
Profile-based Detection of Layered Bottlenecks
Tatsushi Inagaki Yohei Ueda Takuya Nakaike Moriyoshi Ohara

IBM Research
Tokyo, Japan

{e29253,yohei,nakaike,ohara}@jp.ibm.com

ABSTRACT
Detection of software bottlenecks which hinder utilizing hard-
ware resources is a classic but complex problem due to the layered
structures of the software bottlenecks. However, model-based ap-
proaches require a performance model given, which is impractical
to maintain under today’s agile development environment, and
profile-based approaches do not handle the layered structures of
the software bottlenecks.

This paper proposes a novel approach of taking the best of both
worlds which extracts a performance model from execution profiles
of the target application to detect the layered bottlenecks.We collect
awake-up profile of threads, which samples an event that one thread
wakes up another thread, and build a thread dependency graph to
detect the layered bottlenecks.

We implement our approach of profile-based detection of layered
bottlenecks in the Go programming language. We demonstrate that
our method can detect software bottlenecks limiting scalability and
throughput of state-of-the-art middleware such as a web application
server and a permissioned blockchain network, with small amount
of the runtime overhead for profile collection.

KEYWORDS
layered bottlenecks, wake-up profile, thread dependency graph
ACM Reference Format:
Tatsushi Inagaki Yohei Ueda Takuya Nakaike Moriyoshi Ohara. 2019.
Profile-based Detection of Layered Bottlenecks. In Tenth ACM/SPEC Inter-
national Conference on Performance Engineering (ICPE ’19), April 7–11, 2019,
Mumbai, India. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3297663.3310296

1 INTRODUCTION
Software resources in a computer system, such as threads, mu-
tual exclusion locks, and communication channels, can be software
bottlenecks [25] of the system. That is, capacities of the software
resources diminish the maximum performance of the system by pre-
venting full utilization of hardware resources, often unexpectedly
due to various reasons about design and configuration of software
resources. For example, scalability of the Acme Air Go web ap-
plication benchmark [45] in Figure 1 implies that some software
bottlenecks exist in the system configured as shown in Figure 2.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’19, April 7–11, 2019, Mumbai, India
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6239-9/19/04. . . $15.00
https://doi.org/10.1145/3297663.3310296

The achieved throughput does not scale proportionally to the target
throughput when the target throughput is 8000 transactions per
second or larger, but none of the host processors are saturated.
While not shown for simplicity, the percentage of the time to wait
for input and output (I/O) operations is also at most 0.1% on any
host.

0

10

20

30

40

50

60

70

80

90

100

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5000 10000 15000 20000

U
ti

li
z
a
ti

o
n

 (
%

)

T
h

ro
u

g
h

p
u

t
(T

x
/s

e
c
)

Target Throughput (Tx/sec)

Throughput Driver Utilization

App Utilization DB Utilization

Figure 1: Throughput and processor utilization of the Acme
Air Go web application benchmark.

Driver Host

JMeter

Go Web Server

MongoDB

REST BSON

Gin mgo
Acme

Air

Application Host Database

Host

Figure 2: A configuration of the Acme Air Go benchmark.

Software bottlenecks are also called layered bottlenecks [42]
since a service request to the system can simultaneously hold soft-
ware resources from multiple layers of underlying services, in con-
trast to that a request holds hardware resources one by one. While
the existence of layered bottlenecks itself has been understood
from many decades ago [20], detecting and thus modeling them
in a given computer system is not trivial at all. As far as we know,
the layered queueing network (LQN) [11, 42] is one of the most
simple but still flexible performance model which can be used to
analyze bottlenecks in large-scale software systems such as a web
application server [32].

One practical issue of the LQN and othermodel-based approaches
is how to maintain performance models. Usually a performance
analyst defines the hierarchical structure of the target system and
specifies service demand manually, which requires the domain
knowledge and complex performance measurement steps for each

Session 9: Candidates for Best Paper Awards ICPE ’19, April 7–11, 2019, Mumbai, India

197

https://doi.org/10.1145/3297663.3310296
https://doi.org/10.1145/3297663.3310296
https://doi.org/10.1145/3297663.3310296
https://www.acm.org/publications/policies/artifact-review-badging#functional

• We proposed a new method to detect layered bottlenecks
which only relies on execution profiles of the target appli-
cation, but does not rely on a manually built performance
model. Our approach has a practical benefit that we can
analyze modern applications built on top of various third
parties’ components from open source code repositories.

• We implemented the proposed method in the Go program-
ming language [37], which provides highly scalable user-
level multithreading. Our implementation is based on an

1What we call a “thread” here about this example is actually a goroutine, which is a
user level thread managed by the Go language runtime library on top of the operating
system level thread. For simplicity, we call goroutines as threads in this study, since
they are equivalent from the perspective for performance models.

extension to the built-in sampling profiler of the Go program-
ming language, whose runtime overhead can be arbitrarily
minimized by reducing the sampling frequency.

• We demonstrated that the proposed method can detect lay-
ered bottlenecks in complex and state-of-the-art middle-
ware such as a web application server and a permissioned
blockchain. Mitigating the detected bottlenecks improved
performance and scalability of the target applications.

One of our conclusions in Section 6 is that a modern server
application running on a distributed platform is a complex LQN
built on modular components and systems. Our method will be
useful to detect and optimize bottlenecks of such applications in
environments of agile and continuous software development.

2 THREAD DEPENDENCY GRAPH
Assuming that a target application and its execution profile are
available, we characterize performance of the target application as
a thread dependency graph. A thread dependency graph is a directed
graph which represents threads and their dependency in given
execution profiles of the target application.

This section describes what is a thread dependency graph and
how to detect layered bottlenecks from the graph. How to build a
thread dependency graph is described in Section 3.

2.1 Node
A node of a thread dependency graph represents a set of threads
which handle a class of requests. A node has an average number of
threads in a given execution profile, and the status of the threads,
which may be runnable or blocked.

Invoking Thread Node. An invoking thread node represents a set
of threads which are:

• created by the same statement,
• executing the same root function, and
• blocked to wait for services from other nodes by calling
functions.

In our graphical notation in Figure 3, an invoking thread node is
represented as a square box labeled with the root function and the
average number of threads.

Note that ordinary function call by one thread can be also con-
sidered as two different threads executing the caller and the callee
functions, the caller thread creates the callee thread, and the caller
thread is blocked until the callee thread completes. Thus, a thread
dependency graph can uniformly represent both of a traditional
call graph and dependency among threads.

Performance of a set of threads executing the same root function
is suitable to be modeled as a flat queueing network with a single
customer class, because each thread has a unique instruction pointer
and uses the underlying services one by one, and each request is
likely to have the same service demand.

Blocked Thread Node. A blocked thread node represents a set of
threads blocked due to synchronizing operation of the underlying
programming language, such as acquiring a mutual exclusion lock,
sending or receiving a message via a communication channel, an
I/O operation, sleeping at a timer, making an operating system call,
and so on. For example, Table 1 shows the blocking status of threads

Session 9: Candidates for Best Paper Awards

component in the model [12, 46]. Today, this is more challenging
than before since agile software development environments build
software systems on top of a number of third parties’ components.
This is a dilemma, because a performance problem often occurs
when we do not know the performance model.

