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ABSTRACT

NoSQL databases are commonly used today in cloud deployments
due to their ability to "scale-out" and effectively use distributed com-
puting resources in a data center. At the same time, cloud servers
are also witnessing rapid growth in CPU core counts, memory
bandwidth, and memory capacity. Hence, apart from scaling out
effectively, it’s important to consider how such workloads "scale-
up" within a single system, so that they can make the best use of
available resources.

In this paper, we describe our experiences studying the perfor-
mance scaling characteristics of Cassandra, a popular open-source,
column-oriented database, on a single high-thread count dual socket
server. We demonstrate that using commonly used benchmarking
practices, Cassandra does not scale well on such systems. Next,
we show how by taking into account specific knowledge of the
underlying topology of the server architecture, we can achieve
substantial improvements in performance scalability. We report on
how, during the course of our work, we uncovered an area for per-
formance improvement in the official open-source implementation
of the Java platform with respect to NUMA awareness. We show
how optimizing this resulted in 27% throughput gain for Cassandra
under studied configurations.

As a result of these optimizations, using standard workload gen-
erators, we obtained up to 1.44x and 2.55x improvements in Cassan-
dra throughput over baseline single and dual-socket performance
measurements respectively. On wider testing across a variety of
workloads, we achieved excellent performance scaling, averaging
98% efficiency within a socket and 90% efficiency at the system-
level.
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1 INTRODUCTION

In recent years the growth of data and the need for analytics has led
to the development and deployment of a variety of distributed plat-
forms for computing and storage. Notably, Apache Hadoop based on
the Map/Reduce paradigm [7] and Spark [20] have provided fault-
tolerant distributed computing platforms for large data sets. NoSQL
databases such as HBase based on the BigTable model [4] and Cas-
sandra [13] have emerged as alternatives to relational databases,
providing storage and retrieval mechanisms for analytics applica-
tions while using distributed resources. The design of such modern
platforms are governed by the need to scale-out across a data center
to satisfy fault tolerance, scalability and performance requirements.

Recent years have also seen rapid growth in the number of CPU
cores within a single server processor, coupled with commensurate
increases in memory capacity and memory bandwidth. This has
resulted in the ability to support over a hundred hardware threads
(or logical CPUs) within commodity dual-socket servers [14]. In
order to make effective use of data center resources, distributed
computing and storage platforms need to achieve good scaling per-
formance not only across, but also within such systems. Therefore,
the focus of this paper is in studying the ability of Cassandra, a
popular NoSQL database designed for scale-out, to scale-up within
a high-thread count server.

1.1 Paper Contributions and Overview

In this paper, we provide an in-depth analysis of the performance
of Cassandra on a modern, high-thread count dual-socket server.
We first demonstrate that in spite of an abundance of hardware
resources, using default configurations of Cassandra and the YCSB
benchmarking tool, the database shows poor performance scaling
against thread count. We then analyze what can limit this scala-
bility and show that it is largely due to the software stack being
unaware of the underlying NUMA topology of the server [8], and
bottlenecks around global locks. We next show that through simple
reconfigurations of how Cassandra is deployed, its performance
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scaling properties can be significantly improved. We show how it is
possible to achieve up to 98% scaling efficiency against thread count,
which can enable Cassandra to exploit the performance capabilities
of the underlying hardware to the fullest.

While performing these studies, we discovered an opportunity
to improve the performance of OpenJDK [16], the open-source,
official reference implementation of Java Platform Standard Edition
(JavaSE) [10]. This paper describes our optimization, and the impact
it had on Cassandra. Note that, the impact of this contribution is
broader, and has the potential for improving the performance of
any Java-based workload running on any NUMA-based system.

Our results on Cassandra highlight the need to optimize de-
ployments of such applications on processors with high thread
counts with due consideration of their NUMA topology, and the
importance of optimizing software stack components on which it
depends (OpenJDK in our case) to be sufficiently NUMA aware.
Such optimizations can help enable distributed schedulers to use
such resources in the cloud more efficiently and also ensure that
database instances are configured appropriately so as to make the
most of available thread count and memory capacity.

The rest of this paper is structured as follows. Section 2 dis-
cusses related work. Section 3 describes our experimental setup
and the workloads we used to drive Cassandra. Section 4 describes
the performance scalability of a baseline configuration and the po-
tential upside from optimization. Section 5 describes the various
bottlenecks that we encountered, and Section 6 describes the op-
timizations made to improve performance scalability. We present
our final performance measurements in Section 7 and conclude in
Section 8 with recommendations for Cassandra deployments on
such servers.

