
Behavior-driven Load Testing Using Contextual
Knowledge—Approach and Experiences
Henning Schulz

Novatec Consulting GmbH, Karlsruhe, Germany
Dušan Okanović, André van Hoorn

University of Stuttgart, Germany

Vincenzo Ferme
Kiratech S.p.A., Paradiso (Lugano), Switzerland∗

Cesare Pautasso
Software Institute, USI Lugano, Switzerland

ABSTRACT
Load testing is widely considered a meaningful technique for per-
formance quality assurance. However, empirical studies reveal that
in practice, load testing is not applied systematically, due to the
sound expert knowledge required to specify, implement, and exe-
cute load tests.

Our Behavior-driven Load Testing (BDLT) approach eases load
test specification and execution for users with no or little expert
knowledge. It allows a user to describe a load test in a template-
based natural language and to rely on an automated framework to
execute the test. Utilizing the system’s contextual knowledge such
as workload-influencing events, the framework automatically de-
termines the workload and test configuration. We investigated the
applicability of our approach in an industrial case study, where
we were able to express four load test concerns using BDLT and
received positive feedback from our industrial partner.They under-
stood the BDLT definitions well and proposed further applications,
such as the usage for software quality acceptance criteria.

ACM Reference Format:
Henning Schulz, Dušan Okanović, André van Hoorn, Vincenzo Ferme,
and Cesare Pautasso. 2019. Behavior-driven Load Testing Using Contextual
Knowledge—Approach and Experiences. In Tenth ACM/SPEC International
Conference on Performance Engineering (ICPE ’19), April 7–11, 2019, Mumbai,
India. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3297663.
3309674

1 INTRODUCTION
Load testing is a well-known measurement-based technique to as-
sess the performance and related quality attributes of a system un-
der synthetic workload [11]. However, an extensive amount of ex-
pertise and effort needed to create and conduct meaningful load
tests hinders a systematic application in practice [5]. Particularly,
defining test objectives and representative workload specifications
requires a sound understanding of the production workload and
the influences of events such as marketing campaigns.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’19, April 7–11, 2019, Mumbai, India
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6239-9/19/04…$15.00
https://doi.org/10.1145/3297663.3309674

GIVEN ...
WHEN ...
THEN ...

goal: ...
workload: ...
termination_criteria: ...
quality_gates: ...
observe: ...

workload

goal,
termination_criteria,
quality_gates,
observe

workload

contextual
knowledge

Black Friday Black Friday
Christmas

time

past futureWorkload Determination

Figure 1: Overview of the transformation of a BDLT defini-
tion to a declarative load test.

Several approaches have been proposed to ease and automate
certain aspects of load testing. Approaches to automatically ex-
tracting workload specifications from run-time data [17, 21] and
declarative load testing [9], as well as automation of test execu-
tion [2], ease the load test specification and reduce the effort of
running them. However, such approaches still require expertise,
because they either do not provide means for automatically exe-
cuting the extracted workload specifications, or require specifying
the workload manually. Furthermore, selecting suitable run-time
data requires the knowledge about influencing events.

In this paper, we adopt Behavior-driven Development [15], a
functional software quality assurance technique, for load testing
practices. In our approach, load test concerns, e.g., exploring CPU
configurations for an expectedworkload, for instance, during Black
Friday, are defined using the template-based natural Behavior-driv-
en Load Testing language:

Given the next Black Friday, when varying the CPU cores be-
tween 1 and 4, then run the experiment for 1h and ensure the maxi-
mum CPU utilization is less than 60%.
As illustrated in Figure 1, the definition is then transformed into
a declarative load test using our existing approaches [9, 17]. Test
parameters such as the test goal, termination criteria, and quality
gates can be directly transformed.The test workload is determined
using collected run-time data and by relying on the contextual
knowledge— in this case the Black Friday— for forecasting to the
described scenario. Hence, the workload can be defined without
explicitly dealing with run-time data or workload specifications.

We evaluate our approach in an industrial case study assessing
the ability of the Behavior-driven Load Testing (BDLT) language
to express relevant load testing concerns as well as the usability,

*This work was done while Vincenzo Ferme was at the University of Stuttgart.

Session 10: Performance Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

265

https://doi.org/10.1145/3297663.3309674
https://doi.org/10.1145/3297663.3309674
https://doi.org/10.1145/3297663.3309674

benefits, and limitations of the overall approach. For that, we ob-
tained feedback from the case study system’s experts. We were
able to express all load test concerns our industrial partner pro-
vided in BDLT. The feedback was consistently positive, especially
regarding the usage of natural language. The main usage of our
approach in this context would be the replacement of manually-
defined load test scripts and as acceptance criteria of Scrum user
stories [19]. Limitations of our approach are certain events requir-
ing individual implementations and the natural language, which
hinders complex expressions such as non-trivial subsets of param-
eter combinations.

The remainder of this paper is structured as follows. Sect. 2 pro-
vides the background of our approach. Sect. 3 details our approach.
Sect. 4 presents the evaluation using the two case studies. Sect. 5
discusses related work. Sect. 6 concludes the paper and outlines
future work. The supplementary material is available online [18].

2 BACKGROUND
In this section, we provide the background of our work includ-
ing Behavior-driven Development (BDD), the ContinuITy [17] ap-
proach, and the BenchFlow [9] approach.

Behavior-drivenDevelopment (BDD) [15] builds on Test-driven
Development (TDD), where the goal is not to specify the imple-
mentation of a software, but rather its expected results. It provides
a natural language description of the expected behavior, rather
than using some programming language. Usual starting points are
Scrum user stories, and each generated test comes from a sentence
in a story. This way also non-technical stakeholders can be more
involved in the development, providing faster and better feedback,
resulting in a clear set of acceptance criteria. The focus of the soft-
ware development shifts to requirements and a business-oriented
point of view, rather than implementation.