Assuming that the performance of an existing target system can
be modeled by an LQN, how can we measure the model and its lay-
ered bottlenecks from execution profiles of the target system? This
paper answers that we can build a model which allows us to detect
layered bottlenecks, by profiling threads and their dependency in the
target system. More specifically, we can build a thread dependency
graph to capture dependency among software resources and their
average queue lengths in the measured execution, as described in
Section 2. The graph is built from existing thread profiles and novel
wake-up profiles, which extend existing profiles of blocked threads,
as implemented in Section 3.

Note that our target is to detect layered bottlenecks in an exist-
ing software system, but is not to estimate benefits of eliminating
the bottlenecks, or to suggest possible optimizations. The former
requires modeling potential bottlenecks, which might be hidden
in the current configuration. Instead, we can build a thread depen-
dency graph only from execution profiles of an existing software
system, in contrast to the traditional LQNs. The latter requires
domain knowledge of the target application and generally is not
provided by other profile-based approaches [1, 7, 9, 28, 48, 49].

Nevertheless, our approach can detect layered bottlenecks in
complex software systems such as a web application server and
a permissioned blockchain, as shown in Section 4. For example,
a thread dependency graph of the Acme Air Go benchmark with
the baseline configuration is shown in Figure 12. The graph repre-
sents threads, that is, software resources, as nodes labeled with the
functions and average numbers of threads, and their dependency
as directed links1. From the threads which handle incoming trans-
action requests, by hierarchically tracking dependencies with the
largest average number of threads, we see most of the requests are
blocked at allocating a new database connection. This observation
leads to optimization to cache live database connections among
transactions. Figure 14 shows a new thread dependency graph after
the optimization. Now most of the requests are waiting for database
driver threads, whose majority is waiting for I/O operations for the
database. The optimization achieved performance improvement of
the throughput up to +30%, as shown in Figure 13.

Compared to the related work discussed in Section 5, our contri-
butions in this paper are as follows:

ICPE ’19, April 7–11, 2019, Mumbai, India

198

Table 1: Blocking status of threads in the Go language.

Status Description
semacquire Acquiring a built-in mutual exclusion lock
chan receive Receiving a message from a channel
chan send Sending a message into a channel
select Waiting at a select statement
IO wait Waiting for a network I/O operation
sleep Sleeping
syscall Requesting an operating system call

Function

Count

Status

Count

Status

Count

Invoking

Thread Node

Blocked

Thread Node

Runnable

Thread Node

Function

Count

Custom

Thread Node

Figure 3: Nodes of a thread dependency graph.

in the Go language. In our graphical notation in Figure 3, a blocked
thread node is represented as a hexagon labeled with the status and
the average number of the threads.

Runnable Thread Node. A runnable thread node represents a set
of threads which are runnable and can use underlying hardware
resources. In a thread dependency graph, only processors are the
hardware resources, since other hardware resources such as hard
disks or network devices are used via the operating system and they
are represented as blocked nodes. In our graphical notation in Figure
3, a runnable thread node is represented as an oval labeled with the
status (i.e. runnable) and the average number of the threads.

Custom Thread Node. A custom thread node is an invoking thread
node created by a user’s annotation which specifies the root func-
tion and to refine an original invoking node to serve multiple cus-
tomer classes into a set of underling invoking thread nodes with a
single customer class for each. For example, the top level request
handler is typically built on a generic message handling library
for the underlying protocol, such as Hypertext Transfer Protocol
(HTTP) [17], gRPC Remote Procedure Calls [38], and so on, which
listens to incoming requests and creates or assigns a worker thread
to handle the requests. When the target application serves multiple
types of transactions, we can refine a thread dependency graph by
separating custom thread nodes to handle each transaction from the
invoking node to handle the generic incoming requests. Such kind
of custom nodes can be specified base on the application program-
ming interface (API) of the target application for the corresponding
protocol. In our graphical notation in Figure 3, a custom thread
node is represented as a dashed square box.

2.2 Link
A directed link of a thread dependency graph represents depen-
dency among threads. The threads corresponding to the source
node, that is, “waiter”, threads wait for services from the threads
corresponding the destination node, that is, “notifier” threads.

Synchronous Dependency Link. A synchronous dependency link
represents dependency due to function calls, as described above in

Function

Count_total

Status

Count

Count

Function

Count_total

Count
“runnable”

Count

Status

Count_w

Function

Count_n

Function

Count_total

Function

Count

Count

Waiter Notifier

Function

Count_w

Function

Count_n

“newproc”

Figure 4: Links of a thread dependency graph.

Section 2.1. The source node is either an invoking thread node or a
custom thread node. The destination node is either a blocked thread
node, runnable thread node, or custom thread node. A synchronous
link is labeled with the average number of threads contributing
the function call. Thus, the number of threads of the waiter is
decomposed as a sum of the number of threads on the outgoing
synchronous links. In our graphical notation in Figure 4, a syn-
chronous dependency link is represented as a solid arrow from the
waiter node to the notifier node.

Asynchronous Dependency Link. An asynchronous dependency
link represents dependency due to synchronization among threads.
That is, the waiter threads corresponding to the source node wait
for the notifier threads corresponding to the destination node, via
a mutual exclusion lock, communication channel, and so on. The
source node is a blocked thread node and the destination node is
either a thread node or custom thread node. In our graphical nota-
tion in Figure 4, an asynchronous dependency link is represented
as a dashed arrow from the waiter node to the notifier node.

Creation of a thread is also represented as an asynchronous
dependency link. The source node is the thread node for the child
thread and the destination node is the thread node for the parent
thread. In this case, the corresponding asynchronous dependency
link is labeled as newproc.

2.3 Shorthand Notation
We introduce the following two shorthand notations to improve
the readability of a thread dependency graph by omitting trivial
nodes and links.

Figure 5 shows a shorthand notation when a single blocked
thread node depends on a single invoking thread node or a custom
thread node. In this case, we omit the blocked thread node and
connect from the parent invoking thread node to the notifier node,
via an asynchronous dependency link labeled with the average
number of threads of the omitted blocked thread node.

Figure 6 shows another shorthand notation when an invoking
thread node and a blocked thread node have cyclic dependency. This
dependency typically occurs with a mutual exclusion lock, when
one thread of the invoking thread node is blocked at the blocked

Session 9: Candidates for Best Paper Awards ICPE ’19, April 7–11, 2019, Mumbai, India

199

Function

Count_total

Status

Count_w

Count_w

Function

Count_total

Count_w

Function_n

Count_n

Function_n

Count_n

Status

Figure 5: A shorthand notation of dependency from a single
waiter to a single notifier.

Function

Count_total

Status

Count_w

Count_w

Function

Count_total

Status

Count_w

Count_w

Figure 6: A shorthand notation of cyclic dependency.

thread node at acquiring the lock, and another thread of the same
invoking thread node releases the lock. In this case, we simply omit
the corresponding asynchronous dependency link, since existence
of the backward link can be inferred from the semantics of the
mutual exclusion lock.

