
Accelerating Database Workloads with DM-WriteCache and
Persistent Memory

Rajesh Tadakamadla

Hewlett Packard Enterprise
rajesh.tadakamadla@hpe.com

Mikulas Patocka
Redhat

mpatocka@redhat.com

Toshi Kani
Hewlett Packard Enterprise

toshi.kani@hpe.com

Scott J Norton
Hewlett Packard Enterprise

scott.norton@hpe.com

ABSTRACT
Businesses today need systems that provide faster access to
critical and frequently used data. Digitization has led to a rapid
explosion of this business data, and thereby an increase in the
database footprint. In-memory computing is one possible
solution to meet the performance needs of such large databases,
but the rate of data growth far exceeds the amount of memory
that can hold the data. The computer industry is striving to
remain on the cutting edge of technologies that accelerate
performance, guard against data loss, and minimize downtime.
The evolution towards a memory-centric architecture is driving
development of newer memory technologies such as Persistent
Memory (aka Storage Class Memory or Non-Volatile Memory
[1]), as an answer to these pressing needs. In this paper, we
present the use cases of storage class memory (or persistent
memory) as a write-back cache to accelerate commit-sensitive
online transaction processing (OLTP) database workloads. We
provide an overview of Persistent Memory, a new technology
that offers current generation of high-performance solutions a
low latency-storage option that is byte-addressable. We also
introduce the Linux kernel’s new feature "DM-WriteCache", a
write-back cache decades the computing industry has been
researching ways to reduce the performance gap implemented
on top of persistent memory solutions. And finally we present
data from our tests that demonstrate how this technology
adoption can enable existing OLTP applications to scale their
performance.

CCS CONCEPTS
• Information systems Transaction logging • Information
systems Database performance evaluation • Hardware
Non-volatile memory

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
ICPE '19, April 7–11, 2019, Mumbai, India
© 2019 Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-6239-9/19/04…$15.00
https://doi.org/10.1145/3297663.3309669

KEYWORDS
Persistent Memory; Storage Class Memory; Device Mapper;
Write-back Cache; Write Latency Improvement; DM-
WriteCache; Online Transaction Processing; Database

ACM Reference format:
Rajesh Tadakamadla, Mikulas Patocka, Toshi Kani and Scott Norton.
2019. Accelerating Database Workloads with DM-WriteCache and
Persistent Memory. In Proceedings of ACM/SPEC International Conference
on Performance Engineering (ICPE’19), April 7–11, 2019, Mumbai, India.
ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3297663.3309669

1 INTRODUCTION

1.1 Persistent Memory and its types
Today’s businesses demand real-time data to realize faster
business outcomes. These businesses need systems that offer
uncompromising performance that makes data available as
quickly and reliably as possible. For between the low-latency
processor and higher-(longer) latency storage devices. The
progression of storage technology has thus evolved both in how
data is accessed and how data is stored (magnetic to solid-state
media). A recent trend has emerged of moving storage
functionality to the memory bus [2], thus taking advantage of
memory interconnects’ low latency and fast performance.
Placing storage devices on the memory bus offers something
more: the prospect of byte-addressable storage, a new semantic
that cuts through cumbersome software layers, and offers sub-
microsecond device latencies. Multiple OEM vendors offer
solutions in the space that are either performance optimized or
capacity optimized or both.

 Most of the performance optimized offerings fall under the
NVDIMM-N category that deliver DRAM level performance but
are in limited capacities. Intel Optane DC Persistent Memory [5]
offers significantly higher capacities, but at lower than DRAM
level performance. One unique offering that is optimized for
both performance and capacity is HPE’s Scalable Persistent
Memory [6]. Each of these technologies provide native
persistence or added persistence through platform enablement to
regions of memory from DIMMs.

 NVDIMM-N devices get their persistence by backing up the

content onto NAND flash memory located on the DIMM
module during power loss by utilizing battery power. When
a machine is powered back up, the firmware restores the

Session 10: Performance Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

255

backed-up contents back onto the DIMM module before
resuming/beginning the normal system boot process. [3][4]

 Intel’s Optane DC Persistent Memory devices employs a
new technology termed 3D XPoint (pronounced 3D
CrossPoint) in the DIMM form factor. This technology
resembles NAND flash in terms of behavioral characteristics
and offers native data persistence without additional
hardware with a capability to scale to double digit terabyte
capacities on a single server.

 HPE’s Scalable Persistent Memory solution relies on server
platform enablement to guarantee data persistence on
memory regions by relying on external/internal battery
backup and a set of NVMe drives as backup targets. This
enables the solution to offer Persistent Memory that is as
performant as DRAM and can also scale to offer multi-
terabyte capacities.

