Figure 3: IPC. (Clusters from L to R: INTRate, INTSpeed, FPRate, FPSpeed)

(FP) workloads have 3-17 times than the integer (INT) workloads.
These observations point to the general increase in the complexity
of SPEC CPU workloads over the years.

Instruction Distribution: To better understand the distribution
of instructions that access memory, we present the instruction
distribution for workloads in Figure 2a. These experiments were
conducted using the ldst Pintool. Some benchmarks like perlbench,
x264, bwaves and a few others have multiple input files, which
are executed in succession to complete the run. We report the
results of each of these runs individually, leading to multiple bars
for a benchmark. To keep the discussion simple, we divide the
instructions into four broad categories: instructions that do not
refer memory (called ALU Only in the figure), instructions that
have one or more source operands in memory (called MEM_R),
instructionswhose the destination operand is inmemory (MEM_W),
and instructions whose source and destination operands are in
memory (MEM_RW)1.

This broad classification allows us to compare the types of in-
structions that are executed by each benchmark, and provides a
first order insight into the memory behavior of these benchmarks.
We make a few interesting observations. First, irrespective of the
input sets provided, the instruction distribution of a benchmark,
across these four buckets doesn’t change drastically. This is evi-
denced by the instruction distributions of all benchmarks that have
multiple input files (perlbench, gcc, x264 , xz, bwaves). Also, the
instruction distribution across the four buckets doesn’t change sig-
nificantly, irrespective of whether the speed or the rate version of
the benchmark is being examined.

Most benchmarks have a fairly balanced percentage of instruc-
tions that fall under either one of the MEM_R/ MEM_W/ MEM_RW
or the ALU_Only buckets. However, a few exceptions like exchange2
(AI) and pop2 (Ocean Modeling) exist where the contribution of
ALU_Only operations is fairly significant at 79.6% and 73.5%, re-
spectively. Floating point workloads also exhibit a lot of compute
activity, with ∼60% ALU_Only instructions. However, on an aver-
age across the benchmark suite, SPECInt sub-suite exhibits executes

1Memory-to-memory instructions like movs in x86 are billed under the MEM_RW
bucket.

more memory related instructions than the SPECFP one. Our obser-
vations are consistent with the earlier versions of SPEC: CPU2006
and CPU2000 [16].

In order to get insights regarding the type of operations done by
these instructions, we profile the benchmarks to report instruction
level classification. Results, collected with the help of opcodemix
pintool, are presented in Figure 2b. The results for one benchmark
were averaged across all their input files. We observe that FP work-
loads, have approximately three times the number of arithmetic
operations than the INT workloads. In addition, we observe that
a majority of the memory operations in both integer and floating
point sub-suites are dominated by their respective move opera-
tions. We also observe that memory instructions for both Int and
FP benchmarks are predominantly read-only, which is consistent
with the high-level results obtained in Figure 2a.

Performance: We report the performance of the workloads in
terms of instruction per cycle (IPC) in Figure 3, on the system
outlined in Table 2. IPC is calculated as the ratio of the hardware
events instructions and cpu-cycles, obtained using perf. To account
for variations in execution time due to variables that cannot be con-
trolled, each experiment is run three times and the average values
are reported. Order of benchmark execution is shuffled between
repetitions to mitigate measurement bias. Rest of the experiments
in the paper are not repeated. We observe that FP workloads have
better IPC than INT ones. However, we do note that applications
that execute a significant number of memory related operations (e.g.
cactuBSSN_s, lbm_s, xz_.cld.tar-1400-8 and mcf ) and have larger
working sets, requiring more accesses to the memory hierarchy,
have lower IPCs.

