
Performance Modeling for Cloud Microservice Applications
Anshul Jindal

Technical University of Munich
Garching (near Munich), Bavaria

Germany
anshul.jindal@tum.de

Vladimir Podolskiy
Technical University of Munich
Garching (near Munich), Bavaria

Germany
v.podolskiy@tum.de

Michael Gerndt
Technical University of Munich
Garching (near Munich), Bavaria

Germany
gerndt@in.tum.de

ABSTRACT
Microservices enable a fine-grained control over the cloud appli-
cations that they constitute and thus became widely-used in the
industry. Each microservice implements its own functionality and
communicates with other microservices through language- and
platform-agnostic API. The resources usage of microservices varies
depending on the implemented functionality and the workload.
Continuously increasing load or a sudden load spike may yield
a violation of a service level objective (SLO). To characterize the
behavior of a microservice application which is appropriate for the
user, we define a MicroService Capacity (MSC) as a maximal rate of
requests that can be served without violating SLO.

The paper addresses the challenge of identifying MSC individually
for each microservice. Finding individual capacities of microservices
ensures the flexibility of the capacity planning for an application.
This challenge is addressed by sandboxing a microservice and build-
ing its performance model. This approach was implemented in a
tool Terminus. The tool estimates the capacity of a microservice
on different deployment configurations by conducting a limited set
of load tests followed by fitting an appropriate regression model to
the acquired performance data. The evaluation of the microservice
performance models on microservices of four different applica-
tions shown relatively accurate predictions with mean absolute
percentage error (MAPE) less than 10%.

The results of the proposed performance modeling for individual
microservices are deemed as a major input for the microservice
application performance modeling.
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1 INTRODUCTION
Cloud computing is widely adopted in the industry as a technology
enabling cheap and easy access to data processing and storage re-
sources. The cloud is backed by physical servers which host virtual
machines (VMs) that are provided to the users. This relieves the
cloud user from the obligation to own and maintain the hardware;
only the actual use is being paid for.

Cloud computing, however, exhibits a significant drawback - the
actual performance could significantly differ from the expected
depending on the type of VM and on the type of application run-
ning [22]. The difference in resources utilization and performance
patterns for cloud applications introduces the inability to create a
universal performance model for any cloud application.

The only general performance characteristic that could be cap-
tured in the load test for an interactive application is the critical
workload value which, when achieved, results in a significant drop
of the quality of service. This drop could be manifested differently,
e.g. response time for user requests becomes higher than the value
specified in the SLO. Identifying this critical value is equivalent to
finding the approximate capacity of the application as characterized
by the workload. This value is usually identified by stress-testing
the application, i.e. by putting it under the increasing workload
until the SLOs are violated [3]. While giving the information on
the overall capacity of the application, this value fails to help an-
swer the question: how to increase the capacity of the application by
utilizing the cloud elasticity in a cost-efficient way?

The ongoing adoption of microservices applications enabled
higher degree of flexibility in managing the application at run-time.
Instead of changing the capacity of the whole application, one can
change the capacity of the particular part by changing the amount
of microservice replicas. Depending upon the type of algorithms
implemented in different microservices, they can have different
requests rate that they can cope with, i.e. different capacity. In case
of multilayered virtualization - microservices running on VMs - the
capacity also depends on the characteristics of the underlying VM.

Microservice capacity (MSC) is identified in the paper as the
maximal rate of requests that a microservice can cope with without
violating SLOs. MSC can be used in multiple cases, e.g. to detect the
cloud application bottleneck, to plan the capacity of the application
in terms of workload.