2.4 Example
Let us think of a sample Go program shown in Figure 7. The main
procedure spawns one sender thread at Line 6, spawns ten receiver
threads at Line 8, and sleeps 5 minutes at Line 10. The sender thread
repeats sleeping 1 milliseconds at Line 15, and sending a message
into the channel c at Line 16. The receiver threads repeat receiving a
message from the channel c at Line 22, and sleeping 1 nanoseconds
at Line 23.

Figure 8 shows a corresponding thread dependency graph built
from execution profiles of the program in Figure 7. The graph
captures the performance characteristics of the sample program
such that:

• there exist ten threads executing the function receiver,
• there exists one thread to execute the function sender,
• the receiver threads are waiting for the sender thread in 99%
of their execution time, and

• the sender thread is almost always sleeping.

2.5 Bottleneck Detection
Given a thread dependency graph, we detect the layered bottlenecks
by hierarchically traversing the path having the largest number of
threads, starting from the custom thread node which is annotated
to handle the target transaction. More specifically, for a given node
in a thread dependency graph, the bottleneck nodes of the node are:

1 package main
2 import "time"
3 var c chan bool = make(chan bool)
4
5 func main() {
6 go sender()
7 for i := 0; i < 10; i++ {
8 go receiver()
9 }
10 time.Sleep(time.Duration(5) * time.Minute)
11 }
12
13 func sender() {
14 for true {
15 time.Sleep(time.Duration(1) * time.Millisecond)
16 c <- true
17 }
18 }
19
20 func receiver() {
21 for true {
22 _ = <-c
23 time.Sleep(time.Duration(1) * time.Nanosecond)
24 }
25 }

Figure 7: A sample Go program.

main
sender

1.0

sleep
1.0

 1.0

main
receiver

10.0

 chan receive
 9.9

sleep
0.1

 0.1

Figure 8: A thread dependency graph.

• among destination nodes connected via synchronous depen-
dency links, the destination node with the largest number
of the threads of the source node, and

• all destination nodes connected via asynchronous depen-
dency links.

The rationale why we use the number of threads, that is, the
queue length, instead of the utilization to detect bottlenecks is that
the queue length is directly measurable in execution profiles as the
number of threads, but the utilization is not, because the capacity
of each software resource is generally not available in the profiles.

However, this simple algorithm practically works well, as we
will see in Section 4, since when we increase the arrival rate of the
target transaction, the queue length of the bottleneck resource will
asymptotically diverge.

3 PROFILING
This section describes how to build a thread dependency graph from
execution profiles. While we explain our implementation in the Go
programming language, the discussions below are also applicable

Session 9: Candidates for Best Paper Awards ICPE ’19, April 7–11, 2019, Mumbai, India

200

goroutine 19 [sleep]:
time.Sleep(0xf4240)

/opt/go/src/runtime/time.go:65 +0x130
main.sender()

/main.go:15 +0x20
created by main.main

/main.go:6 +0x51
goroutine 20 [chan receive]:
main.receiver()

/main.go:22 +0x20
created by main.main

/main.go:8 +0x72

Figure 9: A thread profile.

to other programming languages and platforms such as the user
level threads and the kernel threads.

3.1 Thread Profile
We sample a thread profile, a snapshot of stack traces of the all
threads in the target application, including both of runnable and
blocked threads, to capture the status and the number of threads.
They are used to create thread nodes and the average number of
threads. The sampling is done periodically based on a timer, so
that the number of sampled threads becomes proportional to the
cumulative time spent by the threads.

In the Go programming language, a thread profile is provided as
goroutine profile by the pprof profiling library [37]. Figure 9 shows
an example of a thread profile of the sample program in Figure
7. A thread profile takes a snapshot of the status, stack trace, and
creation site of all threads.

For the user level operating system threads, which are typically
used to implement threads in other programming languages, a
system call such as ptrace [13] can be used to capture a snapshot of
all threads in the target process. For the kernel threads, operating
systems such as Linux [40] provide a pseudo file system to capture
a snapshot of stack traces of a kernel thread [5].

3.2 Wake-up Profile
To profile asynchronous dependency among threads, we need to
profile which thread a blocked thread is waiting for. This is captured
by our novel wake-up profile. The wake-up profile samples an event
which one thread makes another blocked thread runnable. In the Go
programming language, this can be implemented as an extension
to the existing block profile of the pprof runtime library. The block
profile records blocked cycles, the number of events, and the stack
trace of a blocked thread, by sampling an event which a blocked
thread becomes runnable, with a given sampling rate. To implement
the wake-up profile, we also record the stack trace of the notifier
thread into an event record. Figure 10 shows a wake-up profile of
the sample program in Figure 7.

For user level and kernel level operating system threads, trace
tools such as Ftrace [29], SystemTap [30], and LTTng [41] support
profiling blocked threads. It will be possible to implement a wake-
up profile for the operating system threads as an extension of these
tools.

1175794700 503 @ 0x405bdc 0x405a18 0x405383 0x6e2bc6
Waiter
runtime.gopark+0x12b /opt/go/src/runtime/proc.go:287
runtime.goparkunlock+0x5d /opt/go/src/runtime/proc.go:293
runtime.chanrecv+0x303 /opt/go/src/runtime/chan.go:506
runtime.chanrecv1+0x2a /opt/go/src/runtime/chan.go:388
main.receiver+0x1f /main.go:22
created by
main.main+0x71 /main.go:8
Notifier
runtime.send+0x8b /opt/go/src/runtime/chan.go:280
runtime.chansend+0x687 /opt/go/src/runtime/chan.go:179
runtime.chansend1+0x42 /opt/go/src/runtime/chan.go:113
main.sender+0x1f /main.go:16
created by
main.main+0x50 /main.go:6

Figure 10: A wake-up profile.

3.3 Synchronized Calling Context Tree
To generate a thread dependency graph, we merge thread profiles
and wake-up profiles into an intermediate data structure, synchro-
nized calling context tree, which is an extension to the traditional
calling context tree [2].

First, we build a calling context tree by merging thread profiles.
We calculate the average number of threads for each stack frame,
by dividing the number of threads having the stack frame by the
number of total samples.

Next, we add wake-up profiles into the calling context tree, and
merge the stack top frames of the waiter thread and the notifier
thread into a super node. Note that the wake-up profile does not
contribute to the number of threads calculated from the thread pro-
files, since the wake-up profile is sampled base on synchronization
events, and is not based on a timer. Figure 11 shows an example of
a synchronized calling context tree, which was used to generate the
thread dependency graph in Figure 8. Nodes and links with bold
boundaries are from the thread profile. Nodes and links with thin
boundaries are from the wake-up profile. An enclosing node is a
super node which merges a waiter node and a notifier node.

Finally, we generate a thread dependency graph by merging
nodes of the synchronized calling context tree which belong to
the same thread into a corresponding invoking thread node of the
thread dependency graph. A super node in the synchronized calling
context tree becomes a blocked thread node, and asynchronous
dependency links are added from the blocked thread node to the
notifiers. For each root function annotated, a custom thread node
is created and the all sub tree nodes are merged into it. The leaf
nodes of the synchronized calling context tree are merged into a
runnable thread node or a blocked thread node, depending on the
thread status.