1. 2 DM-WriteCache
It’s an open source implementation by Mikulas Patocka of a
write-back cache at the Device Mapper layer of Linux with the
cache residing on low latency storage media. In its current
implementation the feature supports hosting the cache on byte-
addressable Persistent Memory or block-addressable devices like
NVMe or SSD. DM-WriteCache attempts to cache only writes
and relies on the application’s caching or kernel’s page cache for
read caching. [7]

Figure 1: High level working of a DM-WriteCache device.

 All read and write requests to a DM-WriteCache’ed device go
through look-up in the cache before going to backing store. For
applications that rely on the kernel’s page cache, a major page
fault will cause the data to be read from the backing store and on
any subsequent sync/fsync events, the data is written to the
cache and acknowledged. Similarly, in case of applications or
databases that manage their own memory and perform Direct
IO, all the writes are acknowledged from the cache while reads
come from the backing store after a cache lookup.

 In the following sections, we describe the usage of a DM-
WriteCache device constructed using NVDIMM-N devices for
caching and SAS SSD devices for the underlying storage with
database workloads. We use a commit-sensitive TPC-C-like
OLTP workload against an Oracle database to demonstrate the
performance gains through the use of these write-back-cached
devices. We evaluated the use of cached devices to host both
database REDO logs and DATA files, but chose to focus REDO
on the configuration where performance gains are significant.

 This paper is organized in the following manner: Section (2)
describes the test environment and configuration. Section (3)
lists our performance observations and presents performance
benefits of the cached configuration. Section (4) walks you
through the statistics and discusses the factors and cached device
inner workings that influence the performance gain. In Section
(5), we discuss results from workload runs against the cached
configuration with various environment modifications. Memory
can be moved across the persistent and volatile pools as
supported by HPE Scalable Persistent Memory or by simply
swapping out NVDIMM-Ns in lieu of regular DIMMs. For such
cases, we present our performance observations in Section (6)
when a cached device is used for hosting database data files with
an inadequately-sized Shared Global Area (SGA). Section (7)
provides a conclusion on the effort.

2. TEST ENVIRONMENT

2.1 HARDWARE
For the server under test (SUT) running the database instance,
we used a 2-socket HPE ProLiant DL380 Gen9 running Intel
Xeon E5-2699 v4 processors each having 22 cores. Table 1
describes the core server configuration in detail while Figure 2
depicts the layout.

Table 1: Server configuration
Server HPE ProLiant DL380 Gen9
CPUs 2 x Intel Xeon E5-2699 v4
Memory 16 x 32GB RDIMMs
Persistent Memory 8 x HPE 8G NVDIMM-N
Physical core
count

44

Logical core count 88
RAM per CPU 256GB
Network 4 x 1Gbps LOM ports
Storage Controller Smart Array P440ar Controller
Drives 2 x 800GB MU SAS SSD for OS

2 x 800GB MU SAS SSD for
REDO
4 x 800GB MU SAS SSD for Data

RAID
Configuration

1 x RAID1 for Operating System
2 x RAID0 for REDO
1 x RAID0 for DATA (4 disks)

Session 10: Performance Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

256

Figure 2: Overview of the hardware

2.2 OPERATING SYSTEM
The system under test (SUT) was running Red Hat Enterprise
Linux 7.4 with a custom 4.14 kernel that was built to support
Persistent Memory, DAX (direct access for files that removes
unnecessary page-cache copying) [6] and DM-WriteCache. The
DM-WriteCache feature was backported to multiple kernel
versions for this effort.

 We evaluated the performance of the database when REDO
and DATA files were hosted on both the XFS file system and
Oracle’s ASM (Automatic Storage Management) [7], but chose to
limit the content of the paper to XFS configuration.

2.3 DATABASE
A single instance Oracle 12cR2 non-container database was used
for the evaluation. The COMMIT configuration of the database
was left unaltered with following parameter settings:

COMMIT_LOGGING = IMMEDIATE
COMMIT_WAIT = WAIT

For Oracle 12cR2, the default log writer setting is ADAPTIVE
mode.

_USE_SINGLE_LOG_WRITER = ADAPTIVE

By default, the database tends to use parallel log_writer slaves to
write to the REDO logs and based on sampling count and
intervals defined by “_adaptive_*_log_writer_*” parameters, the
database switches to single log_writer master during a
benchmark run. We chose to test with this default behavior as it
demonstrated additional capabilities of DM-WriteCache feature.