Application bottleneck detection serves to identify the microser-
vice(s) responsible for the performance degradation. The bottleneck
of an interactive microservice application is such microservice,
replication of which results in the increase of the quality of ser-
vice (e.g. less SLO violations). Existing analytic methods to detect
the bottlenecks are limited to multi-tier applications with a small
number of tiers [26].
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Application capacity planning allows to cope with a certain
workload. Capacity planning takes the predicted workload and the
performance model of the application as inputs. With these inputs,
one can derive the number of replicas of an individual microser-
vice to cope with a forecasted workload [2, 19]. Automating the
forecasting procedure and the performance modeling of microser-
vices allows to automate capacity planning. In particular, predictive
autoscaling incorporates capacity planning.

The outlined use-cases of cloud application bottleneck detec-
tion and capacity planning highlight the potential applications of
performance modeling of microservice applications.

The main contribution of the paper is a novel performance mod-
eling approach determining the service capacity of individual mi-
croservices. This challenge is addressed by modifying the conven-
tional stress-testing with a proxy service-based sandboxed testing.
The exhaustive testing for all possible configurations from some
limited configuration space is avoided by deriving the regression
of the workload capacity on the deployment characteristics. The
results of performance modeling with the developed tool Terminus
for 4 distinct microservices are reported.

Section 2 provides background on multilayered cloud virtualiza-
tion and microservice applications. Section 3 describes the general
approach to sandboxing-based performance modeling of microser-
vices. Section 4 discusses the implementation of Terminus. Section
5 is devoted to the description of the experimental settings. The
results of conducted tests are provided in Section 6. Section 7 sum-
marizes the discussion of the test results. Section 8 studies related
works. Section 9 concludes the paper and outlines future research.

2 BACKGROUND
2.1 Multiple layers of cloud virtualization
As of now, two virtualization layers are widely used in the indus-
try - virtual infrastructure layer consisting of VMs and container
virtualization layer.

A container is a lightweight, standalone, executable package of
software that includes everything needed to run it. Containers can
run both on bare metal and on the virtual infrastructure. They use
fractions of virtual CPUs (vCPU) or real CPUs. Container-based
type of virtualization increases the utilization potential of a server,
e.g. the single-threaded microservice can be instantiated in multiple
containers thus utilizing multiple cores. Using container-based
virtualization, a single operating system on a host can run multiple
isolated cloud services [10].

A container orchestrator such as Kubernetes can run containers
at scale. It schedules and orchestrates containers on the shared set
of physical or virtual resources [16]. In Kubernetes, containers are
grouped into pods sharing storage and network resources.

Container resource constraints might be set in the pod configu-
ration file. With this, the user can control the amount of CPU and
memory resources at container level. Each resource type has a base
unit, e.g. CPU is specified in millicores, i.e. 1 millicore equals 0.001
of the virtual CPU. Constraints can be set for each resource through
requests and limits.

A CPU request specifies the fraction of CPU time that the system
has to guarantee to a container. A container can use more in case
no other container uses CPU and the limits are not reached [1, 15].

Kubernetes uses this value to decide on which node to place the pod.
Kubernetes will schedule as many pods on a single node as possible
until the requested CPU share can be guaranteed for each pod on
that node. Setting request less than limits allows over-subscription
of resources.

2.2 Microservice Applications
Microservice applications gained popularity due to fine-granular
design and loosely coupled services implementing limited function-
ality which results in higher scaling flexibility.

Microservice applications allow deployment of individual ser-
vices to physically separated VMs. Each microservice behaves as an
independent, autonomous process and communicates with othermi-
croservices through APIs. Commonly, each such process is put into
individual container to achieve higher flexibility and manageability
of the application, though running multiple services in a container
is also allowed1. Microservice applications have an advantage that
instead of launching multiple instances of the whole application, it
is possible to scale-in or scale-out a specific microservice.

Containers and pods are used to deploy microservices to simplify
the management of cloud application components [13, 17].

2.3 Microservices deployment strategy
Microservices can be implemented using variety of languages and
frameworks. Each microservice could be considered as a mini-
application with its specific deployment, resource, scaling, and
monitoring requirements [21]. The following paragraphs briefly
describe various microservices deployment strategies.