ContinuITy [17] uses recorded run-time data, including the users’
requests, to automatically generate and evolve representative load
tests. In this paper, we show how contextual knowledge, such as
events that influence the user behavior, can be added to a work-
load specification. For instance, for a future marketing event such
as the Black Friday, a workload specification that represents the
expected workload during Black Friday is extracted. The WESS-
BAS approach [21] is utilized to extract theworkload specifications
from recorded requests and ContinuITy adds information required
for test execution, respecting API changes.

BenchFlow [8] is a framework for declarative performance test
specification and automated execution on the API level. Using the
declarative language, users can state the performance test concern
and configure the process to answer the stated concern.The frame-
work generates executable test artifacts and automates the execu-
tion of performance tests to reach the stated goal, e.g., load tests, ex-
haustive exploration tests, and tests with termination criteria. The
declarative definition of performance tests allows for executing
them without necessarily knowing the specific underlying tech-
nologies and tools required for this execution [9].

BDLT
definition

BenchFlow
DSL

BenchFlow
Executor

ContinuITy
Forecaster

Figure 2: An overview of our approach

3 OUR APPROACH
The main idea of our approach is to let users state their perfor-
mance concerns using a BDLT definition, which are then automat-
ically transformed to load tests. However, there are two main chal-
lenges.

Common BDD practices are used to specify and test software
functionality, and usually generate test code that is executed as
part of the test. In our case, we target the performance testing do-
main, so we have to extend existing BDD languages to accommo-
date concepts for this specific domain, i.e., to generate load tests
ensuring consistent results. This includes both the experimental
setup and the workload data.

To simulate the behavior of real users, we want to use exist-
ing run-time data obtained from the operational use in produc-
tion. From these data, we extract the workload information, i.e.,
the workload intensity and the workload mix [11, 21]. We also al-
low the users of our approach to test with an expected number of
users, and possibly include certain events that can cause changes in
the workload, e.g., holidays or outages. Based on the existing work-
load data and knowledge on how these events affect the workload,
we use well-known techniques to predict the future workload and
include the impact of the specified events.

In the following sections, we provide an overview of our ap-
proach (Sect. 3.1), the language that is used for the specification
of behavior-driven load tests (Sect. 3.2), and how these definitions
are transformed into BenchFlow test specifications (Sect. 3.3).

3.1 Overview of the Approach
A simplified overview of our approach is shown in Figure 2. The
load test is specified using the new BDLT language, which con-
tains the conditions that are present before starting the load test,
the changes that occur when the test starts, and the stop and accep-
tance criteria for the test (see Section 3.2). Based on this definition,
an instance of the BenchFlow DSL is generated. The executor in-
terprets the provided BenchFlow DSL specification, generates ex-
ecutable test artifacts, manages the deployment of the application
under test, runs the test, and collects test results. Details about the
test execution with BenchFlow can be found in [8].

The workload for the load test is generated by ContinuITy based
on the request logs and the pre-configured contextual knowledge.
The test specification can use some historical workload, or a work-
load that can exist in the future. Using a historical workload in-
cludes running tests with an original intensity or with a constant
intensity calculated from some specified time period, e.g., the max-
imum number of users for that time period. If a user wants to test
the behavior of the system under some future workload, the Fore-
caster is used.

Session 10: Performance Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

266

GIVEN given

AND

WHEN when

AND

THEN then

AND

.

(a)The main elements of a BDLT definition.

daterange

the

next eventId

after date

the number of users adjust

set to number

adjust

assignment

(b) Elements of the GIVEN clause.

run each

the

experiment for duration

collect id

ensure

break if

check

(c) Elements of the THEN clause.

varying the number of users

the

id

between number and number

in steps of numeric

among enumeration

a

an

id

happened

happens

on date

from daterange

(d) Elements of the WHEN clause.
Figure 3: Elements of a BDLT definition.

The Forecaster uses well-known techniques to forecast the in-
tensity time series to future dates, respecting the possible influ-
encing events, e.g., holidays, marketing or sport events, stored in
the contextual information. These events are manually annotated
in the recorded workload, but we plan to obtain them from exter-
nal calendars and incident reporting tools. We also allow for the
user to specify custom events and how they influence the work-
load, e.g., increased workload intensity due to a number of mes-
sages buffered during an outage. These events are pre-processed
by ContinuITy, before being passed to the Forecaster. In the cur-
rent implementation of our approach, we rely on the Prophet tool1,
but other forecasting tools can also be used.

3.2 Behavior-driven Load Test Language
In this section, we present the main features of the BDLT language
for load test specifications.2 Note that the target service specifica-
tion is not a part of BDLT definitions, but rather pre-configured.
Every BDD [15] is composed of three main elements: GIVEN, WHEN,
and THEN. We adopt this description as follows (Figure 3a):

GIVEN (Figure 3b) is used to specify the starting conditions of
a load test, namely: a workload from/for a specific period of time
(daterange), a workload for some future (next) event, and specific

1Prophet, https://github.com/facebook/prophet
2The full specification using the Extended Backus-Naur Form (EBNF) notation [1] is
available in the supplementary material.

test parameters (assignment). The number of users for the test can
also be altered, i.e., adjusted by a specified percentage from the
original number, or set to a specific (constant) value. The number
in the clause can be a numerical value or calculated based on the
specified time period and context information.

WHEN is used to specify optional changes in the workload or the
test configuration that occur during the experiment execution (Fig-
ure 3d). We can specify events, which will occur (happen) during
the test execution, and allow the number of users and configura-
tion parameters to be changed (varying). Event specification is the
extension point for the custom event processing (see Section 3.1).
If an extension for a specific event is registered— e.g., an outage—
ContinuITy processes it before passing it to the Forecaster. In the
outage example, the extension could calculate the number of re-
quests that would be sent during the outage and use this number
for forecasting the recovery spike to get a more accurate forecast.
If no extension is registered, the event is directly forwarded to
the Forecaster. Varying the test configurations and the number of
users for a test can result in actually running several experiments,
one for each combination of these parameters. This is particularly
useful for exploratory testing, where using one test definition, mul-
tiple configurations can be tested [8].