 The database was configured to have 3 x 100GB 4K REDO log
groups with single log members for most of the evaluation runs.
However, to meet the minimum durability requirements, we
upgraded the configuration to support 3 x REDO log groups with

2 x log members where each log member was hosted on two
separate devices to assess the performance impact, if any, due to
REDO multiplexing.

2.4 WORKLOAD
We used HammerDB v2.23 to simulate TPC-C like OLTP
workload against the SUT. We employed two distinct workloads
for evaluation:

(a) REDO log IO intensive workload: For this type, we

configured an SGA that is significantly larger than the data
disk footprint. By the end of ramp-up phases of a
benchmark run, we have data cache at 100%. During the
timed benchmark interval, only IO is to the REDO logs.

(b) DATA file IO intensive workload: We sized the SGA to be
smaller than the data disk footprint. During a benchmark
run against this configuration, we constantly see data
blocks being read into the buffer and modified blocks being
written back to the disk due to insufficient buffers in the
cache.

 The database was seeded with data for 3200 warehouses and
supported HASH clusters. For the benchmark runs, a user count
of 112 was used to generate the workload. The users were
configured not to have any think-time to be able to generate
significant stress on the SUT.

 To have comparable data, we used the same SSD device in
both cached and non-cached configurations. Statistics are
compared from two back-to-back runs across both
configurations to keep the data set size delta to the minimum.
Each run had a ramp-up phase of 2 minutes and a timed
benchmark run of 5 minutes. An Automatic Workload
Repository (AWR) snapshot is triggered before and after the
timed benchmark run using which AWR reports are generated.

2.5 CACHE DEVICE CONSTRUCTION
For most of the initial evaluation, we used three REDO log
groups with single member each and all of them hosted on a
single SSD device. For caching, we used an 8GB x 4 interleaved
32GB device from the first socket. Cached device was
constructed as follow:

dmsetup create dm_log --table "0 1562758832 writecache p
/dev/sdb /dev/pmem0 4096 4 high_watermark 10 low_watermark
5“

 The second value within the quotation marks is the block size
of the backend device or in other words the target for caching.
The fourth value describes whether the caching tier would be a
persistent memory device “p” or a SSD/NVMe device “s”. One
key advantage of Persistent Memory usage is that the feature
capitalizes on DAX for improved performance. The fifth and
sixth arguments specify the backend device to be cached and the
device used for cache respectively. Seventh argument defines the
block size of the cache entries. DM-WriteCache supports a
number of optional parameters that control how the cache
behaves, so the eighth parameter from the command represents
the count of optional arguments passed to the command.

Session 10: Performance Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

257

 The “high_watermark” option defines the percentage of the
used cached entries that would trigger flushing or de-staging of
cached data to its backing store. Once the flushing is triggered,
the “low_watermark” option defines the percentage of used
cached entries at which the flushing of data has to stop.
However, the development version of the feature that we used
did not have the “low_watermark” threshold implemented and
this value was silently ignored.

2.6 METRICS
We used one client-side metric and one database-side metric to
gauge the overall performance of each configuration.
Transactions per Minute (TPM) is the primary client-side metric
that reports average transaction rate per minute for the timed
benchmark run.

 From the database standpoint, for REDO-intensive workloads,
we looked at average wait time per “log file sync” wait event as
reported by the Automatic Workload Repository (AWR) report.
A “log file sync” event is triggered when a user session issues a
commit (or a rollback) and concludes with a signal/post on
successful flush of log buffer entry to redo log file back to the
user session. Reported values are in microseconds or
milliseconds. For the DATA-file-intensive workloads, the second
metric that we used is the average wait per “free buffer waits”
event. This event gets triggered when a session needs to load a
block of data from the disk or needs to clone a read-consistent
buffer, but is unable to find a free buffer. The wait event is timed
until some of the dirty buffers are flushed to the disk and free
buffers are made available.

3. PERFORMNCE OBSERVTIONS
All observations discussed in this section are from performance
runs with a 4.14 kernel configuration where we have observed
optimistic results when compared to other configurations.
Comparing the client-side TPM metric across cached and non-
cached configurations, we see a 22% improvement with cached
configuration.

Figure 3: TPM Throughput comparison between cached
and non-cached configuration

 Comparing the database-side of the metrics, we see an
increase in count of “log file sync” proportionate to the overall
increase in TPM. We see the average wait per event drop to 390
µs from 893 µs which is a 40+% drop.

Figure 4: Wait counts and average wait value comparison.

 To validate that both runs against cached and non-cached
configurations were similar, we took a look at the top
foreground waits listed in AWR reports.

Tables 2 and 3: Top foreground wait event comparison
between non-cached (top table) and cached (bottom table)
configuration.