2.3.1 Multiple microservices instances per host. This strat-
egy aims to run multiple microservices on one or more physical or
virtual hosts. This is achieved:

(1) without containers: services are directly deployed on host;
(2) with containers: services are packaged individually in dif-

ferent containers and then deployed.
This strategy is used to take the advantage of the full potential of

the host by running multiple services. If some microservices do not
use their share of resources fully, then other microservices can use
these resources. However, the quality of service is not guaranteed.

2.3.2 Singlemicroservice instance per host. This strategy aims
to run each microservice instance on its own host. This is achieved:

(1) without containers: each microservice instance is pack-
aged in a VM image, which is used to start the host;

(2) with containers: microservice instances are packaged into
containers and then deployed on different hosts.

This deployment type allows the guaranteed quality of service
for any microservice at a cost of idle resources. Further, if the
container scalability of each microservice is not used, the user has
only a single point where he specifies the VM scaling settings.

3 PERFORMANCE MODELING
3.1 Terminology
3.1.1 Service Level Objective. Service level objective (SLO) specifies
guarantees for the level of performance, reliability, and availability.
1docs.docker.com/config/containers/multi-service_container
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Following common SLOs for interactive web applications are con-
sidered in the paper - (1) requests success rate being higher than
the threshold and (2) the response time for 90% of requests being
lower than the threshold.

Requests success rate (RSR) is a ratio of the user requests
successfully completed within a given time to the overall number
of the requests submitted by the users within the same time.

90%tile response time (P90RT) is such a value of the response
time for a time intervalT that 90% of the requests that arrived during
interval T received the response in the given time. P90RT is used
throughout the paper because the behavior of the tail latency can
significantly differ from the mean response time which can result
in sub-optimal resource allocation and degraded performance.

3.1.2 Deployment Configuration. Deployment configurationsmeans
the amount of the resources allocated to the microservice pod and
type of VM used as slave nodes in a Kubernetes cluster. Further,
resource requests, limits and replicas count are used to allocate
the desired amount of resources. As part of this research, resource
requests and limits are kept equal so that a consistent performance
is obtained. Resource requests and limits value of 0.100 of vCPUs
and 100 MB of virtual memory allocated to a single pod replica
when deployed on a t2.micro type of VM.

Figure 1: Microservice capacity identification.

3.1.3 Microservice Capacity (MSC). Application microservices use
various VM resources. The resource utilization changes with the
variation in the user workload. Given an increasing workload, a
resourcemight become nearly fully utilized. At that point, some user
requests might require longer processing times as specified by the
SLO. The maximal number of successfully processed user requests
per second for the given service such that no SLO is violated is
called Microservice Capacity (MSC).

Let us identify MSC for a microservice on a single-core VM
with the number of requests per minute completed versus 90%tile
response time and CPU utilization characteristic as shown in Fig. 1.
The user has specified SLO with RSR to be 100% and P90RT as 1
second. From Fig. 1, we can observe that at around 6200 requests per
minute the CPU is almost fully utilized and the 90%tile response
time had crossed 1 second. Ideally, if the count of requests per

second would have remained below 104 = 6200/60 then all the
requests would have been completedwithout violating SLOs. Hence,
MSC is approximately 104 requests per second.

3.2 Approach
3.2.1 Sandboxing of microservices. Sandboxing is a software man-
agement strategy that isolates applications from critical system
resources and other programs [20]. Automatic sandboxing of mi-
croservices requires to replace each dependent microservice by a
dummy service with no or minimal changes to the original applica-
tion code. Dummy services receive requests from the sandboxed
microservice at the API endpoint used by original services and
respond instantly. The goal is to evaluate the performance of an
individual microservice independently without any performance
impact from the dependent services.