In THEN (Figure 3c), the user specifies how long the test should
run, which metrics to collect, when it should stop (break if), and
what the acceptance criteria is (ensure).

Session 10: Performance Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

267

https://github.com/facebook/prophet

ContinuITy

date range

next event

user number

assignment

varying

event happens

run

ensure

collect

break

G
IV

E
N

T
H

E
N

W
H

E
N

BDLT
users

exploration_space

steady_state

termination_criteria

observe

BenchFlow

quality_gates

workload

Figure 4: Transformation of BDLT clauses to BenchFlow DSL
elements. The number of users and the workload mix are
pre-processed by ContinuITy.

3.3 Transformation to Declarative Load Tests
The mapping of BDLT concepts to BenchFlow [9] is presented in
Figure 4. Listing 1 presents an excerpt of the resulting BenchFlow
test generated from the example in Sect. 1.

All the information related to the number of users, i.e., daterange,
next event, the number of users, event, and varying the number of
users, are first processed by ContinuITy to define theworkload and
stored into the users section of the BenchFlow test specification. In
our example, ContinuITy determines the date of the next Black Fri-
day and forecasts the intensity for that date. WESSBAS [21] is used
to generate a Markov-based workload model which is transformed
to workload.

Values for the test parameters and how they should be varied
(the number of CPU cores to be explored in our example) aremapped
to the exploration_space (cpu property).

The information from run is mapped to steady_state for individ-
ual experiments (1 h in our example), and to termination_criteria
for the overall test duration. For four different CPU configurations
in our example, the max_time is 4 h. Furthermore, break is also
mapped to termination_criteria and ensure is mapped to the qual-
ity_gates (the maximum CPU utilization of 60 % inmax_cpu prop-
erty). collect is mapped to observe. quality_gates and observe are
both based on the configuration of data collectors in the data_col-
lection section, which is pre-configured.

4 INDUSTRIAL CASE STUDY
In this section, we present the results of our industrial case study.
The goal of this case study is to investigate the applicability and the
benefits of applying our BDLT approach in an industrial context.
Hence, we address the following three research questions.

RQ1: How expressive is the BDLT language in regards to load test
concerns of industrial use cases?

Because we aim to replace other load test definitions in indus-
trial contexts with BDLT, RQ1 addresses its expressiveness. It is
fundamental that the BDLT language is able to express industrial
use cases.

RQ2: How would BDLT be used in industrial contexts?

configuration:
users: ...
load_function:

steady_state: 1h
goal:

type: exhaustive_exploration
exploration_space:

shop-service:
resources:

cpu: ['1', '2', '3', '4']
quality_gates:
services:

shop-service:
max_cpu: <= 60%

termination_criteria:
test:

max_time: 4h
experiment:

type: fixed
number_of_trials: 1

workload: # generated Markov chains

Listing 1: BenchFlow test derived from the exemplary BDLT
definition in Sect. 1.

With this question, we investigate how practitioners would use
BDLT. The usage both evaluates the applicability and leads to fu-
ture improvements and extensions of the language.

RQ3: What are the benefits and limitations of using BDLT in com-
parison to defining load test scripts?

Here we are interested in general feedback of practitioners re-
garding benefits and limitations of our approach, whichwe express
with RQ3.

In the following, we provide our methodology (Sect. 4.1), the
data used in the case study (Sect. 4.2), the results of the case stuy
(Sect. 4.3), a discussion of the results (Sect. 4.4), and the lessons we
learned (Sect. 4.5).

4.1 Methodology
We apply our approach at an industrial partner from the logistics
sector. Following DevOps practices, the company develops and
operates an IoT system running in a Cloud environment, using
Docker and Kubernetes. Devices are sending messages to an IoT
endpoint which forwards the messages to the backend application
via messaging queues.

In order to answer the research questions, we developed BDLT
definitions that express the load test concerns the industrial part-
ner has and collected feedback regarding benefits of these defini-
tions. In doing so, we proceeded as follows. In two meetings, we
presented our general research plan and discussed high-level archi-
tectural and organizational aspects of their IoT system.We then fo-
cused on one DevOps team that was working on load testing, and
with them we defined the scope of the collaboration and received
production data to use in our case study. In two iterations, we (1)
defined the BDLT definitions according to our current understand-
ing of the system and (2) refined with them the definitions and col-
lected their feedback. In each of these meetings, we presented the

Session 10: Performance Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

268

Table 1: Overview of the BDLT definitions and the generated BenchFlow load tests.

Name goal load_function steady_state quality_gates

configuration exploration exhaustive_exploration constant 1h CPU load, message latency
continuous quality assurance load constant 1h number of instances, cost
recovery spike load step function 2h queue length
more devices load constant 5h CPU load

BDLT definitions as well as generated load tests, i.e., BenchFlow
DSL instances and graphs visualizing the workload specifications.

4.2 Input Data
We used the following data3: (1) the message logs of a small subset
of devices from one week, consisting of a time stamp, a device ID,
and a message type; (2) the load intensity over time, i.e., the num-
ber of messages per hour for one year; (3) contexts we identified,
which influence the load intensities. The WESSBAS approach [21]
was used to transform themessage logs into aMarkov-chain-based
workload model representing the device behaviors and the relative
frequencies (mix), with applied intensities adjusted with the influ-
ence of the identified contexts.

We identified two specific contexts: public holidays and recover-
ies from outages of the Cloud infrastructure that can happen irreg-
ularly. Public holidays turned out to decrease the intensity. Recov-
eries significantly increase the intensity, because the devices buffer
all messages locally and send them during the recovery, which
makes them particularly interesting for load testing. A recovery
is detected by observing message rates, i.e., when the rate is be-
low 10% of the average rate for that hour and weekday and then
it spikes to two times the average rate. We label the spike as a
recovery with the number of buffered messages calculated as the
difference between the sent messages during the outage and the
normally sent messages. For forecasting the workload intensity
during expected future outages, we register an event extension for
the event outage (see Sect. 3.2). Based on the clause When an out-
age happened from <start> to <end>, the extension calculates the
expected number of buffered messages. The forecasting of the test
workload is done using the determined number of buffered mes-
sages.