5 MEMORY BEHAVIOR
5.1 Spatial Locality Behavior
Next, we observe the spatial locality characteristics of theworkloads
by observing benchmarks using opcodemix Pintool. Opcodemix
helps analyse of the amount and size of data touched by anymemory
operation that requires to traverse the cache and memory hierarchy.
We classify the instructions based on the amount of data that they
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Figure 4: Memory Reference Size

access during these operations. In the interest of space, we present
results averaged across the suites in Figure 4. There is a broad range
of data size granularities accessed by instructions, from 1 Byte to
64 Bytes, with the latter being the cacheline size as well. However,
two important figures stand out. First, the majority of the accesses
(64%) are for an exact 8 Byte granularity. Second, 99.5% of accesses
(reads and writes) are for 8 Bytes or smaller access granularities.
The number of accesses to larger data granularities is extremely
small, and holds true across the suite. This indicates limited spatial
data locality at the individual instruction level.

5.2 Working Set Sizes
The working set size of an application and its sensitivity to cache ca-
pacity can be inferred by examining changes in cache performance
of a system with its cache size. For each benchmark, we conduct a
cache sensitivity analysis to obtain their working set size. Follow-
ing the methodology from [16], we modeled a single, shared cache
with 64Byte line size and LRU replacement policy, which varied
as follows: direct mapped 32KB, 2-way 64KB, 4-way 128KB, 8-way
256KB, and so on till a 1024-way 32MB cache. The experiments
are conducted using dcache, a functional cache simulator Pintool.
Due to dynamic instruction counts in orders of 100 trillion and an
effective slowdown incurred by simulation on dcache, benchmarks
belonging to the FPSpeed suite couldn’t be completed and hence
are deprecated from the working set size analysis. We consider only
one input set for each benchmark.

Our results for cache sensitivity analysis are presented in Figure 5.
We plot cache size in megabytes (MB) on x-axis and misses per
kilo instructions (MPKI) on the y-axis. We observe that not all
workloads perform well within the range of cache sizes. Based on
the working set sizes, we divide the workloads into two groups.
The first group consists of applications like povray, imagick, nab,
and perlbench, which have a limited need for the cache capacity,
and can be well executed without the need to regularly refer the
main memory. On the other hand, applications like cactuBSSN, lbm,
and mcf fail to accommodate their working set within the range of
cache sizes. The large working sets are often the consequence of
the program’s algorithm that operates on a large amount of data.
For example, cactuBSSN executes a computational model to employ
finite differencing in space using the Einstein equations, while lbm
simulates an incompressible fluid in 3D. With working set sizes
larger than the cache capacity, these applications refer the off-chip
memory and hence affect the bandwidth.

Figure 5 reveals that most workloads exhibit a smooth exponen-
tial decrease in MPKI as the cache size increases. However, the
suite comprises of some workloads where incrementally increasing
cache size gives no significant improvements in cache performance,
until a point of saturation is reached. At this step, a sudden drop
in the MPKI is observed. Such behavior is evident in applications
like bwaves and lbm, and signifies the working set of the workload.
At this point, the cache size has become large enough to hold the
highly accessed data. Benchmarks like xalancbmk, nab, fotonik3d,
and lbm illustrate multiple such points, implying that they have
multiple phases with varying working set sizes. Most workloads
suffer from cache misses even with a reasonable 32MB cache size,
implying that memory hierarchy research, for both on-chip and
off-chip components will remain important for these workloads.

5.3 Memory Footprint
SPEC CPU2006 had a target memory footprint of 900MB for the
benchmarks [11, 15]. Since then, the memory size has tremendously
increased. We observe the Resident Set Size (RSS), the amount of
memory allocated to a process in the main memory, sampled every
second, using the Linux ps utility. RSS does not include swapped out
memory. However, it does include memory from shared libraries
as long as the pages from those libraries are actually in memory. A
large RSS on an active system means that the process touches a lot
of memory locations.