First stage of the sandboxing aims to record the combination of
the request with the correct response for each microservice. For
this purpose, a proxy microservice hoxy_app is attached to all
the microservices in the given docker-compose file. Attaching this
microservice to all the microservices and passing its URL as an
environment variable to all the microservices ensures that each
request and response is intercepted. After the interception phase
is completed, the dependent microservices are replaced by their
dummy versions. With this new deployment ready, the following
load test will uncover the capacity of an individual microservice.

Following the modification of the docker-compose files, the mi-
croservice with its dummy connections is deployed in a Kubernetes
cluster and is put under the linearly increasing workload. During
this process, resource utilization data and the workload parame-
ters are collected. When the violation of the SLO is detected, the
collected data is dumped to the database and MSC is determined.
This procedure is repeated for a sample of different deployment
configurations. The sample configurations are selected to ensure
the desired accuracy of the performance model through the contin-
uous addition of the sample configurations until the accuracy of
the derived model ceases to significantly improve.

3.2.2 Regression-based Performance Modeling. The data resulting
from the sandboxed load testing of an individual microservice is
used to fit the regression model that relates MSC or replica counts
to the deployment configuration and resources utilization.

Deployment configuration-based model to estimate MSC
captures the connection between MSC and the deployment con-
figurations (i.e. number of pod replicas, allocated virtual CPUs,
and the memory). Theil-Sen estimator is used to derive the re-
gression model. This estimator is used because of its simplicity in
computation, robustness to outliers, a priori limited information
regarding measurement errors and the capability to fit both linear
and non-linear models [7]. The input parameters are the deploy-
ment configuration and the total CPU utilization for N pods which
is calculated by the Equation 1.

Util
(CPU )

total =

N∑
i=1

Util
(CPU )

i (1)

Incorporation of this model in the tool aims to prove the concept
that it is not necessary to conduct an exhaustive load testing of the
microservices to determine MSC for each deployment.
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Other regression models like Support Vector Regression (SVR)
and simplistic linear and polynomial regression were also tested.
However, the Theil-Sen estimator had shown higher accuracy and
lower fitting duration, therefore we omit SVR and other estimators
for the focused discussion.

Model to predict the replica count is derived using the same
estimator. It allows to predict the number of microservice pod
replicas required to handle a particular amount of requests on a
specific deployment configuration i.e. the input data is represented
by the number of requests and the total CPU utilization and the
output data by the number of replicas.

Fitted models can be used to predict the capacity of the individual
microservices even for the VMs with larger amount of resources.
This statement will be proven in the results section.

4 MICROSERVICE PERFORMANCE
MODELING TOOL TERMINUS

4.1 Architecture and functionality
Terminus is a performance modeling tool for microservice applica-
tions written in Golang and Python. The tool automates the setup
of a Kubernetes cluster and deploys the monitoring services and a
load generator. Terminus comprises both the API and the user inter-
face allowing the user to easily interact with the tool and conduct
comprehensive performance modeling for any microservice.

Terminus consists of multiple components. It has a microservices
architecture, thus the components can be scaled. The architecture
of the tool and the communication paths between its components
in a typical use-case are shown in Fig. 2.

The performance modeling starts with the user providing an ap-
plication and its parameters either through the user interface or API.
If the application consists of multiple microservices, then each mi-
croservice is tested individually using the sandboxing. Afterwards,
performance modeling is applied to each sandboxed microservice
to analyze and build the corresponding model. Finally, the analyzed
data and performance model are presented to the user in the form
of graphs or JSON data.

Figure 2: Architecture of Terminus.

4.2 Inputs
Application’s docker-compose file is used to build the microser-
vice application and to sandbox each microservice. Either this sand-
boxed microservice file or the converted Kubernetes configuration
file is used to deploy the application and load-test it.

Microservice Type Category: The research focuses on the in-
teractive applications with single function per microservice. Sup-
ported microservice categories include: compute-intensive, data-
base access, simple web app, and the mediator interacting with
other microservices. Specification of the category allows to form
the datasets to conduct comparisons and generalizations for perfor-
mance models of particular microservice category.