4.3 Experiments and Results
We developed four BDLT definitions describing our industrial part-
ner’s concerns. An overview is provided in Table 1. The configura-
tion exploration test aims at finding the optimal system configura-
tion. After that configuration has been established, the continuous
quality assurance test is executed continuously, e.g., every night,
to detect performance regressions.The recovery spike test prepares
for load spikes that might occur in the future. Finally, the more de-
vices test covers the foreseen scenario of adding more devices.

Configuration Exploration The BDLT definition for the config-
uration exploration test is provided in Listing 2. It uses the max-
imum expected intensity of the next three months to assess the

3For the sake of confidentiality, we do not provide the exact dates or values in the
following and add randomly chosen obfuscation factors per hour, day, and week as
well as for the global trend to all plots.

●●
●
●

●

●
●●●
●
●
●
●
●

●
●
●●●
●
●
●●●●●
●●
●
●
●●●
●●●●●●●●
●●●
●
●●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●
●
●
●

●

●

●

●

●●
●●

●

●●

●

●

●

●

●

●

●

●
●
●●●

●

●

●

●

●

●
●●

●

●●●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●●●●

●

●
●
●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●
●
●
●

●●
●
●

●

●

●●●●

●

●
●

●

●
●

●●

●

●
●
●●●●●
●●
●
●
●
●●
●●
●●●●●●●
●●●●●
●●

●

●

●

●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●
●
●

●

●
●
●●
●

●

●
●
●
●
●
●
●
●
●
●
●●●●●
●●
●
●
●
●●●●●●●●●●●●●
●●●
●

●

●

●

●

●

●

●●

●
●

●
●●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●●
●
●

●●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●
●●●●

●

●

●

●

●
●
●
●
●
●
●
●
●●●●
●
●
●
●
●●●●●●●●●
●●●●
●
●●●
●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●
●

●

●

●●●●
●
●

●
●

●
●

●
●●
●
●
●
●
●●●●
●
●●
●●
●●●●●●●●●●●●
●
●●
●
●

●

●

●

●

●

●●
●
●

●
●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●
●
●●

●
●●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●●
●●
●
●
●
●
●●●●●●●●
●●
●
●●●●
●●

●

●

●

●

●

●

●
●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●
●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●
●

●

●

●
●
●
●●●
●
●
●
●
●
●
●●●●●●●●
●●
●●
●
●●●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●●●●●●

●

●

●●
●
●
●

●

●●
●●●●●●●
●●
●●●
●
●●
●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●
●

●

●
●●
●
●
●●
●
●
●
●
●
●●●●●●●●
●●
●●
●
●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●

●

●
●●●

●

●

●

●

●

●
●
●
●
●
●

●
●
●●●●
●
●
●

●

●
●
●●
●●●●
●●●●
●●
●
●●●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●
●●
●
●

●

●

●

●

●

●●●

●

●

●
●
●

●●●
●
●
●
●
●
●
●●●●●●
●●●●●●●●●
●
●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●●
●
●

●
●

●
●
●
●
●●
●
●
●
●●●
●●
●●
●
●
●
●
●●●●●●●
●●●
●●
●
●●●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●
●
●●
●
●

●

●

●
●●
●

●

●
●

●
●

●
●
●
●
●
●
●
●
●
●●●
●●
●
●
●
●
●●●●●●●
●●●●●
●
●●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●
●
●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●
●

●
●
●

●
●
●
●
●
●●
●
●

●
●
●●
●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●
●
●
●

●

●

●
●

●
●

●
●

●

●
●

●

●
●
●
●

●
●
●
●●●
●●
●
●

●
●

●
●●●
●●●●
●●●●
●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●

●
●●
●
●
●

●
●
●
●
●
●
●
●

●
●●
●●●●●
●●●●●●●●●●●
●●
●●●
●●●●●●●●
●

●

●
●
●●
●
●●●●●●
●●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●
●

●

●

●
●
●●
●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●●●
●
●

●

●

●
●

●●
●

●
●
●
●
●
●
●

●
●
●●
●●●●
●●●●●●●●
●●
●●
●●●●
●●●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●

●●
●●

●

●●

●

●
●

●

●●

●
●

●
●

●

●
●
●
●●●●●●
●●●●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●●●●

●
●

●

●
●

●
●
●
●
●
●
●●
●●
●
●
●
●●
●●●●●●
●
●●●
●
●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●

●

●

●●●

●
●

●

●

●

●
●
●
●
●
●
●●
●●●●●
●●
●

●
●
●●●●●●●
●
●
●
●
●
●
●●
●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●
●
●

●

●

●

●
●●

●

●

●
●

●

●
●
●
●
●

●
●
●●
●●●
●
●
●
●
●
●
●●●●●●●
●●●●●●●●
●
●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●●●
●

●

●

●
●●

●

●

●

●

●
●

●
●
●
●
●
●
●
●
●●
●
●
●
●

●
●
●
●●●●●●●●
●●●●
●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●●
●

●

●

●●

●

●●

●
●
●

●
●

●
●
●
●
●

●

●
●
●●●●
●●●●
●●
●
●●
●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●

●

●

●
●
●●
●

●

●

●
●

●
●

●

●

●

●

●
●
●
●

●
●

●
●
●
●
●●●●●●●
●●●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●

●
●●
●

●
●
●

●
●
●
●
●
●
●
●
●●
●●●●
●●
●
●
●
●●●●●●●●●
●●
●●●●●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●●
●●