4 EXPERIMENTS
This section demonstrates that our bottleneck detection using a
thread dependency graph can identify layered bottlenecks, and
mitigating the detected bottlenecks improves the throughput and
scalability. Note that estimating the amount of performance im-
provement is out of the scope, as explained in Section 1. Rather, the
experiments in this section confirm that:

Session 9: Candidates for Best Paper Awards ICPE ’19, April 7–11, 2019, Mumbai, India

201

main
sender

1.0

time
Sleep

1.0
sleep

runtime
chansend1

runtime
chansend

runtime
send
notify

main
receiver

10.0

main
receiver

9.9
chan receive

time
Sleep

0.1
sleep

runtime
chanrecv1

runtime
chanrecv

runtime
goparkunlock

runtime
gopark
wait

Figure 11: A synchronized calling context tree.

(1) bottleneck detection using a thread dependency graph can
identify layered bottlenecks (which can be already known)
of a given target application,

(2) performance improvement can be observed by optimizing
one of the detected bottlenecks, and

(3) the optimized bottleneck is eliminated in a new thread de-
pendency graph.

4.1 Environment
We used a measurement environment which consists of 3 virtual
machines with 32 x86_64 processors each running at 2.0 gigahertz
clock frequency, 64 gigabytes of memory, and 125 gigabytes of
virtual block devices. All of the virtual machines are deployed in
the same data center of IBM Cloud [16]. The operating system is
Ubuntu 16.10.

We extended the Go language version 1.10.2 to implement the
wake-up profile, described in Section 3, and compiled the target
applications.

For profiled run, we sampled one wake-up event per every 1000
wake-up events, into the on-memory event buffer of the pprof
runtime library, which is linked with the target application. Then
we collected a thread profile and a wake-up profile per every 10
seconds, by using the default HTTP server of the pprof profiling
library.

We used the Distributed Testing environment of the Apache
JMeter [36] test tool to vary the target throughput of the benchmark.
A master JMeter process controls multiple JMeter slave processes
which run the same benchmark script. Each JMeter slave issues
transactions to the target application with a constant arrival rate,
by using the Constant Throughput Timer. We varied the target
throughput by varying the number of the slave processes.

4.2 Acme Air Go
Scenario. We used the Acme Air Go benchmark [45], which is a

Go language version of the original Acme Air benchmark [14], as an
example of web application servers. The application implements a
fictitious online airline service where users can login, logout, query
and book flights, and cancel bookings. The configuration of the
benchmark is shown in Figure 2.

The application server provides a Representational State Transfer
(REST) [10] style API for the transactions above, which receives a
transaction request as an HTTP request, and returns the result as an
HTTP response containing a JavaScript Object Notation (JSON) [8]
format document. Persistent data are stored as JSON documents in
a backend MongoDB [24] database. The Go language version uses
Gin Web Framework [22] to handle incoming HTTP requests, and
mgo MongoDB driver [26] to manage the database on MongoDB.

We used the Acme Air workload driver [15] to drive the bench-
mark. The driver uses the Apache JMeter test tool to emulate mul-
tiple users as a JMeter thread group. Each thread group issues
transactions with a given transaction mix and an injection rate.
One JMeter slave spawns 64 client threads and targets to issue 2000
transactions per second.

Analysis. The custom thread node for the top level request han-
dler is the node to execute the function (*conn).server, because
this is a generic HTTP request handler of the standard library of the
Go language, and the performance is measured by the throughput
to handle the REST API requests. To refine the thread dependency
graph for each transaction type, we also specified custom thread
nodes for the REST API request handlers of the Acme Air bench-
mark, that is, the functions Login, QueryFlights, BookFlights,
and BookingByUser. During the bottleneck analysis below, we
identified bottlenecks in the data access layer of the Acme Air
benchmark. For better readability, we also specified custom thread
nodes for these functions, that is, the functions (*Mongo).New and
(*Mongo).Close.

Figure 12 shows a thread dependency graph of the Acme Air Go
web application server, when the target throughput is 16000 trans-
actions per second. The numbered path starting from the invoking
thread node labeled (*conn).serve to a blocked thread node la-
beled with semacquire represents the detected layered bottlenecks.
The hierarchical structure of the layered bottlenecks suggests that:

• 369.9÷428.7 ≈ 86% of the cycles for all the RESTAPI requests
are blocked to allocate a new database connection to the
backend MongoDB, and

• 369.4÷ 369.9 ≈ 100% of them, that is, 369.4÷ 428.7 ≈ 86% of
the all requests, are blocked at acquiring a mutual exclusion
lock to allocate a new database connection.

Further source code level analysis revealed that the last mutual
exclusion lock is actually acquired by the mgo MongoDB driver
[27]. This function (*Session).New() copies an existing database
session with the same authentication information. At that time, it
acquires a mutual exclusion lock to copy structured data such as
the authentication information and underlying connection pools.
This is an example that layered bottlenecks may be hidden in third
parties’ libraries, as explained in Section 1.

Session 9: Candidates for Best Paper Awards ICPE ’19, April 7–11, 2019, Mumbai, India

202

1

3

5

2

4

Figure 12: A thread dependency graph of the Acme Air Go web application benchmark.

Optimization. The source code level analysis above suggests an
optimization to reuse a database connection at the application level
without invoking the functions New, instead of the MongoDB driver
level, since the Acme Air benchmark reuses a dedicated single
MongoDB user for all database transactions. Figure 13 shows the
performance improvement by this optimization, which improved
the throughput up to +30% of the baseline configuration. Thus, the
blocked thread node above is likely to be a layered bottleneck in
the baseline configuration.

Figure 14 shows a new thread dependency graph of the Acme
Air Go web application server after the optimization above, when
the target throughput is 16000 transactions per second. The new
layered bottlenecks are the numbered path starting from the invok-
ing thread node labeled (*conn).serve to a blocked thread node
labeled with IO wait. It suggests that:

• The dominating transaction is QueryFlights which con-
sumes 125.5 ÷ 413.2 ≈ 30.4% of the cycles for all the REST
API requests,

• 94.7 ÷ 125.5 ≈ 75.5% of them, that is, 94.7 ÷ 413.2 ≈ 22.9%
of the REST API requests are waiting for the socket reader
of the MongoDB driver, and

0

2000

4000

6000

8000

10000

12000

0 5000 10000 15000 20000

T
h

ro
u

g
h

p
u

t
(T

x/
s

ec
)

Target Throughput (Tx/sec)

Baseline Optimized

Figure 13: Performance improvement of the Acme Air Go
web application benchmark by the optimization to cache
live database connections.

• 318.4 ÷ 484.1 ≈ 65.8% of the socket reader are waiting for
I/O operations with the backend MongoDB.

Thus, we can see the bottleneck optimized above has been elimi-
nated from the new thread dependency graph.

Session 9: Candidates for Best Paper Awards ICPE ’19, April 7–11, 2019, Mumbai, India

203

1

3

5

2

4

6

7

Figure 14: A thread dependency graph of the Acme Air Go web application benchmark after the optimization.