Cloud Service Provider (CSP): IaaS CSP with the deployed
Kubernetes cluster. Currently, only AWS is supported.

VM Type is a type of VM instance to be used as slave nodes in
the Kubernetes cluster. Currently, only t2 family of AWS instances
is supported as it is best suited for microservices [23].

Limits and Replicas include CPU limits and memory limits to
be allocated to each microservice replica as well as the number of
microservice replicas that equals the number of pods.

4.3 Microservice Deployer / Load Generator
This component is responsible for the deployment of the microser-
vice with the specified resource limits on the Kubernetes cluster as
well as for the generation of the load and collection of the moni-
toring data to build the performance model. To handle these tasks,
Terminus creates an agent to test the specific deployment configu-
ration with multiple components described below.

Kubernetes Cluster Deployment is responsible for the de-
ployment of the Kubernetes cluster using KOPS - a tool to set up
and manage production-grade Kubernetes clusters [14]. Heapster
is deployed in the cluster to monitor the consumed resources [8].
The data collected by Heapster is stored in InfluxDB [9].

Load generator generates a linearly increasing workload to the
exposed endpoint of the microservice using K6 [12]. The character-
istics of the generated workload are stored in InfluxDB and can be
viewed in real time using Grafana.

Elasticsearch and Kibana are used to store and view in real
time the logs produced by the components [6].

The process of collecting the data allows to start multiple tests
in parallel and involves the following steps:

(1) Agent deployment: A request is sent to AWS to start a
t2.large VM and to deploy the agent on VM boot.

(2) Start of the Kubernetes cluster and microservice de-
ployment: Terminus sends a request to the agent to create
a Kubernetes cluster with the specified configuration and
to deploy the sandboxed microservice in it. The number of
slave nodes is computed based on the number of replicas,
type of VM and limits specified in the inputs.

(3) Load generation and data collection: When the deploy-
ment is completed, the agent starts to generate the linearly in-
creasing workload and monitors all the resources and stores
the performance parameters and the resources utilization
data in local database along with the workload data. When
the violation of the SLO is detected, all the data are dumped
back to the InfluxDB of the Terminus. Afterwards, the cluster
and the agent are terminated.

4.4 Microservice Sandboxing Component
This component allows to build performance models for individual
microservices through simulation of their neighbors. It isolates each
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microservice and substitutes its direct neighbors with dummy mi-
croservices accepting the requests and sending the responses of the
same format, but without any additional processing. The sandbox-
ing component takes a docker-compose file, the main microservice
name and an API endpoint as an input. Following, a proxy applica-
tion microservice is added as a dependency to every microservice.
The application is deployed using the modified docker-compose
file so that each microservice request and response passes through
the proxy. Copies of these requests and responses are stored in the
Terminus MongoDB database.

Following, each microservice receives its own sandboxed deploy-
ment where the direct neighbors are replaced by dummy microser-
vices. These dummy microservices will respond at the same port
and at the same endpoint with the response stored in MongoDB. As
a result, the time taken by the dependent microservices to respond
becomes negligible. By generating the increasing workload for the
sandboxed versions of microservices, a relatively pure performance
model and capacity for each microservice is determined.

4.5 Performance Model Builder and Predictor
This component derives the performance model of a microservice
based on the data collected during the load tests. It is written in
Python and performs the regressionmodeling to capture the connec-
tion between the deployment characteristics, resources consump-
tion and the performance in terms of the workload. The component
is used to derive two models described in 3.2.2.

Fitted regression models are used by Performance Predictor to
estimate the workload capacity of the deployment configurations.

4.6 UI, API and the Logs Generator
User Interface (UI) and API components of Terminus provide the
opportunity to select or configure parameters of the tool. The user
has the option to start the tests, view the results (tables or graphs), fit
the performance model, view the ongoing tests and logs. Terminus
supports REST API to interact with other programs. Logs Generator
generates logs during the use of Terminus to simplify the debugging.