Event Waits

Total
Wait
Time
(sec)

Avg
Wait

%
DB

time

Wait
Class

DB CPU

 13.7K 49.1

log file
sync

12,728,300 11.4K 893.29us 40.6 Commit

library cache:
 mutex X

329,764 1106.4 3.36ms 4.0 Concurrency

db file sequential
read

1,081,898 324.2 299.64us 1.2 User I/O

db file scattered
read

774,201 275.2 355.46us 1.0 User I/O

latch: In memory
undo latch

498,940 84 168.28us .3 Concurrency

cursor:
mutex X

7,189 48.3 6.72ms .2 Concurrency

buffer busy
waits

152,875 33.4 218.36us .1 Concurrency

PGA memory
operation

1,051,070 11.5 10.91us .0 Other

SQL*Net
message to client

9,789,645 7.6 779.99ns .0 Network

1.00x

1.22x 1.21x

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

XFS - Non Cached XFS - Cached ASM - Cached

Tr
an

sa
ct

io
ns

 p
er

 M
in

ut
e

(T
PM

)

T P M T H R O U G H P U T
C O M P A R I S O N

12,728,300

15,600,989893.29

390.76

0

200

400

600

800

1000

0
2,000,000
4,000,000
6,000,000
8,000,000

10,000,000
12,000,000
14,000,000
16,000,000
18,000,000

XFS - Non
Cached

XFS - Cached

La
te

nc
y

in
 µ

s

Co
un

t o
f W

ai
t E

ve
nt

s

W A I T E V E N T S & L A T E N C Y
S T A T S C O M P A R I S O N

Total Waits
(log file sync)

Avg Wait in µs
 (log file sync)

Session 10: Performance Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

258

Event Waits

Total
Wait
Time
(sec)

Avg
Wait

%
DB

time

Wait
Class

DB CPU

 16.6K 61.3

log file
sync

15,600,989 6096.2 390.76us 22.5 Commit

library cache:
mutex X

481,126 2192.7 4.56ms 8.1 Concurrency

db file
sequential read

1,153,516 357.6 309.99us 1.3 User I/O

db file scattered
read

803,353 306.4 381.38us 1.1 User I/O

latch: In
memory undo
latch

683,051 112.6 164.91us .4 Concurrency

cursor:
mutex X

9,245 68.2 7.38ms .3 Concurrency

buffer busy
waits

222,435 61.8 277.75us .2 Concurrency

PGA memory
operation

1,117,515 12.1 10.83us .0 Other

latch: undo
global data

5,638 9.1 1.62ms .0 Other

 Wait events from AWR reports clearly show that the only
significant wait event reported is “log file sync”. Again, DB_CPU
might not indicate a productive CPU utilization, but tuning to
improve the CPU efficiency would benefit both configurations.

 We will discuss a few more performance observations with
configuration changes in subsequent sections where the TPM
throughput gains take an impact.

 We see higher CPU utilization rates with runs against the
cached configuration where we achieve improved TPM. On an
average, we see about 10% higher CPU utilization rates in
cached-configurations compared to the non-cached
configurations.
4. IO & CPU STATISTICS ANALYSIS
In this section, we dive into IO & CPU statistics gathered from
both workload benchmark runs for which we have discussed the
performance numbers in the previous section. This helps us
understand the inner working of DM-WriteCache feature which
would further help us in identifying other workloads where the
feature can provide a performance benefit.

 To begin, we examine the CPU utilization rates recorded from
both runs using the following two graphs:

We can make two distinct observations. (1) There is roughly 10%
higher CPU utilization in the XFS configuration like we noted
earlier, (2) for the first one third of the benchmark run on non-
cached configuration, there is an anomaly where CPU is being
underutilized.

 Explanation of the anomaly lies in the REDO log IO pattern
generated by the database instance’s log writer master process
and its slaves. The following two graphs were generated based

on “pidstat –d” stats gathered from log writer master and its
slave processes:

Figures 5 and 6: Comparison of CPU utilization rates
between cached and non-cached configuration.

 In an earlier section describing database configuration, we
discussed the log writer configuration to be in ADAPTIVE mode
which is the default. In both the benchmark runs, for the first
1/3rd of the execution period, we see that log writer slaves are
actively flushing the log buffer to the REDO logs. For the
remaining period, we see the database instance switch to a single
process where the master does the flushing while slaves go
dormant.

 We can clearly see that multi-process sequential IO to a SSD
device is not as efficient as a single process doing the IO. On the
contrary, with the cached device, we see that there is no
variation in throughput between single and multi-process
environments. Beyond the current workload, we could benefit by
using DM-WriteCache where multiple processes or threads are
issuing IOs to a single SSD/HDD device.