4.3 Hyperledger Fabric
Scenario. As a more complicated and distributed target applica-

tion, we used Hyperledger Fabric [39], which is an open source
platform to implement a permissioned blockchain network. Hy-
perledger Fabric acts like an application server for a blockchain
application, whose transactions are ordered by consensus of fault-
tolerant orderers and transaction results are stored into a distributed
“ledger”, as an immutable chain of blocks verifiable by cryptographic
hash codes. Participants, such as peers, orderers, consortium, orga-
nizations, and users are required to be cryptographically authen-
ticated to enable highly secure and scalable blockchain networks
[3].

Driver Host

JMeter Fabric
SDK

JSON
RPC

Peer

Peer Host Ordering Host

Orderer

Orderer

Orderer

Kafka

Kafka

Zoo
keeper1.

Chain
codeLedger

Zoo
keeper

3. Send

5.

2.
6.

7. Commit

4.

Figure 15: A configuration of the Hyperledger Fabric.

The configuration of the benchmark is shown in Figure 15. The
transaction flow of Hyperledger Fabric is asynchronous due to
its distributed nature. When a transaction to update the ledger is
executed, what happens in a blockchain network are:

(1) a client sends a signed transaction proposal to peers,
(2) each peer simulates execution of the specified transaction in

a container running a “smart contract”, which is a blockchain
application, and also called as “chaincode” for Hyperledger
Fabric,

(3) the simulated results are sent back from the chaincode con-
tainer to the peer, signed by the peer, sent back from the
peer to the client, and the client sends the endorsements as
a transaction request to an orderer,

(4) the orderer signs and sends the transaction request to the
backend ordering service to (in this configuration, they are an
Apache Kafka [35] cluster managed by an Apache Zookeeper
[34] ensemble) determine the total order of the transactions,

(5) a block of the ordered transactions is delivered back from
the ordering service to an orderer, and from the orderer to
peers,

(6) each peer validates the block and updates the local ledger
with the valid transactions, and

Session 9: Candidates for Best Paper Awards ICPE ’19, April 7–11, 2019, Mumbai, India

204

0

10

20

30

40

50

60

70

80

90

100

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000 3500

U
ti

li
z
a

ti
o

n
 (

%
)

T
h

ro
u

g
h

p
u

t
(T

x
/s

e
c

)

Target Throughput (Tx/sec)

Send Throughput Commit Throughput

Driver Utilization Peer Utilization

Ordering Utilization

Figure 16: Throughput and resource utilization of the Hy-
perledger Fabric.

Analysis. We specified the custom thread node for the top level re-
quest handler for the function _Deliver_DeliverFiltered_Handler. This
is a gRPC request handler to send a block commit event to a client at
Step 7 of the transaction sequence. To refine the thread dependency
graph, we also specified custom thread nodes for other gRPC re-
quest handlers. They are functions _Endorser_ProcessProposal_Handler

and _ChaincodeSupport_Register_Handler.
Figure 17 shows a part of a thread dependency graph of the peer,

when the target throughput is 3200 transactions per second. The
whole graph is not shown here for better readability, since it is much

larger than the one for the Acme Air. The numbered path starting
from the invoking thread node labeled _Deliver_DeliverFiltered_Handler

suggests that:
• in 7.2÷8.0 = 90% of the total cycles, the block event listeners
wait for the deliver block handler, which is labeled with
deliverBlocks.func1,

• in 6.9÷7.2 ≈ 96% of the total cycles, the deliver block handler
waits for the block committer, labeled with deliverPayloads,

• in 0.4 ÷ 1.0 = 40% of the total cycles, the block committer
waits for the transaction validators, labeledwith Validate.func1.1,
and

• in 8.3 ÷ 13.1 ≈ 63.4% of the total cycles, the validators are
blocked at acquiring a mutual exclusion lock, which is also
acquired by the endorser.

The mutual exclusion lock at the last step is acquired to update the
eviction order in the Membership Service Provider (MSP) identity
cache [47]. This feature was introduced to eliminate a previous
bottleneck at verifying the same certificates multiple times [33].
While the cache greatly saved processor cycles, the cache itself can
be a new bottleneck with a higher injection rate.

Optimization. We submitted a patch [44] to the Hyperledger
Fabric to alleviate the bottleneck above. The proposed optimization
is to modify the replacement algorithm from the least recently used
algorithm to the second chance algorithm, in order to eliminate the
lock contention. Figure 18 shows the performance improvement
in the throughput of committing transactions by the proposed
optimization, which applies the originally submitted patch set. We
can see that the performance degradation at the target throughput
of 2400 transactions per second has been resolved.

Figure 19 shows a new thread dependency graph of the peer after
the optimization has been applied, when the target throughput is
3200 transactions per second. We can see that the lock contention at
the MSP identity cache has been eliminated, and the new bottleneck
observed is processor busy cycles spent by the committer, which
is also mentioned in [3]. Thus, bottleneck detection using a thread
dependency graph successfully identified layered bottlenecks in
the Hyperledger Fabric.

4.4 Runtime Overhead
We evaluated the runtime overhead of collecting thread profiles and
wake-up profiles, by measuring increases in transaction latency
and busy cycles when the profiling is enabled. We compared a
profiled version compiled by our customized Go language compiler
against the original version compiled by the standard Go language
compiler.

Both of the impacts on lattices and busy cycles were as small as
up to 1.1%. For the application server process of the Acme Air Go
web application benchmark, the increases in lances and busy cycles
are up to 1.1% and 1.0%, respectively. For the peer process of the
Hyperledger Fabric, the increases in lateness and busy cycles are
up to 0.1% and 0.8%, respectively.

The majority of the overhead in busy cycles comes from the
package runtime, which is the runtime library embedded into the
target application. This is reasonable since the pprof runtime li-
brary and our implementation of the wake-up profile belong to this
package.

Session 9: Candidates for Best Paper Awards

(7) the peer sends a block commit event to the client.
Messages between clients, peers, and orderers are exchanged via
the gRPC protocol. We used Fabric Go Software Development Kit
(SDK) [31] as a client for a blockchain network.

The version of Hyperledger Fabric is 1.2.0, which was the latest
release when we started the experiments. We used a blockchain net-
work consisting of one peer, three orderers, four Kafka servers, and
three Zookeeper servers. The ledger database is Go LevelDB [43],
which is embedded in the peer. An orderer creates a block of trans-
actions and send it to the ordering service when the number of the
sent transactions reaches 1000, the block size reaches 2 megabytes,
or 1 seconds of the batch window timer expires. One JMeter slave
spawns 128 client threads and targets to issue 400 transactions per
second. Each slave submits transactions to a dedicated Fabric client
process via the JSON-RPC protocol [19]. A client thread submits
a transaction to endorsing peers and then to an ordering peer at
Step 3 above, and then does not wait for completion of the trans-
action. Another dedicated client thread listens to commitment of
blocks at Step 7 above, and calculates the throughput of committing
transactions.