4.7 Tool outputs
The outputs of Terminus were designed to support predictive au-
toscaling. These outputs are briefly presented below.

Microservice Capacity, MSC is a test-based evaluation of MSC
for the particular deployment configuration and SLO.

Estimated MSC is a regression model output for a specific de-
ployment configuration.

Predicted number of pod replicas is a regression model out-
put for a given number of requests and resource limits.

Sandboxed microservice configuration includes a docker-
compose file for a sandboxed version of all the microservices.

5 EXPERIMENTAL SETTINGS
5.1 Test application
Experimental application consists ofthe following 4 microservices
and a MongoDB connected to the movieapp:

• primeapp (compute-intensive) computes the sum of prime
numbers starting from 1 and up to 1000000 when called;

• movieapp (database access) queries MongoDB for a fixed
amount of movies when called and returns the results found;

• webacapp (web access) instantly responds to each request
with the body containing only the hello world string;

• serveapp receives a request from the user and dispatches
it to the dependent (primeapp, movieapp and webacapp)
microservices. After receiving responses from all the mi-
croservices it combines them and returns the result.

5.2 Deployment Configurations
Experiments were conducted for the t2 family of AWS instances
comprising t2.nano, t2.micro, t2.small, t2.medium, t2.large and
t2.xlarge types. Resource and replicas count limits were set for
pods running on each instance type. These limits are provided in
Table 1. The numerical resource limit value, e.g. 100, means the cor-
responding fraction of vCPU and the memory will be utilized, e.g.
0.100 of virtual CPU cores and 100 MB of virtual memory. Resource
limit that is referred by the type of instance, e.g. t2.nano means that
pods limits are equivalent to the parameters of t2.nano type. The

Table 1: Experimental Deployment Configurations

VM typea Resource Limits Replicas
t2.nano 100; 200 1 - 3
t2.micro 100; 200; 500 1 - 3
t2.small 100; 200; 500 1 - 3
t2.medium 100; 200; 500; t2.nano; t2.micro; t2.small 1 - 3
t2.large 100; 200; 500; t2.nano; t2.micro; t2.small 1 - 3
t2.xlarge 100; 200; 500; t2.nano; t2.micro; t2.small 1 - 3
ahttps://aws.amazon.com/ec2/instance-types/t2

limits on the replicas count specified in the table are caused by the
resource capacity of the host VM type.

5.3 Load generation settings
Theworkload request rate was linearly increasing during the experi-
ment to determine MSC. The rate increased every minute according
to the type of microservice: compute-intensive - by 4; database ac-
cess - by 6; web access - by 50; other types - by 20.

Different load generation rates are determined experimentally
based on the change in the resource utilization and time required
for the requests processing by each types of the microservice. An
appropriate number which causes the resource utilization change
approximately by 0.05% was selected. The load testing in all the
cases starts with single request. The SLO with RSR equal to 98%
and P90RT of 3 second was used to identify experimental MSC.

6 EXPERIMENTAL RESULTS
The time taken to determine experimental MSC varies with the
deployment configuration. The minimum time taken for the config-
uration with VM type as t2.nano with resource limits of 100 and 1
replica and the maximum time taken for the configuration with VM
type as t2.xlarge with resource limits of t2.small and 3 replicas for
different microservices is shown in Table 2. These large durations
of tests do not hinder the applicability of the approach for real
systems since such tests should be conducted only once.

Deploying pods with the same resource limits on different in-
stance types results in almost the same performance. Comparison
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(a) Number of Requests (per minute) vs CPU Utilization (b) Number of Requests (per minute) vs Requests P90 Response Time

Figure 3: Same resources limit pod on different types of VM shows similar performance.

(a) primeapp (b) movieapp (c) webacapp (d) serveapp

Figure 4: Total number of vCPU cores required to handle a certain number of requests per second vary linearly for different
types of microservices.