0
10
20
30
40
50
60
70

7:
29

:2
3

7:
29

:3
8

7:
29

:5
3

7:
30

:0
8

7:
30

:2
3

7:
30

:3
8

7:
30

:5
3

7:
31

:0
8

7:
31

:2
3

7:
31

:3
8

7:
31

:5
3

7:
32

:0
8

7:
32

:2
3

7:
32

:3
8

7:
32

:5
3

7:
33

:0
8

7:
33

:2
3

7:
33

:3
8

7:
33

:5
3

7:
34

:0
8

7:
34

:2
3

CPU Utilization Chart
XFS Non-Cached

%user %nice %system %iowait

0
10
20
30
40
50
60
70

7:
43

:3
5

7:
43

:5
0

7:
44

:0
5

7:
44

:2
0

7:
44

:3
5

7:
44

:5
0

7:
45

:0
5

7:
45

:2
0

7:
45

:3
5

7:
45

:5
0

7:
46

:0
5

7:
46

:2
0

7:
46

:3
5

7:
46

:5
0

7:
47

:0
5

7:
47

:2
0

7:
47

:3
5

7:
47

:5
0

7:
48

:0
5

7:
48

:2
0

7:
48

:3
5

CPU Utilization Chart
XFS Cached

%user %nice %system %iowait

Session 10: Performance Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

259

Figures 7 and 8: IO rates to REDO logs between cached and
non-cached configuration.

 Now we look at the counts of write requests that get merged
while in the IO queue (wrqm/s metric from “iostat –x” output)
from both configurations:

We see that non-cached configuration heavily relies on the
Linux IO stack’s ability to identify and merge IO requests to
achieve efficiency. While the single-process log write does it
more efficiently (by reducing the number of IO requests issued to
the backing SSD device) we see multiple-log-writer slaves suffer.

 For the cached configuration, we see a zero to negligible
count of IO requests being merged while in queue. This is true
for both the cached device and then subsequently to the backend
device when the data is flushed. This clearly shows that DM-
WriteCache is much better at identifying IOs that can be merged
and reducing the count of IOs issued to the backend device.

Figures 9 and 10: Count of write requests that get merged
while in queue for cached and non-cached configuration.

 To substantiate the observation, we look at the average size of
IO requests from both configurations. Average request size to
the SSD device should be significantly higher in case of cached
configuration as compared to that of non-cached configuration.

0

100000

200000

300000

400000

500000

600000

7:
29

:2
4

7:
29

:4
0

7:
29

:5
6

7:
30

:1
2

7:
30

:2
8

7:
30

:4
4

7:
31

:0
0

7:
31

:1
6

7:
31

:3
2

7:
31

:4
8

7:
32

:0
4

7:
32

:2
0

7:
32

:3
6

7:
32

:5
2

7:
33

:0
8

7:
33

:2
4

7:
33

:4
0

7:
33

:5
6

7:
34

:1
2

IO Generated by Log Writer and its
Slaves (kB/s) - XFS Non-Cached

Master Slave 1 Slave 2

Slave 3 Slave 4 Total IO

0

100000

200000

300000

400000

500000

600000

7:
43

:3
7

7:
43

:5
3

7:
44

:0
9

7:
44

:2
5

7:
44

:4
1

7:
44

:5
7

7:
45

:1
3

7:
45

:2
9

7:
45

:4
5

7:
46

:0
1

7:
46

:1
7

7:
46

:3
3

7:
46

:4
9

7:
47

:0
5

7:
47

:2
1

7:
47

:3
7

7:
47

:5
3

7:
48

:0
9

7:
48

:2
5

IO Generated by Log Writer and its
Slaves (kB/s) - XFS Cached

Master Slave 1 Slave 2

Slave 3 Slave 4 Total IO

0

5000

10000

15000

20000

25000

7:
29

:2
3

7:
29

:3
9

7:
29

:5
5

7:
30

:1
1

7:
30

:2
7

7:
30

:4
3

7:
30

:5
9

7:
31

:1
5

7:
31

:3
1

7:
31

:4
7

7:
32

:0
3

7:
32

:1
9

7:
32

:3
5

7:
32

:5
1

7:
33

:0
7

7:
33

:2
3

7:
33

:3
9

7:
33

:5
5

7:
34

:1
1

XFS - Non Cached (wrqm/s)

0

20

40

60

80

100

120

140

7:
43

:3
5

7:
43

:5
0

7:
44

:0
5

7:
44

:2
0

7:
44

:3
5

7:
44

:5
0

7:
45

:0
5

7:
45

:2
0

7:
45

:3
5

7:
45

:5
0

7:
46

:0
5

7:
46

:2
0

7:
46

:3
5

7:
46

:5
0

7:
47

:0
5

7:
47

:2
0

7:
47

:3
5

7:
47

:5
0

7:
48

:0
5

7:
48

:2
0

7:
48

:3
5

XFS - Cached (wrqm/s)

sdb dm-0

Session 10: Performance Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

260

Figures 11 and 12: Average IO request size comparison
between cached and non-cached configuration.