●

●

●
●
●

●

●

●●●●●●●

●

●

●

●

●

●

●

●●
●●●
●

●●●
●●
●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●

●

●

●●●

●

●

●

●●

●

●
●

●
●

●
●
●●
●●●●
●
●

●
●
●

●●●●●●●●●●●●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●●
●
●

●
●
●
●
●

●●●
●●●
●●
●●
●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●
●●

●

●

●

●
●

●
●

●

●
●
●

●
●
●
●●●

●

●
●
●

●

●●
●●
●●●

●

●●●●●
●●
●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●
●●
●

●

●

●

●

●

●●

●

●

●

●
●●●
●

●
●

●
●

●
●
●
●
●
●
●
●
●●●●●
●
●
●
●
●●●●●●●
●
●●
●●
●
●
●●●

●

●

●
●●
●
●
●●●●●●●
●

●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●
●●

●

●

●

●

●

●

●

●

●
●
●

●●

●●

●

●

●●●
●

●

●
●

●

●

●

●

●
●
●

●
●
●
●●●
●
●
●
●
●
●
●●●
●●●●
●
●●●
●●●●●
●

●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●
●

●
●
●●
●●
●●
●
●
●
●●●●●●●●●●●●
●●
●●●

●

●

●

●

●

●

●●
●
●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●
●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●
●●

●
●
●
●●●●
●
●
●
●
●
●
●●●●●●●●●●
●
●
●●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●
●

●
●

●

●
●
●●
●
●●

●
●

●
●
●
●●●●●●●●
●
●
●●
●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●●

●
●
●
●
●●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●●●

●

●

●

●

●

●

●
●
●
●
●
●
●●●●
●●
●
●
●
●●
●●●●●●●●●●●
●
●●●

●

●

●

●

●

●

●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●●
●

●
●

●

●

●

●

●
●

●

●

●

●
●
●
●●
●●

●
●
●
●
●●●●●●●●●●●
●●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●●
●

●

●

●

●

●

●
●

●
●

●

●

●
●
●●●●
●

●
●
●●
●●●●●

●

●

●●

●

●
●●

●
●

●

●

●

●
●●
●
●●●●

●

●
●

●

●●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●●
●
●
●

●

●

●
●●
●●●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●
●●

●
●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●●●

●

●

●
●

●

●

●
●

●
●
●

●

●
●
●●
●●
●
●

●

●
●

●●
●
●●●●

●
●●●
●●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●
●●●●●
●
●

●●
●
●●●●●●
●●●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●
●●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●●
●
●

●

●

●
●
●

●
●
●

●
●
●

●●
●●
●
●
●
●

●
●
●
●●●●
●●
●●●●●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●
●●

●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●
●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●●●
●

●

●
●
●
●

●

●●●●●●●●
●●

●
●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●●●●

●

●

●
●
●●●●
●●●●●●●
●
●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●
●
●

●

●

●

●

●

●
●
●

●
●

●

●●

●●
●
●
●
●

●

●

●●●●●●●●●
●●●●
●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●
●●
●●
●

●

●

●

●

●

●●●

●

●

●
●
●●●●●
●
●

●
●
●●●●●
●●●●●●

●●●●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●
●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●●
●●

●

●

●
●●●

●
●
●

●
●

●
●
●●
●

●

●
●

●
●
●●
●●
●
●

●
●
●

●
●●●
●
●●●●●

●
●
●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●
●●●
●

●

●

●

●
●

●●

●●

●

●

●
●
●
●●●
●

●
●
●
●●
●●
●●
●●
●●●
●
●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●●●
●
●●

●
●
●

●
●
●●
●
●
●
●
●
●
●
●●
●
●

●

●
●
●●
●●●●●
●
●●●
●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●

●
●

●

●

●
●
●

●
●
●
●

●
●

●

●
●●
●
●●
●
●
●

●
●●●
●
●●●●

●

●●●
●

●
●●

●

●

●

●

●

●

●
●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●●
●

●
●

●
●

●
●

●
●
●

●
●

●

●

●
●●
●●
●

●
●

●

●
●
●●
●●●
●●●●●●●
●●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●
●
●

●
●
●

●

●

●
●

●
●
●
●

●
●
●●●●●
●
●
●

●
●

●
●
●
●
●●●
●●

●●
●
●●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●●●●

●

●

●

●
●
●●
●
●●

●
●●
●●
●●●
●
●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●
●

●
●

●
●

●

●

●
●

●

●

●●

●

●
●●●
●
●

●

●
●
●●
●●●●●●●●●●●

●●
●

m
es

sa
ge

s
h

time

max

past forecastLegend:
●

●

●

●

●

●
●

●

●

● observed values
learned model

Figure 5: Observed intensities and forecast for the configura-
tion exploration test.

GIVEN the next three months
AND the number of users set to the maximum

WHEN varying the CPU cores between 0.5 and 4 in steps of 0.5
AND varying the number of instances between 1 and 5
AND varying the RAM among (1GB, 2GB, 4GB)

THEN run each experiment for 1 hour
AND ensure the average CPU load is less than 15%
AND ensure the message latency is less than 2 seconds

Listing 2: BDLT definition: configuration exploration.

performance of the SUT under different configurations of the CPU,
number of instances, and RAM. Each experiment is to be executed
for one hour, and the CPU load and message latency are to be com-
pared against thresholds as quality gate. The transformation to a
BenchFlow test is as follows. The GIVEN clause implies using a con-
stant value as a load function. Because the varying keyword is used
in the WHEN clause, the BenchFlow goal exhaustive_exploration is
used, testing all configuration combinations. The THEN clause de-
fines an execution time of at most one hour per experiment and
qualiy_gates on CPU and message latency metrics. The constant
load value is determined by the forecasting approach, as illustrated
in Figure 5. The figure shows the observed intensity points as well
as the learned model for the forecast. The load value is then ex-
tracted as the maximum of the forecasted intensities.

GIVEN 2018
AND the number of users set to the 95th percentile

THEN run the experiment for 1h
AND ensure the number of instances is less than 3
AND ensure the summarized cost is less than X

Listing 3: BDLT definition: continuous quality assurance.