Table 2: Minimum and maximum time taken for
determining MSC for different Microservices

Micrserivce Minimum Time Maximum Time
Name (t2.nano, 100, 1

replica)
(t2.xlarge, t2.small,
3 replicas)

primeapp 23 minutes 3 hours 7 minutes
movieapp 8 minutes 3 hours 5 minutes
serveapp 33 minutes 2 hours 33 minutes
webacapp 9 minutes 1 hours 40 minutes

of resource-limited pods to the equivalent instances also reveals
similarity in the performance. Fig. 3a shows the number of requests
per minute versus the CPU utilization of pods with t2.nano instance
limits when deployed on t2.xlarge, t2.large, and t2.medium. The
requests percentile 90 response time captured for each requests per
minute is shown in Fig. 3b. The figure points out that the exhibited
performance is similar in all the conducted tests.

It was found that the number of virtual CPU cores required to
process the requests grows linearly as shown in Fig. 4. The change
in the number of requests did not affect the memory utilization
significantly; it becomes constant for all the microservices after a
certain threshold is reached.

Fitted regression models estimated MSCs and replicas quite ac-
curately. Fig. 5 compares estimated MSC versus the experimental
value for all the microservices along with the mean absolute per-
centage error (MAPE). Similarly, the fitted model for predicting the

number of replicas estimated the replicas with root mean squared
error (RMSE) of 0.1, 0.11, 0.12 and 0.11 for primeapp, movieapp, we-
bacapp and serveapp respectively. RMSE value less than 1 (replica)
shows high accuracy of the model.
Table 3: Actual capacity for the combined application and

estimated capacity for its microservices

Config. Repl-
icas

Com-
bined

prim-
eapp

mov-
ieapp

web-
acapp

serv-
eapp

0.10 1 5.3 9.52 25.51 334.5 39.8
0.10 3 7.8 24.8 71.83 942.5 119.6
0.20 1 13.7 17.2 48.67 638.5 79.8
0.20 2 25.9 32.4 95.0 1246.8 159.7
0.50 1 32.8 40.1 118.1 1550.6 199.7
0.50 3 105.5 97.7 349.7 4590.4 599.4

t2.micro 1 64.5 78.4 233.9 3070.5 399.5
t2.nano 2 126.7 155.1 465.5 6110.4 799.2
t2.nano 3 192.4 231.6 697.2 9150.4 1198.8

Fig. 5 highlights that the highest rate of change of the CPU uti-
lization is achieved for primeapp. This points at the primeapp as
the potential computational bottleneck microservice. Table 3 shows
the actual capacity for the combined application as well as the pre-
dicted MSC for the sandboxed individual microservices. These data
indicate that the overall capacity of the application is limited by the
bottleneck microservice. Also, individual MSCs acquired for differ-
ent deployment configurations allow to determine the amount of
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(a) primeapp with MAP error = 9.517% (b) movieapp with MAP error = 9.51%

(c) webacapp with MAP error = 2.61% (d) serveapp with MAP error = 4.96%

Figure 5: MSC Actual vs Estimated for Microservices along with error distribution

microservices replicas needed to increase the combined application
performance. For example, if microservices are deployed with the
configuration of CPU and memory equal to 0.1, then approximately
37 replicas for primeapp (334.5/9.52), 14 replicas for movieapp
(334.5/25.51), 9 replicas for serveapp (334.5/39.8) and 1 replica
for webacapp will be enough to raise the combined application ca-
pacity to the capacity of the webacapp frontend of 334. Depending
upon the resources limitation, one can estimate how many replicas
are required for microservices for the desired overall as well as the
individual microservices capacity and performance.

7 DISCUSSION
The results point out several research hypotheses for future exten-
sive proof on different microservices and on their combinations.