 The graphs above clearly show that the average request size
to the SSD device is about 5x more sectors with cached
configuration as compared to that of a non-cached one. While
we see an average of around 100 sectors per write request in
non-cached configuration, we see 500 sectors per write request
in the cached one.

 Looking at the average-writes/sec metric from the cached
configuration shows small bursts of IOs received by the cache
getting converted to a few large IOs to the backing SSD device
helps us conclude how the efficiency is realized.

Around 100k-120k of IOs with small request sizes received by
the cache are fused into a few large IOs with counts in the range
of 1.6k-1.8k before being flushed to the backend SSD device.

Figure 13: Average write requests per second to the cached
device and its backing SSD device.

 Before we conclude this section, let’s take a look at the cache
usage statistics. We can query the cache usage statistics with
“dmsetup status” command as follows:

dmsetup status /dev/mapper/dm_log
0 1562758832 writecache 0 8224895 7402836 0

The last three values are of interest in the above command’s
output. The last value represents the number of IO jobs in
progress that are flushing data to the backend device. The
second to last value represents available free cache entries and
third from the last value represents the total count of cache
entries in the configuration. Since we did not have the
low_watermark threshold implemented in the feature yet, we see
the cache utilization hover around the 10% mark:

Figure 14: Count of used cache entries.

 At its peak consumption, we see a 10.05% cache utilization
which is a mere 0.05% above the high_watermark threshold. As
for the count of active jobs trying to flush the data to backend,
the pattern was as follows:

0

20

40

60

80

100

120

7:
29

:2
3

7:
29

:4
2

7:
30

:0
1

7:
30

:2
0

7:
30

:3
9

7:
30

:5
8

7:
31

:1
7

7:
31

:3
6

7:
31

:5
5

7:
32

:1
4

7:
32

:3
3

7:
32

:5
2

7:
33

:1
1

7:
33

:3
0

7:
33

:4
9

7:
34

:0
8

XFS - Non Cached
(Avg. Req. Size in sectors)

avgrq-sz

0

20

40

60

80

100

120

0

100

200

300

400

500

600

7:
43

:3
5

7:
43

:5
6

7:
44

:1
7

7:
44

:3
8

7:
44

:5
9

7:
45

:2
0

7:
45

:4
1

7:
46

:0
2

7:
46

:2
3

7:
46

:4
4

7:
47

:0
5

7:
47

:2
6

7:
47

:4
7

7:
48

:0
8

7:
48

:2
9

XFS – Cached
(Avg. Req. Size in sectors)

sdb dm-0

0

20000

40000

60000

80000

100000

120000

140000

0

1000

2000

3000

4000

5000

6000

7000

7:
43

:3
5

7:
43

:5
2

7:
44

:0
9

7:
44

:2
6

7:
44

:4
3

7:
45

:0
0

7:
45

:1
7

7:
45

:3
4

7:
45

:5
1

7:
46

:0
8

7:
46

:2
5

7:
46

:4
2

7:
46

:5
9

7:
47

:1
6

7:
47

:3
3

7:
47

:5
0

7:
48

:0
7

7:
48

:2
4

XFS - Cached (writes/sec)

sdb dm-0

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000
8000000

7:
43

:3
5

7:
43

:5
1

7:
44

:0
7

7:
44

:2
3

7:
44

:3
9

7:
44

:5
5

7:
45

:1
1

7:
45

:2
7

7:
45

:4
3

7:
45

:5
9

7:
46

:1
5

7:
46

:3
1

7:
46

:4
7

7:
47

:0
3

7:
47

:1
9

7:
47

:3
5

7:
47

:5
1

7:
48

:0
7

7:
48

:2
3

Used Entries

Session 10: Performance Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

261

Figure 15: Count of jobs that are actively flushing cached
data to backing SSD device.

 The average REDO IO throughput generated against cached
configuration is around 450MB/sec and as per the product
specifications of the backend SSD device, it is capable of
sustaining 1075MB/sec. With abundant free cache entries and
the backend devices ability to sustain higher throughputs, the
configuration is capable of sustaining workloads at a much
larger scale than described in this paper.