ContinuousQualityAssurance The continuous quality assurance
test is a simple load test and is easily expressible as BDLT, as illus-
trated in Listing 3. Instead of relying on forecasted workload, this
definition calculates the 95th percentile of the number of users for

Session 10: Performance Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

269

● ●
●

●

●

●

●
● ● ● ●

● ●
●

●

●

●

●

●
●

● ● ● ●
●

m
es

sa
ge

s
h

time

exp.
outage

#buffered
messages

forecast

● ●
●

●

●

●

●
● ●

●

●
● ●

●
●

●

●

●

●
●

● ● ● ●
●

m
es

sa
ge

s
h

time

spike load
curve

Figure 6: Calculation of the number of buffered messages
(left) and forecast of the recovery spike load curve (right).

the year 2018, as stated by the GIVEN clause. Hence, the number
of users is the same each time the test is executed, allowing for
a comparison of test executions. The THEN clause defines to exe-
cute the test for one hour and to compare against the number of
instances and cost thresholds. These metrics are of interest in this
test because it is assumed to be executed in an environment with
auto scaling in place. The BenchFlow test is generated similarly to
the configuration exploration test, with the difference that the test
goal is load, denoting a single load test. Furthermore, different met-
rics are used as quality_gates (number of instances and cost, which
is retrieved from the Cloud services) and the intensity is calculated
from the past data instead of a forecast.

GIVEN 2018/10/15 9:00
WHEN an outage happened from 2018/10/15 7:00

to 2018/10/15 9:00
THEN run the experiment for 2 hours
AND ensure the final queue length is less than 100

Listing 4: BDLT definition: recovery spike.

Recovery Spike The recovery spike test aims at preparing for load
intensity spikes that might happen in the future because of out-
ages. The BDLT definition is provided in Listing 4. Because the
current intensity highly influences the number of messages that
get buffered and thus, the spike height, the test focuses on a spe-
cific date in the GIVEN clause. The WHEN clause defines the expected
outage by utilizing the custom event statement. The THEN clause
defines to execute the test for two hours, which is one hour for the
spike and one hour for normal load, and the queue length at the end
of the test as the pass criterion. The BenchFlow test is generated
as a simple load test, because there is no configuration exploration.
The load function is a step function replaying the expected spike
curve. The experiment duration is two hours, as defined, and the
queue length is used as quality gate. Because of the custom event
statement, the load function is forecasted in two steps. This is il-
lustrated in Figure 6. In the first step, a forecast to the time range
during which the outage is expected to happen is done. Then, the
number of buffered messages is calculated as the sum of messages
that would be sent during the outage time range. In the second
step, that number is used as context for the forecasting, resulting
in a spike curve, which is used as the load function.

MoreDevices The last relevant BDLT definition is for themore de-
vices test and is provided in Listing 5. It covers the scenario when

GIVEN calendar week 5 in 2019
AND the number of users set to the maximum increased by 30%
AND the number of instances is 4

THEN run the experiment for 5 hours
AND ensure the average CPU load is less than 20%

Listing 5: BDLT definition: more devices.

more devices will be added to the system at a known point in time
in the future. This knowledge is unknown to the forecaster and
has to be added as a user-defined input. For that, the GIVEN clause
defines the date in the future when the devices will be added. The
number of users to be used is defined as the maximum forecasted
intensity increased by a given percentage, e.g., 30%. In addition,
a custom configuration of the system is used, which is also to be
used at that date. Here we use the number of instances as an ex-
ample. Because there is only a fixed set of test parameters, there
is no WHEN clause. The THEN clause defines running the experiment
for five hours and using the CPU load as pass criterion. The gen-
erated BenchFlow test again has the load goal and a constant load
function. The experiment is executed for five hours and there is a
quality gate on the CPU load metric. The load intensity is deter-
mined by a forecast to the specified date, similar to the configura-
tion exploration test. However, the forecasted intensity is increased
by 30%, according to the statement in the GIVEN clause.

4.4 Discussion
We discuss the research questions based on the BDLT definitions
and our industrial partner’s feedback. Regarding RQ1, we were
able to express all use cases named by our industrial partner us-
ing BDLT. However, we had to make use of the extension mecha-
nism for the custom outage event. Hence, additional case-specific
implementations had to be added. Because there is no silver bullet
for custom events, such custom implementations are inevitable.

Regarding RQ2, the DevOps teammembers would use it instead
of defining load tests manually, as they currently do. In addition,
they noticed that the usage of the natural language makes the test
definitions easily understandable for non-experts such as product
owners. Hence, BDLTs could also be defined by non-experts. Fur-
thermore, a BDLT could be used as an acceptance criterion of a
Scrum user story.

RQ3 targets the benefits and limitations of BDLT. In general, our
industrial partner found that our BDLT approach “has potential”
and they are interested in further development. Especially, the use
of natural language was rated positively, as mentioned before. The
identified limitations of BDLT are the need for extensions for cus-
tom events, such as the outage event, and the current focus of our
approach on HTTP APIs. For this reason, executing the generated
tests in the context of this case study requires additional imple-
mentations, i.e., extend BenchFlow to support the used messaging
protocol. Another limitation arised from applying BDLT to a more
complex load test concern from our previous work [3], which is
an exploration of a non-trivial subset of configuration possibilities.
The BDTL language lacks in a concept of precisely describing such
subsets. As aworkaround, we can specify all configuration possibil-
ities and accept more executed tests. Finally, our industrial partner

Session 10: Performance Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

270

mentioned the requirement to compare test executions, similar to
the continuous quality assurance test.

4.5 Lessons Learned
In our research, we learned several lessons, which we present in
the following.

BDLT is easy to understand. Particularly, in the meetings with
our industrial partner, they understood the BDLT definitions we
presented well. Additionally, they were able to extend the defini-
tions and express load test concerns on their own. Furthermore,
they rated the language to be understandable for non-experts such
as product owners, allowing utilization as acceptance criteria in
Scrum user stories.