As was shown, the performance of a pod with the limited in-
stance resources nearly equals that of a VM with the same virtual
resources. Therefore, it is not necessary to conduct the exhaustive
load tests on every VM type. VM type with a large capacity can
be selected to house the pods with various limits. The capacity of
these pods will still be limited by the capacity of the VM, therefore
more powerful VMs are preferred.

Sandboxing microservices allows to understand the performance
of the individual microservices constituting the application. MSC
determined for each sandboxed microservice could be used to iden-
tify the bottleneck microservice. The identified microservice could
be horizontally scaled or modified to match the performance of

other microservices. Microservices with similar capacity are candi-
dates for scaling in groups. The individual MSC values known for
each microservice are the necessary prerequisite for the accurate
fine-grained microservice application capacity planning.

Capacity prediction is a promising technique implemented in
Terminus; it helps to determine the individual MSC of each applica-
tion microservice without testing all possible deployments. Along
with the forecast of the user workload, its results can be used in
predictive autoscaling [5].

The same technique allows to determine the number of replicas
required to handle the given number of user requests in reactive
autoscaling systems. Reactive IaaS autoscaling dynamically adjusts
number of VMs based on the cluster’s load. When the metric stays
higher than a threshold, the reactive autoscaling engine adds VMs
to the cluster. The number of VMs adjusted in the scaling action
is called scaling adjustment number. Scaling adjustment can either
be some constant or could specified as a percent of the current
VMs count [24]. The predicted number of replicas can be used to
compute the scaling adjustment number automatically.

Knowing the capacities of the microservices enables the dis-
tributed autonomous applications management. However, the rela-
tively high accuracy in determining the capacities exhibited by the
sandboxing approach comes at a price - the time necessary for the
load testing and performance modeling. This renders the proposed
approach limited in use for the applications with the frequent struc-
tural changes. In addition, accurate prediction models demand a
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lot of preliminary tests. The prospective direction is to classify the
microservices and to create the performance models libraries.

8 RELATEDWORK
Joydeep et al. claim that the performance delivered by AWS is
unpredictable when running web applications [18]. This statement
points at the necessity to capture the real performance. However,
neither native cloud monitoring nor the advanced performance
monitoring solutions like CloudMonix [4] support evaluation of
the performance for different types of resources and deployments.

Detection of a bottleneck component is another essential task
for increasing the performance of the cloud application. Bhuvan et
al. presented an analytical model for the bottlenecks detection and
the performance prediction of multi-tier applications [25]. Method
presented in [17] uses the capability profiling to identify the po-
tential resource bottlenecks and make recommendations regarding
achieving adequate performance. These wide-spread analytic ap-
proaches to bottlenecks detection emphasize the need for human
involvement to interpret the results of the analysis.

Some systems detect the performance anomalies in the deployed
applications. For example, Root is a system to automatically iden-
tify the root cause of performance anomalies in web applications
deployed in Platform-as-a-Service (PaaS) clouds [11].

9 CONCLUSION & FUTUREWORK
Performance modeling of microservice applications allows to de-
termine the capacity distribution among the microservices. This
enables fine-granular capacity planning for applications and the
detection of the bottleneck microservices.

The approach and the Terminus tool proposed in the paper aim
to solve the problem of finding the best-suited resources for the mi-
croservice to be deployed on so that the whole application achieves
the best performance at the same time minimizing the resources
consumption. After analyzing the results acquired by the Terminus
tool on the example application consisting of 4 microservices, it
was identified that the microservices follow a common pattern in
the performance versus the workload - the performance degrades
slowly with the increase in the workload up until a certain point
when all the virtual resources are exhausted. Commonly for the
tested microservices, the CPU utilization increased linearly with
the increase in the number of requests.

The main focus of the further work is to incorporate Terminus
into the predictive autoscaling framework enabling one of the two
main inputs - capacity estimate for the scalable components of
the cloud application, i.e. microservices. The other input to the
predictive autoscaling is the forecasted workload.
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