Figure 6 plots the average and peak main memory consump-
tion across the execution in MBs, and indicate that all of the Rate
benchmarks, both integer and floating point, still have main mem-
ory consumption well below 900MB. However, Speed workloads
have large RSS, with peak consumption as high as 16 GB. On aver-
age, Speed benchmarks have ∼10× larger memory footprint than
their corresponding Rate ones. Floating point benchmark suite have
memory consumption of ∼3× more than the integer suite. Based
on the average footprint throughout the execution, we order the
benchmarks from low to high memory consumption. Benchmarks
exchange2, povray, leela, namd, wrf, nab, and xalancbmk have low
RSS values, which indicates negligible access to the main memory.
Therefore, these benchmarks are expected to have low working set
sizes, which is also reflected in the cache sensitivity analysis re-
ported in Section 5.2. On the contrary, bwaves_s, roms_s, fotonik3d_s,
cactuBSSN_s and xz_s exhibit extremely large memory footprints.
Furthermore, we observe that ∼90% of the workloads have main
memory consumption below 5 GB, resulting in an average memory
footprint of 1.82 GB.

5.4 Memory Bandwidth
Next, we measure the off-chip bandwidth across the SPEC CPU2017
workloads. We collect the hardware events LLC-load-misses and
LLC-store-misses using perf at regular intervals of 1 second, on test
system described in Table 2. Memory bandwidth is calculated as the
product of the total LLC misses per second with the cache line size.
Figure 7 plots the average and peak memory bandwidth results in
Megabytes per second, for each workload.

Our experimental results indicate a large variety in memory
bandwidth usage patterns from various benchmarks. CPU2017 con-
sists of workloads with average bandwidth as low as 0.2 MB/s to
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(a) perlbench (b) gcc (c) mcf (d) omnetpp

(e) xalancbmk (f) x264 (g) deepsjeng (h) leela

(i) exchange2 (j) xz (k) bwaves (l) cactuBSSN

(m) namd (n) parest (o) povray (p) lbm

(q) wrf (r) blender (s) cam4 (t) imagick

(u) nab (v) fotonik3d (w) roms

Figure 5: Working Set Size

workloads with peak bandwidth of 2.3 GB/s. leela, exchange2, namd,
povray, and nab_r have modest bandwidth usage, with consump-
tion within 10 MB/s during the entire execution period. Workloads
parest, wrf_r, nab_s and perlbench.diffmail exhibit low bandwidth
usage with short sudden irregular bursts of high data transfer rates.

While applications like xalancbmk and imagick have input sets
which fit within on-chip memory, and hence these applications do
not refer the off-chip memory after initiation. All the above dis-
cussed benchmarks have very little off-chip bandwidth usage. This
is in line with the conclusions drawn from Sections 5.2 and 5.3, as
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Figure 6: Main Memory Consumption, average and peak (in MB). (Clusters from L to R: INTRate, INTSpeed, FPRate, FPSpeed)

Figure 7: Memory Bandwidth, average and peak (in MB/s). (Clusters from L to R: INTRate, INTSpeed, FPRate, FPSpeed)

these workloads have low working set sizes and hence low memory
footprint.

CPU2017 also comprises of many benchmarks with large mem-
ory bandwidth utilizations. For example, cactuBSSN_s, and lbm_s
have peak bandwidth utilization of 2.3 GB/s (0.9 GB/s on average).
Similarly, mcf, xz_s, cactuBSSN_r, and fotonik3d_s have also large
off-chip traffic, and can be used to test bandwidth optimization
techniques.

6 NEW ADDITIONS TO SPEC CPU
In the current iteration of SPEC CPU, many new benchmarks have
been added to cover emerging application domains. In the INT cate-
gory, artificial intelligence (AI) has been extensively represented by
a total of three benchmarks, with exchange2 being the new addition
to the group. CPU2006 [14] integer benchmarks h264ref, sjeng and
gobmk have been renamed to x264, deepsjeng and leela respectively
due to changes in their functionality or inputs, while still maintain-
ing the application domain. Additionally, bzip2 has been replaced
by xz to represent the general compression domain. exchange2 (re-
cursive solution generator), the new addition to INT suite, has the

lowest percentage of memory instructions and hence, justifiably
the lowest memory footprint and lowest bandwidth consumption
in the CPU2017 suite. Interestingly, all the three AI benchmarks in
the suite have extremely small working set sizes and consequently,
low off-chip accesses.