BDLThelps finding load test concerns, i.e., we noticed that dis-
cussing about load tests defined in BDLT reveals new concerns. In
our meetings, the precise but well understandable load test defini-
tions in natural language have formed a good basis for discussing
the test’s concern and shaping it. In addition, our industrial partner
came up with new concerns that arose based on BDLT definitions
we already had.

Some specific load test parameters require individual exten-
sions , if they cannot be expressed through standardized language
templates. For instance, the outage, which requires determination
of the number of buffered messages first, is an example where stan-
dard processing is not sufficient.Therefore, we conclude that BDLT
or related languages cannot be universal but need to be extensible.

Natural language entails limitations. Precisely, there can be
constructs such as load test parameter combinations where natu-
ral language lacks in concise descriptions. As an example, it is hard
to concisely describe non-trivial subsets of configuration possibili-
ties. Hence, future works should focus on expressing such complex
constructs and assessing the limitations of the natural language for
load test definition.

5 RELATEDWORK
In this section, we present related work in the research areas more
closely related to the context of the paper.

Behavior-drivenDevelopment. BDD is a functional testing tech-
nique proposed to enable developers to specify the behaviour of
the application under test, abstracting away from the details, and
to use the provided specification to test the software. One of the
most widely accepted and used representative of such techniques
is Cucumber [24], a language and a tool for BDD of functional re-
quirements. BDD techniques have been recognized as a valid and
reliable source of information about how the system works [24].
Some BDD techniques have been proposed in different domains,
as for example a safety verification behaviour-driven language and
execution tool byWang andWagner [23]. To the best of our knowl-
edge, there are no BDD techniques in the context of performance
testing, although some behaviour-driven languages have been pro-
posed as discussed in the next paragraph. In this paper, we propose
BDLT to overcome the mentioned limitation.

Non-functionalQuality Concern Specification Languages.
Different languages for non-functional quality concern specifica-
tion have been proposed in the literature [13]. The category of
languages more closely related to the one presented in this pa-
per is called Controlled Natural Languages (CNL) [12]. The CNL
more closely related to our work is Canopus [4]. Canopus consists
of a behaviour-driven language for performance test specification.
Compared to Canopus, the language proposed in this paper is more
rich, as for example it also enables the users to specify context in-
formation useful to automatically derive workload specifications.

Declarative Performance Engineering aims at providingmeth-
ods and tools abstracting away the complexity of specifying and
executing high quality performance evaluations, by providing ab-
stractions and automation enabling performance engineering ac-
tivity specification using declarative languages. The most promi-
nent works in the area are byWalter et al. [22] and Ferme et al. [9].
Walter et al. introduced the term Declarative Performance Engineer-
ing, as an approach that “envisions to reduce the current abstrac-
tion gap between the level on which performance-relevant con-
cerns are formulated and the level on which performance evalua-
tions are actually executed”. Ferme et al. proposed a tool named
BenchFlow, able to automatically execute performance tests. Al-
though the execution is automated, the definition of the test speci-
fication is still deemed to the users, and in particular the workload
has to be manually specified. The approach we propose in this pa-
per shifts away this need from the users and enables the users to
automatically obtain workload specifications given a context of in-
terest.

Workload Definition and Extraction. Different approaches for
workload characterization have been proposed [7, 14]. These ap-
proaches extract differentworkloadmodels from recorded requests,
e.g., based on Markov chains [14, 21], extended finite state ma-
chines (EFSM) [20], or stochastic form-oriented models [6]. The
main limitation of these works is the need for directly dealing
with recorded requests and complex workload models. Addition-
ally, not always re-executing past workload is sufficient. Different
approaches, such as the one by Herbst et al. [10], as well as the
mentioned Prophet tool, can be used for workload intensity fore-
casting. However, the proposed approaches are mainly used for ca-
pacity planning and have not been integrated into load testing ap-
proaches, yet. In this work, we propose an approach that integrates
workload characterization and forecasting as a part of the test ex-
ecution process, encapsulated by natural-language-based test defi-
nitions.

6 CONCLUSION AND FUTURE WORK
Despite its recognition, load testing is rarely used in practice, due
to the high amount of expertise required to specify, implement, and
execute load tests. In this paper, we address this issue by propos-
ing an approach to Behavior-driven Load Testing (BDLT), allowing
load test specification in natural language. By relying on collected
contextual knowledge such as workload-influencing events (e.g., a
marketing campaign), workload details to be used in the load test
are abstracted away. Furthermore, BDLT allows to easily define
complex concerns such as configuration parameter explorations.

Session 10: Performance Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

271

We utilize our existing approaches [9, 17] to generate load tests
based on BDLT definitions and collected run-time data.

In an industrial case study, we show the general applicability
of BDLT. Despite minor limitations of natural language hindering
complex statements, we were able to precisely express four differ-
ent load test concerns in BDLT. The BDLT definitions were easily
understood, also by non-experts, and foster collaboration. How-
ever, we identified the need for custom extensions of the language
because of certain events that cannot be handled generally.

For future work, we propose focusing on extending the expres-
siveness of the BDLT language, because we identified limitations
regarding natural language descriptions of non-trivial parameter
combinations. Furthermore, more studies regarding its applicabil-
ity in different domains are required. Also, as we identified Scrum
acceptance criteria as a use case of BDLT, further use cases are
of interest. Finally, we are planning to integrate more approaches
to automated load test extraction and execution into BLDT, such
as more extensive context-based test generation and microservice-
based test modularization, and also natural language reporting of
the test results tailored to stated performance concerns [16].

ACKNOWLEDGEMENTS
This work has been supported by the German Federal Ministry
of Education and Research (grant no. 01IS17010, ContinuITy), the
German Research Foundation (HO 5721/1-1, DECLARE), and by
the Swiss National Science Foundation (project no. 178653). The
authors would like to thank the industrial partner for participat-
ing in the case study.

REFERENCES
[1] 1996. ISO/IEC Information technology - Syntacticmetalanguage - Extended BNF.