5. OTHER CONFIGURATIONS
We evaluated an enhanced version of the DM-WriteCache
feature to validate non-performance aspects to gauge how
production-capable the feature was. The key differences to note
are, (1) a low_watermark threshold implementation, (2) a switch
to a 4.12 kernel release which is now mainstream with some of
the commercial Linux distributions, (3) locking onto single
process log_write configuration as it performs best in non-
cached configuration, and (4) Multiplexing of REDO logs to meet
durability requirements. We will go over observations related to
these in subsequent subsections.

5.1 DURABILITY
High availability of REDO logs is one of the key factors to meet
the durability requirements of a database deployment. We could
either use a RAID device to host REDO logs or use Oracle’s
REDO log multiplexing feature to meet these availability
requirements.

 With current generation Persistent Memory offerings, there is
no hardware/firmware level support for implementing RAID
levels. Software-based RAID solutions like MD or LVM can be
used, but these solutions lack support for DAX which in turn is a
requirement for DM-WriteCache feature to be performant with
Persistent Memory. This leaves REDO log multiplexing as the
only option to meet the availability requirement.

 We evaluated a configuration where each of the three REDO
groups had two log members each. Each of these log members
were hosted on two different cached devices. Persistent Memory
devices used to cache the SSDs were from two DIMM slots that
belonged to two different CPU sockets. Both these Persistent
Memory devices were non-interleaved (i.e. each NVDIMM-N is

presented as one Persistent Memory device to the OS) and were
of 8GB in capacity. The cached devices were created as follows:

dmsetup create logvol_1 --table "0 1562758832 writecache p
/dev/sdb /dev/pmem0 4096 4 high_watermark 6 low_watermark
3"
dmsetup create logvol_2 --table "0 1562758832 writecache p
/dev/sdf /dev/pmem4 4096 4 high_watermark 6 low_watermark
3"

 Key things to note in the above are the drop from a 32GB
cache to 8GB and the changed high/low watermark thresholds.

 From the benchmark runs, we see similar deltas with average
wait per “log file sync” event. For this iteration of workload runs,
the database was configured to use single log_writer process, so
we see non-cached configuration perform much better than the
previous iteration. Across multiple runs, we noted a difference of
14% with TPM metric between both configurations. With a run-
to-run variance of 2-3%, TPM scores from previously discussed
configuration and current configuration for cached device
workload runs are nearly equal. These results clearly prove that
REDO multiplexing to meet availability requirements does not
have a significant impact on performance.

5.2 LOW_WATERMARK THRESHOLD
With low_watermark implemented and configured, we see that
used cache entries drop to the set 3% mark once it hits the
high_watermark threshold set at 6%.

Figure 16: Pattern of used cache entries when both high
and low watermarks are configured.

 With larger chunks of data to be flushed, the expectation was
to have larger IO request sizes being issued to the backend SSD
device. However, we see a slight drop in average request size to
around 450 sectors per write as compared to previous
configuration’s average of 500 sectors per write request.

5.3 DM-WriteCache with ASM
We compared workload run results between two ASM
configurations where one configuration consumed SSDs as ASM
Disks while the other consumed DM-WriteCache’ed devices as
ASM disks. Some of the noteworthy observations are as follows:

0

200

400

600

800

1000

1200
7:

43
:3

5
7:

43
:5

1
7:

44
:0

7
7:

44
:2

3
7:

44
:3

9
7:

44
:5

5
7:

45
:1

1
7:

45
:2

7
7:

45
:4

3
7:

45
:5

9
7:

46
:1

5
7:

46
:3

1
7:

46
:4

7
7:

47
:0

3
7:

47
:1

9
7:

47
:3

5
7:

47
:5

1
7:

48
:0

7
7:

48
:2

3

Parallel Jobs

0
20000
40000
60000
80000

100000
120000

1 17 33 49 65 81 97 11
3

12
9

14
5

16
1

17
7

19
3

20
9

22
5

24
1

25
7

27
3

Used Cache Entries

Used Cache Entries

Session 10: Performance Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

262

(1) Between XFS non-cached vs. ASM non-cached, we saw ASM
configuration outperform its XFS peer by about 8%.
(2) ASM cached vs. ASM non-cached, we noted a performance
delta of about 7% i.e. TPM gains were mere 7% higher in cached
configuration compared to that of non-cached one.

 The key takeaway from this subsection is that the DM-
WriteCache can push a database/application with data hosted on
a file system to be nearly as performant as when their data is
stored on raw devices. For deployments demanding the
flexibility of file systems along with the performance of raw
devices, DM-WriteCache is an indispensable feature.