The blockchain application we used in this experiment executes
daily post-trade netting for a stock exchange market [4]. For bench-
marking, we used the most simple transaction which adds a trade
record into a blockchain network. The transactions do not con-
flict each other. Figure 16 shows the scalability of adding trade
records into a blockchain network configured as Figure 15. While
the throughput of sending transactions to an orderer is mostly pro-
portional to the target throughput, the throughput of committing
transactions into the ledger degrades when the target throughput
is equal to or greater than 1600 transactions per second.

ICPE ’19, April 7–11, 2019, Mumbai, India

205

1

3

5

2

4

6

7

8
9

Figure 17: A part of a thread dependency graph of the Hyperledger Fabric peer.

0

200

400

600

800

1000

1200

1400

1600

0 500 1000 1500 2000 2500 3000 3500

T
h

ro
u

g
h

p
u

t
(T

x
/s

e
c

)

Target Throughput (Tx/sec)

Base Commit Opt Commit

Figure 18: Performance improvement of the Hyperledger
Fabric.

Figure 20 shows the functions with the top five largest profiling
overhead in the Acme Air Go web application server. The primary
overhead originates from allocating extra objects to export profiles,
since the top three functions are for object allocation and garbage
collection in the Go runtime library.

Figure 21 shows the functions with the top file largest profiling
overhead in the Hyperledger Fabric peer. The primary overhead
originates from sampling stack traces of the threads, since the top
four functions are used by the pprof runtime library to collect pro-
files. The function wakeupevent is our custom function to sample
wake-up profiles.

5 RELATEDWORK
5.1 Model-based Approaches
The LQN [11, 42] is an extension to the traditional flat queueing
network, and it is the most popular approach to analyze software
bottlenecks due to its simplicity but broad coverage compared to

other model-based approaches [21, 23]. Development and mainte-
nance of performance model is an open challenge because today’s
software development is agile and modular, but still manual. We
addressed this issue by integrating profile-based approaches.

Our approach can be considered to approximate the resource
dependency graph [42] by the thread dependency graph extracted
from execution profiles of the target application and to measure
the queue lengths for the resources. A few differences of the thread
dependency graph from the resource dependency graph are, the
former:

• only models layered bottlenecks which are observed in exe-
cution profiles of the existing configuration,

• can be cyclic, because our target is just bottleneck detection,
but is not synthetic performance analysis, and

• does not correlate a critical section to a corresponding mu-
tual exclusion lock, because this is generally not available in
execution profiles.

By limiting the scope of a thread dependency graph, we can im-
plement our bottleneck detection by an extension to the existing
profiling infrastructure, as described in Section 3, and with the
small runtime overhead, as shown in Section 4.4.

5.2 Profile-based Approaches
Profile-based bottleneck analysis is a quite hot topic in recent stud-
ies. However, our approach is still unique because we analyze depen-
dency of software bottlenecks based on execution profiles sampled
by the profiling library of the underlying programming language.
In contrast, most of the existing approaches either:

• only focus on hardware bottlenecks, that is, processor busy
cycles [9],

• do not consider structures and dependency among software
bottlenecks [1, 7],

Session 9: Candidates for Best Paper Awards ICPE ’19, April 7–11, 2019, Mumbai, India

206

1

3

5

2

4

6

7

Figure 19: A part of a thread dependency graph of the Hyperledger Fabric peer after the optimization.

0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0%

mallocgc

sweepone

heapBitsForObject

RLock

ipt_do_table

% in Application Server

F
u

n
ct

io
n

Overhead Baseline

Figure 20: Functions with the top five largest profiling over-
head in the Acme Air Go.

0% 1% 2% 3% 4% 5% 6%

pcvalue

adjustframe

wakeupevent

cputicks

scanobject

% in Peer

F
u

n
c

ti
o

n

Overhead Baseline

Figure 21: Functions with the top five largest profiling over-
head in the Hyperledger Fabric.

• targets a specific execution model or programming frame-
work [6, 9, 18, 48], or

• relies on tools such as traces, which incur larger runtime
overhead [28, 48].

Recently, Zhou et al. [49] also proposed a novel profile-based
bottleneck detection method which analyzes dependency among
threads. The following differences exist between the two approaches:

• They rely on operating-system level tracing of every block-
ing and wake-up events, while we combine timer-based
thread profiles and event-based wake-up profiles. This im-
plementation allows us to minimize the profiling overhead,
and to handle both blocked and busy cycles uniformly.

• They primarily focus on identifying a cyclic dependency
among threads, while we identify bottlenecks as a sub graph
of a thread dependency graph. This representation allows
us to show the hierarchical structure of layered bottlenecks
in a thread dependency graph.

6 CONCLUSION
We proposed a novel approach for detection of layered bottle-
necks by combining model-based approaches and profile-based
approaches, using a thread dependency graph built from thread
profiles and wake-up profiles of the target application. As we have
seen in Section 4, today’s middleware is a quite complex LQN by
itself, and we need a tool to analyze their layered bottlenecks on
demand.

We believe our approach is complementary to the existing model-
based bottleneck analyses, because profiling which is aware of the
layered bottlenecks will be useful to develop a performance model
for LQN, and to determine service demand of each component of
the model.

ACKNOWLEDGMENTS
Wewould like to thank all anonymous reviewers for their insightful
comments to improve early versions of this paper. In particular, Re-
view #14C of the Middleware 2018 conference gave many construc-
tive suggestions to organize the experiments and the discussions.

This work has been initiated by our joint study about the per-
formance of Hyperledger Fabric together with the IBM Center for
Blockchain Innovation. We would like to thank Fabian Yu Chin
Lim, Venkatraman Ramakrishna, and Chun Hui Suen, for their
contributions.

REFERENCES
[1] Erik Altman, Matthew Arnold, Stephen Fink, and Nick Mitchell. 2010. Per-

formance Analysis of Idle Programs. In Proceedings of the ACM International
Conference on Object Oriented Programming Systems Languages and Applications
(OOPSLA ’10). ACM, New York, NY, USA, 739–753. https://doi.org/10.1145/
1869459.1869519

[2] Glenn Ammons, Thomas Ball, and James R. Larus. 1997. Exploiting Hardware
Performance Counters with Flow and Context Sensitive Profiling. In Proceedings
of the ACM SIGPLAN 1997 Conference on Programming Language Design and

Session 9: Candidates for Best Paper Awards ICPE ’19, April 7–11, 2019, Mumbai, India

207

https://doi.org/10.1145/1869459.1869519
https://doi.org/10.1145/1869459.1869519

Implementation (PLDI ’97). ACM, New York, NY, USA, 85–96. https://doi.org/10.
1145/258915.258924

[3] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-
nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady
Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh
Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula
Stathakopoulou, Marko Vukolić, SharonWeed Cocco, and Jason Yellick. 2018. Hy-
perledger Fabric: A Distributed Operating System for Permissioned Blockchains.
In Proceedings of the Thirteenth EuroSys Conference (EuroSys ’18). ACM, New York,
NY, USA, Article 30, 15 pages. https://doi.org/10.1145/3190508.3190538

[4] Atsushi Santo, Ikuo Minowa, Go Hosaka, Satoshi Hayakawa, Masafumi Kondo,
Shingo Ichiki, and Yuki Kaneko. 2016. Applicability of Distributed Ledger Tech-
nology to Capital Market Infrastructure. JPX Working Paper 15. Japan Exchange
Group. http://www.jpx.co.jp/english/corporate/research-study/working-paper/
b5b4pj000000i468-att/E_JPX_working_paper_No15.pdf.