ISO/IEC 14977:1996(E) (1996).
[2] Varsha Apte, T V S Viswanath, Devidas Gawali, Akhilesh Kommireddy, and An-

shul Gupta. 2017. AutoPerf: Automated load testing and resource usage profiling
of multi-tier internet applications. In Proc. ICPE 2017. 115–126.

[3] Alberto Avritzer, Vincenzo Ferme, Andrea Janes, Barbara Russo, Henning Schulz,
and André van Hoorn. 2018. A Quantitative Approach for the Assessment of
Microservice ArchitectureDeploymentAlternatives byAutomated Performance
Testing. In Proc. ECSA 2018. 159–174.

[4] Maicon Bernardino, Avelino F Zorzo, and Elder M Rodrigues. 2014. Canopus:
A Domain-Specific Language for Modeling Performance Testing. In Proc. ICSEA
2014. 157–167.

[5] Cor-Paul Bezemer, Simon Eismann, Vincenzo Ferme, Johannes Grohmann,
Robert Heinrich, Pooyan Jamshidi, Weiyi Shang, André van Hoorn, Monica
Villavicencio, Jürgen Walter, and Felix Willnecker. 2018. How is Performance
Addressed in DevOps? A Survey on Industrial Practices. In Proc. ICPE 2019.

[6] Yuhong Cai, John C. Grundy, and John G. Hosking. 2007. Synthesizing Client
Load Models for Performance Engineering via Web Crawling. In Proc. ASE 2007.
353–362.

[7] Maria Carla Calzarossa, Luisa Massari, and Daniele Tessera. 2016. Workload
Characterization: A Survey Revisited. Comput. Surveys 48, 3 (2016), 48:1–48:43.

[8] Vincenzo Ferme and Cesare Pautasso. 2017. Towards Holistic Continuous Soft-
ware Performance Assessment. In Proc. QUDOS@ICPE 2017. 159–164.

[9] Vincenzo Ferme and Cesare Pautasso. 2018. A Declarative Approach for Perfor-
mance Tests Execution in Continuous Software Development Environments. In
Proc. ICPE 2018. 261–272.

[10] Nikolas Roman Herbst, Nikolaus Huber, Samuel Kounev, and Erich Amrehn.
2013. Self-Adaptive Workload Classification and Forecasting for Proactive Re-
source Provisioning. In Proc. ICPE 2013. 187–198.

[11] Zhen Ming Jiang and Ahmed E Hassan. 2015. A Survey on Load Testing of
Large-Scale Software Systems. IEEE Trans. Soft. Eng. 41, 11 (2015), 1091–1118.

[12] Tobias Kuhn. 2014. A survey and classification of controlled natural languages.
Computational Linguistics 40, 1 (2014), 121–170.

[13] Abderrahman Matoussi and Régine Laleau. 2008. A Survey of Non-Functional
Requirements in Software Development Process. Research Report TR-LACL-2008-
7. LACL.

[14] Daniel A. Menascé and Virgilio A. F. Almeida. 2002. Capacity Planning for Web
Services: Metrics, Models and Methods (1st ed.). Prentice Hall, Upper Saddle River,
NJ, USA.

[15] Dan North. 2006. Introducing BDD. https://dannorth.net/introducing-bdd/.
(2006).

[16] Dušan Okanović, André van Hoorn, Christoph Zorn, Fabian Beck, Vincenzo
Ferme, and Jürgen Walter. 2019. Concern-driven Reporting of Software Per-
formance Analysis Results. In Proc. ICPE 2019.

[17] Henning Schulz, Tobias Angerstein, and André van Hoorn. 2018. Towards Au-
tomating Representative Load Testing in Continuous Software Engineering. In
Proc. ICPE 2018. 123–126.

[18] Henning Schulz, Dušan Okanović, André van Hoorn, Vincenzo Ferme, and
Cesare Pautasso. 2019. Behavior-driven Load Testing Using Contextual
Knowledge—Approach and Experiences. (Feb. 2019). https://doi.org/10.5281/
zenodo.2558279

[19] Ken Schwaber and Mike Beedle. 2001. Agile Software Development with Scrum.
Prentice Hall PTR.

[20] Mahnaz Shams, Diwakar Krishnamurthy, and Behrouz Homayoun Far. 2006. A
Model-Based Approach for Testing the Performance of Web Applications. In
Proc. SOQUA 2006. 54–61.

[21] Christian Vögele, André van Hoorn, Eike Schulz, Wilhelm Hasselbring, and Hel-
mut Krcmar. 2018. WESSBAS: Extraction of Probabilistic Workload Specifica-
tions for Load Testing and Performance Prediction – a Model-Driven Approach
for Session-Based Application Systems. Software and System Modeling 17, 2
(2018), 443–477.

[22] Jürgen Walter, André van Hoorn, Heiko Koziolek, Dusan Okanovic, and Samuel
Kounev. 2016. Asking ”What”?, Automating the ”How”? - The Vision of Declar-
ative Performance Engineering. In Proc. ICPE 2016. 91–94.

[23] Yang Wang and Stefan Wagner. 2018. Combining STPA and BDD for Safety
Analysis and Verification in Agile Development: A Controlled Experiment. In
Proc. XP 2018. 37–53.

[24] Matt Wynne, Aslak Hellesoy, and Steve Tooke. 2017. The Cucumber Book:
Behaviour-Driven Development for Testers and Developers. O’Reilly UK Ltd.

Session 10: Performance Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

272

https://dannorth.net/introducing-bdd/
https://doi.org/10.5281/zenodo.2558279
https://doi.org/10.5281/zenodo.2558279

	Abstract
	1 Introduction
	2 Background
	3 Our Approach
	3.1 Overview of the Approach
	3.2 Behavior-driven Load Test Language
	3.3 Transformation to Declarative Load Tests

	4 Industrial Case Study
	4.1 Methodology
	4.2 Input Data
	4.3 Experiments and Results
	4.4 Discussion
	4.5 Lessons Learned

	5 Related Work
	6 Conclusion and Future Work
	References