Figure 17: Average request size to the backend SSD device
when both high and low watermarks are configured.

6 DM-WriteCache for DATA files
An Oracle database deployment where IO latencies and
throughput play a critical role is a situation where the instance
runs out of free buffers and is actively flushing dirty buffers back
to the disk. One way to address this situation is to increase the
amount of memory to be used for buffer cache.

 Each server offers limited number of DIMM slots that have to
be shared between regular DIMMs and NVDIMM-Ns. We
evaluated a database workload starving for free buffers by
swapping out a part of the SGA with an equal amount of
Persistent Memory to be used for caching the SSD device where
the data files are hosted.

 Across multiple runs with varying cache sizes ranging from
8GB to 64GB, we observed that cached configurations
underperformed against the non-cached configuration. For a
given workload strength, a non-cached configuration with
192GB SGA outperformed a cached configuration of 128GB SGA
+ 64 GB DM-WriteCache by 10% for TPM metric. Comparing the
average wait per “free buffer waits” event, we see 110% increase
in average waits with cached configuration. Results from our
tests suggest that DM-WriteCache for devices hosting data files
will be beneficial only when SGA is adequately sized.

7 CONCLUSION
Existing applications lack native support to take full advantage
of low latency and high bandwidth capabilities of Persistent

Memory devices that are offered today. To facilitate the adoption
of these Persistent Memory devices for existing workloads before
full-fledged support gets into applications, there is a need for
intermediate solutions. The DM-WriteCache is one such solution
which enables consumption of these superfast devices in a cost
effective way without requiring application changes.

 Results from our experiments show that any workload that is
latency sensitive and does IOs in bursts can gain a significant
performance improvement by adopting DM-WriteCache feature
using any form of Persistent Memory currently available.

 For OLTP workloads, we can realize a performance gain
anywhere between 7% and 22% using DM-WriteCache for
devices hosting transaction logs. Our experiments reveal that a
mere 8GB cache is sufficient to accelerate the performance of an
OLTP workload against a database scale of 1TB. An 8GB
NVDIMM-N costs significantly less as compared to an enterprise
class NVMe write-intensive drive. Most of the enterprise
database products follow CPU core based licensing schemes and
each such license could cost thousands of dollars. Use of DM-
WriteCache with Persistent Memory can significantly boost the
throughputs by driving higher CPU utilization rates while
reducing overall $/transaction cost.

 With substantiations presented in this paper, the first version
of DM-WriteCache as a feature got accepted to 4.17 RC1 kernel.
Support for Persistent Memory has been available since the 4.5
kernel version. We expect that any commercial distribution
adopting a 4.18 or later kernel revision will have the capability to
support the DM-WriteCache feature for production
deployments.

8 ACKNOWLEDGEMENTS
All the hardware used for DM-WriteCache feature evaluation
and qualification was sponsored by Server Performance
Engineering lab at Hewlett Packard Enterprise.

 Would like to thank Varadarajan Sahasranamam, Srinivasan,
Klaus Lange, Tom Vaden, Lou Gagliardi, Karen Dorhamer, and
Paul Cao for their guidance and extensive reviews of the
document. Special thanks to Steven Gary for the hardware
provisioning and support. Thanks to Ronald Smith & P K
Unnikrishnan for encouraging and supporting the effort.

9 REFERENCES
[1] Storage Networking Industry Association - Persistent Memory

https://www.snia.org/PM
[2] Persistent Memory Overview https://docs.pmem.io/getting-started-

guide/introduction
[3] HPE Persistent Memory ttps://www.hpe.com/in/en/servers/persistent-

memory.html
[4] Dell EMC NVDIMM-N Persistent Memory User Guide https://topics-

cdn.dell.com/pdf/poweredge-r740_users-guide3_en-us.pdf
[5] Intel® Optane™ DC Persistent Memory

https://www.intel.com/content/www/us/en/architecture-and-technology/intel-
optane-technology.html

[6] HPE Scalable Persistent Memory
https://supprt.hpe.com/hpsc/doc/public/display?docId=emr_na-
a00038934en_us&docLocale=en_US

[7] DM-WriteCache
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Docume
ntation/device-mapper/writecache.txt

250

300

350

400

450

500

2 16 30 44 58 72 86 10
0

11
4

12
8

14
2

15
6

17
0

18
4

19
8

21
2

22
6

24
0

25
4

26
8

28
2

Average Request Size in sectors

avgrq-sz

Session 10: Performance Optimization ICPE ’19, April 7–11, 2019, Mumbai, India

263