[5] Terrehon Bowden, Bodo Bauer, Jorge Nerin, Shen Feng, and Stefani Seibold. 2009.
The /proc Filesystem. https://www.kernel.org/doc/Documentation/filesystems/
proc.txt.

[6] Charlie Curtsinger and Emery D. Berger. 2015. Coz: Finding Code That Counts
with Causal Profiling. In Proceedings of the 25th Symposium on Operating Systems
Principles (SOSP ’15). ACM, New York, NY, USA, 184–197. https://doi.org/10.
1145/2815400.2815409

[7] Kristof Du Bois, Jennifer B. Sartor, Stijn Eyerman, and Lieven Eeckhout. 2013.
Bottle Graphs: Visualizing Scalability Bottlenecks in Multi-threaded Applications.
In Proceedings of the 2013 ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages & Applications (OOPSLA ’13). ACM,
New York, NY, USA, 355–372. https://doi.org/10.1145/2509136.2509529

[8] Ecma International. 2017. Standard ECMA-404 The JSON Data Interchange Syn-
tax. http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.
pdf.

[9] S. Eyerman, K. Du Bois, and L. Eeckhout. 2012. Speedup stacks: Identifying
scaling bottlenecks in multi-threaded applications. In 2012 IEEE International
Symposium on Performance Analysis of Systems Software. 145–155. https://doi.
org/10.1109/ISPASS.2012.6189221

[10] Roy Thomas Fielding. 2000. Architectural Styles and the Design of Network-based
Software Architectures. Ph.D. Dissertation. AAI9980887.

[11] Greg Franks, Shikharesh Majumdar, Neilson, Dorina Petriu, Jerome Rolia, and
Murray Woodside. 1996. Performance Analysis of Distributed Server Systems. In
In Proceedings of the 6th International Conference on Software Quality. 15–26.

[12] Shadi Ghaith, Miao Wang, Philip Perry, and Liam Murphy. 2014. Software Con-
tention Aware Queueing Network Model of Three-tier Web Systems. In Proceed-
ings of the 5th ACM/SPEC International Conference on Performance Engineering
(ICPE ’14). ACM, New York, NY, USA, 273–276. https://doi.org/10.1145/2568088.
2576760

[13] Michael Haardt, Mike Coleman, Denys Vlasenko, and Michael Kerrisk. 2016.
ptrace - process trace. http://man7.org/linux/man-pages/man2/ptrace.2.html.

[14] IBM Corporation. 2004. Acme Air Sample and Benchmark. https://github.com/
acmeair/acmeair.

[15] IBM Corporation. 2010. Acme Air Workload driver. https://github.com/acmeair/
acmeair-driver.

[16] IBM Corporation. 2018. IBM Cloud. https://www.ibm.com/cloud/.
[17] Internet Engineering Task Force. 2014. Hypertext Transfer Protocol (HTTP/1.1):

Message Syntax and Routing. https://tools.ietf.org/html/rfc7230.
[18] Nikolai Joukov, Avishay Traeger, Rakesh Iyer, Charles P. Wright, and Erez Zadok.

2006. Operating System Profiling via Latency Analysis. In 7th Symposium on
Operating Systems Design and Implementation (OSDI ’06), November 6-8, Seattle,
WA, USA. 89–102. http://www.usenix.org/events/osdi06/tech/joukov.html

[19] JSON-RPC Working Group. 2013. JSON-RPC 2.0 Specification. https://www.
jsonrpc.org/specification.

[20] W. C. Lynch. 1972. Operating System Performance. Commun. ACM 15, 7 (July
1972), 579–585. https://doi.org/10.1145/361454.361476

[21] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. 1998.
Modelling with Generalized Stochastic Petri Nets. SIGMETRICS Perform. Eval.
Rev. 26, 2 (Aug. 1998), 2–. https://doi.org/10.1145/288197.581193

[22] Manuel Martínez-Almeida. 2014. Gin Web Framework. https://github.com/
gin-gonic/gin.

[23] D. A.Menasce. 2002. Two-level iterative queuingmodeling of software contention.
In Proceedings. 10th IEEE International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunications Systems. 267–276. https://doi.
org/10.1109/MASCOT.2002.1167086

[24] MongoDB, Inc. 2018. mongoDB. https://www.mongodb.com/.
[25] J. E. Neilson, C. M.Woodside, D. C. Petriu, and S. Majumdar. 1995. Software bottle-

necking in client-server systems and rendezvous networks. IEEE Transactions on
Software Engineering 21, 9 (Sep 1995), 776–782. https://doi.org/10.1109/32.464543

[26] Gustavo Niemeyer. 2010. The MongoDB driver for Go. https://github.com/
go-mgo/mgo/tree/v2.

[27] Gustavo Niemeyer. 2011. Line 1579 of mgo/session.go. https:
//github.com/go-mgo/mgo/blob/9856a29383ce1c59f308dd1cf0363a79b5bef6b5/

session.go#L1579.
[28] Tony Ohmann, Kevin Thai, Ivan Beschastnikh, and Yuriy Brun. 2014. Min-

ing Precise Performance-aware Behavioral Models from Existing Instrumen-
tation. In Companion Proceedings of the 36th International Conference on Soft-
ware Engineering (ICSE Companion 2014). ACM, New York, NY, USA, 484–487.
https://doi.org/10.1145/2591062.2591107

[29] Red Hat Inc. 2017. ftrace - Function Tracer. https://www.kernel.org/doc/
Documentation/trace/ftrace.txt.

[30] Red Hat Inc., IBM Corp., and Intel Corporation. 2013. SystemTap. https://
sourceware.org/systemtap/wiki.

[31] SecureKey Technologies Inc. and IBM Corporation. 2018. Hyperledger Fabric
Client SDK for Go. https://github.com/hyperledger/fabric-sdk-go.

[32] Yasir Shoaib and Olivia Das. 2011. Web Application Performance Modeling Using
Layered Queueing Networks. Electronic Notes in Theoretical Computer Science 275
(2011), 123 – 142. https://doi.org/10.1016/j.entcs.2011.09.009 Fifth International
Workshop on the Practical Application of Stochastic Modelling (PASM).

[33] P. Thakkar, S. Nathan, and B. Vishwanathan. 2018. Performance Benchmarking
and Optimizing Hyperledger Fabric Blockchain Platform. ArXiv e-prints (May
2018). arXiv:cs.DC/1805.11390

[34] The Apache Software Foundation. 2010. Apache ZooKeeper. https://zookeeper.
apache.org/.

[35] The Apache Software Foundation. 2017. Apache Kafka – A distributed streaming
platform. https://kafka.apache.org/.

[36] The Apache Software Foundation. 2018. Apache JMeter. https://jmeter.apache.
org/.