In the FP category, eight new benchmarks have been added:
parest, blender, cam4, pop2, imagick, nab, fotonik3d, and roms. Cli-
matology domain has been extensively represented here with three
new additions of benchmarks, simulating different components of
the NCAR Earth System. cactusADM has been changed to cac-
tuBSSN. parest’s implementation relies on dealII libraries from
CPU2006, which also underlines the dealII benchmark. In gen-
eral, Speed versions of these benchmarks are scaled up in order
to highly exercise both memory and computation. For example,
xz achieves this by differing in its data compression levels, roms
vary its grid size and simulation time steps, while fotonik3d alters
its problem size, frequencies, time steps, and boundary conditions.
At the same time, benchmarks x264, leela and exchange2 use al-
most similar workloads for both Rate and Speed and hence, we
discern very similar instruction and memory behavior from them,
as depicted throughout the Sections 4 and 5.
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7 RELATEDWORK
A number of studies have been carried out recently regarding char-
acterization of SPEC CPU2017 workloads, however, to the best of
our knowledge, this paper presents the first systematic study of the
memory behavior of the SPEC CPU2017 suite.

SPECCPU2017 Characterization: Bucek et al. [8] present an overview
of CPU2017 suite and discuss its reportable execution. Limaye and
Adegbija [21] use hardware performance counter statistics to char-
acterize SPEC CPU2017 applications with respect to several metrics
such as instruction distribution, execution performance, branch
and cache behaviors. They also utilize Principal Components Anal-
ysis [10] and hierarchical clustering to identify subsets of the suite.
Similarly, Panda et al. [24] characterize the CPU2017 benchmarks
using perf, and leverage statistical techniques to identify cross ap-
plication redundancies and propose subsets of the entire suite, by
classifying multiple benchmarks with similar behaviors into a sin-
gle subset. Further, they also provide a detailed evaluation of the
representativeness of the subsets. Amaral et al. [5] propose the
Alberta Workloads for the SPEC CPU2017 benchmark suite hoping
to improve the performance evaluation of techniques that rely on
any type of learning, for example the formal Feedback-Directed
Optimization (FDO). Additionally, in order to ameliorate large sim-
ulation times, Wu et al. [26] analyze the program behavior and
consequently propose simulation points [12] for the suite.

Memory Characterization ofWorkloads: Jaleel [16] determined the
memory system requirements of workloads from SPEC CPU2000
and CPU2006 using binary instrumentation. Henning [15] discussed
the memory footprints of CPU2006 workloads, while Gove [11]
analysed their working set sizes. Bienia et al. [7] present memory
behavior of PARSEC benchmark suite. John et al. [18] discusses a
taxonomy of workload characterization techniques.

8 CONCLUSION
In this paper, we provide the first, comprehensive characteriza-
tion of the memory behavior of the SPEC CPU2017 benchmark
suite. Our working set analysis shows that many workloads have
a working set much higher than 32 MB (maximum cache size as-
sumed in our experiments), implying the continued importance of
cache hierarchies for benchmark performance. We also show that
Rate benchmarks, both INT and FP, still have main memory con-
sumption well below 900 MB, which was target memory footprint
for CPU2006. Almost 90% of the workloads have main memory
consumption below 5 GB, with the average across the suite being
1.82 GB. However, workloads have extremely varying peak memory
bandwidth usage, with some benchmarks requiring as little as 0.2
MB/s, to others utilizing upto 2.3 GB/s.

In addition, our experiments have revealed some interesting
results with respect to dynamic instruction counts and distributions.
The average instruction count for SPEC CPU2017 workloads is
22.19 trillion, which is an order of magnitude higher than the SPEC
CPU2006. In addition, we find that FP benchmarks typically have
much higher compute requirements: on average, FPworkloads carry
out three times the number of arithmetic operations as compared
to INT workloads.
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