[37] The Go Authors. 2009. The Go Programming Language. https://golang.org.
[38] The gRPC Authors. 2018. gRPC. https://grpc.io.
[39] The Linux Foundation. 2018. Hyperledger Fabric. https://www.hyperledger.org/

projects/fabric.
[40] The Linux Kernel Organization, Inc. 2014. The Linux Kernel Archives. https:

//www.kernel.org.
[41] The LTTng Project. 2018. LTTng: an open source tracing framework for Linux.

https://lttng.org.
[42] P. Tregunno, Jing Xu, M.Woodside, D. Petriu, and G. Franks. 2006. Layered Bottle-

necks and Their Mitigation. In Third International Conference on the Quantitative
Evaluation of Systems - (QEST’06). 103–114. https://doi.org/10.1109/QEST.2006.23

[43] Suryandaru Triandana. 2012. LevelDB key/value database in Go. https://github.
com/syndtr/goleveldb.

[44] Yohei Ueda. 2018. FAB-11321: Alleviating lock contention of MSP cache. https:
//jira.hyperledger.org/browse/FAB-11321.

[45] Y. Ueda andM. Ohara. 2017. Performance competitiveness of a statically compiled
language for server-side Web applications. In 2017 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS). 13–22. https://doi.org/
10.1109/ISPASS.2017.7975266

[46] Murray Woodside, Dorina C. Petriu, José Merseguer, Dorin B. Petriu, and Mo-
hammad Alhaj. 2014. Transformation challenges: from software models to per-
formance models. Software & Systems Modeling 13, 4 (01 Oct 2014), 1529–1552.
https://doi.org/10.1007/s10270-013-0385-x

[47] yacovm. 2017. Line 75 of msp/cache/cache.go. https://github.com/hyperledger/
fabric/blob/v1.2.0/msp/cache/cache.go#L75.

[48] Xu Zhao, Kirk Rodrigues, Yu Luo, Ding Yuan, and Michael Stumm. 2016. Non-
Intrusive Performance Profiling for Entire Software Stacks Based on the Flow
Reconstruction Principle. In 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016. 603–
618. https://www.usenix.org/conference/osdi16/technical-sessions/presentation/
zhao

[49] Fang Zhou, Yifan Gan, Sixiang Ma, and Yang Wang. 2018. wPerf: Generic Off-
CPU Analysis to Identify Bottleneck Waiting Events. In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18). USENIX Association,
Carlsbad, CA, 527–543. https://www.usenix.org/conference/osdi18/presentation/
zhou

TRADEMARKS
Linux is a registered trademark of Linus Torvalds in the United
States, other countries, or both.

IBM, the IBM logo, and ibm.com are trademarks of International
Business Machines Corporation, registered in many jurisdictions
worldwide. Other products and service names might be trademarks
of IBM or other companies.

Session 9: Candidates for Best Paper Awards ICPE ’19, April 7–11, 2019, Mumbai, India

208

https://doi.org/10.1145/258915.258924
https://doi.org/10.1145/258915.258924
https://doi.org/10.1145/3190508.3190538
http://www.jpx.co.jp/english/corporate/research-study/working-paper/b5b4pj000000i468-att/E_JPX_working_paper_No15.pdf
http://www.jpx.co.jp/english/corporate/research-study/working-paper/b5b4pj000000i468-att/E_JPX_working_paper_No15.pdf
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://doi.org/10.1145/2815400.2815409
https://doi.org/10.1145/2815400.2815409
https://doi.org/10.1145/2509136.2509529
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://doi.org/10.1109/ISPASS.2012.6189221
https://doi.org/10.1109/ISPASS.2012.6189221
https://doi.org/10.1145/2568088.2576760
https://doi.org/10.1145/2568088.2576760
http://man7.org/linux/man-pages/man2/ptrace.2.html
https://github.com/acmeair/acmeair
https://github.com/acmeair/acmeair
https://github.com/acmeair/acmeair-driver
https://github.com/acmeair/acmeair-driver
https://www.ibm.com/cloud/
https://tools.ietf.org/html/rfc7230
http://www.usenix.org/events/osdi06/tech/joukov.html
https://www.jsonrpc.org/specification
https://www.jsonrpc.org/specification
https://doi.org/10.1145/361454.361476
https://doi.org/10.1145/288197.581193
https://github.com/gin-gonic/gin
https://github.com/gin-gonic/gin
https://doi.org/10.1109/MASCOT.2002.1167086
https://doi.org/10.1109/MASCOT.2002.1167086
https://www.mongodb.com/
https://doi.org/10.1109/32.464543
https://github.com/go-mgo/mgo/tree/v2
https://github.com/go-mgo/mgo/tree/v2
https://github.com/go-mgo/mgo/blob/9856a29383ce1c59f308dd1cf0363a79b5bef6b5/session.go#L1579
https://github.com/go-mgo/mgo/blob/9856a29383ce1c59f308dd1cf0363a79b5bef6b5/session.go#L1579
https://github.com/go-mgo/mgo/blob/9856a29383ce1c59f308dd1cf0363a79b5bef6b5/session.go#L1579
https://doi.org/10.1145/2591062.2591107
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://sourceware.org/systemtap/wiki
https://sourceware.org/systemtap/wiki
https://github.com/hyperledger/fabric-sdk-go
https://doi.org/10.1016/j.entcs.2011.09.009
http://arxiv.org/abs/cs.DC/1805.11390
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://kafka.apache.org/
https://jmeter.apache.org/
https://jmeter.apache.org/
https://golang.org
https://grpc.io
https://www.hyperledger.org/projects/fabric
https://www.hyperledger.org/projects/fabric
https://www.kernel.org
https://www.kernel.org
https://lttng.org
https://doi.org/10.1109/QEST.2006.23
https://github.com/syndtr/goleveldb
https://github.com/syndtr/goleveldb
https://jira.hyperledger.org/browse/FAB-11321
https://jira.hyperledger.org/browse/FAB-11321
https://doi.org/10.1109/ISPASS.2017.7975266
https://doi.org/10.1109/ISPASS.2017.7975266
https://doi.org/10.1007/s10270-013-0385-x
https://github.com/hyperledger/fabric/blob/v1.2.0/msp/cache/cache.go#L75
https://github.com/hyperledger/fabric/blob/v1.2.0/msp/cache/cache.go#L75
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhao
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhao
https://www.usenix.org/conference/osdi18/presentation/zhou
https://www.usenix.org/conference/osdi18/presentation/zhou

	Abstract
	1 Introduction
	2 Thread Dependency Graph
	2.1 Node
	2.2 Link
	2.3 Shorthand Notation
	2.4 Example
	2.5 Bottleneck Detection

	3 Profiling
	3.1 Thread Profile
	3.2 Wake-up Profile
	3.3 Synchronized Calling Context Tree

	4 Experiments
	4.1 Environment
	4.2 Acme Air Go
	4.3 Hyperledger Fabric
	4.4 Runtime Overhead

	5 Related Work
	5.1 Model-based Approaches
	5.2 Profile-based Approaches

	6 Conclusion
	Acknowledgments
	References