2 RELATED WORK

Recent work has described the risks of prioritizing scale-out prop-
erties of distributed systems without paying attention to how well
individual computers in the system are utilized [15]. Our work
shares the same philosophy in that we focus on the performance
scaling properties of Cassandra within a single server. Similar work
in the context of Map-Reduce applications [2] running on large
thread count systems demonstrated that via network stack opti-
mizations, Hadoop could be made to scale linearly with threads.
The Sparkle layer [12] provided similar functionality by optimizing
network operations on Apache Spark and demonstrated that it is
possible to use the multiple cores for processing data efficiently.

Swaminathan and Elmasri [18] compared the performance of
MongoDB, HBase and Cassandra over varying workloads sizes
to determine their scalability on a cluster of 14 servers using the
Yahoo Cloud Serving Benchmark (YCSB) [5]. However, in their
study, each server CPU supported only 4 cores, hence they did not
encounter major challenges in scaling up. In fact, the scalability of
NoSQL databases on large thread count processors remains largely
unstudied by the research community.

Newer processors with very high thread counts are often orga-
nized using a NUMA approach, where cores are grouped together
into NUMA domains, and memory access time depends on the
proximity of the memory to the core that is trying to access it. Such
an underlying organization should influence both task scheduling
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Table 1: Experimental setup

CPU AMD EPYC™ 7601
Frequency 2.5GHz
E No of sockets 2
E Cores Per Socket 32
IThreads per socket 64
g Memory 512GB (32 x 16GB-DDR2400)
2 CPU AMD EPYC™ 7601
:‘:‘E Frequency 2.2GHz
E No of sockets 2
5 |Cores Per Socket 32
IThreads per socket 64
Memory 512GB (32 x 16GB-DDR2400)
NIC Intel 10-Gigabit X540-AT2
o 0s RHEL 7.5; Kernel 4.18
g VM OpenlDK/Oracle JDK 8u131
% Cassandra Apache Cassandra 3.10
< YCSB 0.12
Table 2: YCSB workloads tested
Workload |Description
A Update heavy workload which has a mix of
50/50 reads and writes
B Mix of 95/5 reads and writes. Read mostly
workload
C Read-only workload

Several new records are inserted, where the
D most recently inserted records are popular.
Read-latest workload

A client reads a record, modifies it and writes
back the changes.

and data placement especially in the case of workloads such as
in-memory databases. There are several published examples of the
benefits of such optimizations, including a study of how optimizing
data partitioning and placement in a column-oriented database can
improve performance [17], and how NUMA-aware tuning improved
mail and web server performance by 10-20% [19].

Previous studies on Cassandra [1] have demonstrated that it
scales well with threads. However, unlike us, they don’t investigate
of bottlenecks in the software stack that limit performance. More
importantly, the threads counts they consider are much lower that
what are available in high-end modern servers.

3 EXPERIMENTAL SETUP AND
BACKGROUND

All our measurements were performed using a pair of dual-socket

AMD EPYC™ 7601-based systems. Details of these systems are

provided in Figure 1. In our setup, one system runs the Cassandra

server (or servers), and the other runs a variable number of YCSB

clients [5], a program commonly used for benchmarking NoSQL
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Figure 1: NUMA topology for AMD EPYC™ 7601 CPU
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Figure 2: Dual socket topology of AMD EPYC™ 7601 based server

databases. In our studies we tuned the number of client instances
to obtain high server utilization.
Since we were concerned with studying scaling behavior, we

had to vary the number of active CPU cores in the server system.

This would normally lead to higher CPU frequencies at lower core
counts (due to increased availability of power headroom). Since the
purpose of our work was to analyze performance scaling purely
with respect to CPU resources, we disabled dynamic frequency
features completely, and ran both client and server systems at fixed
CPU frequencies as shown in Figure 1. Our machines communicate
over 10 GigE Ethernet and use high-performance NVMe-based
SSDs for storage.

Figure 2 lists the YCSB workloads that we used for our analysis.

These are default workloads that ship with YCSB, and are widely
used by popular benchmarking systems [9]. For our work, all the
workloads were configured to generate requests using a zipfian
distribution with replication factor set to 1 using default settings
for the database itself.
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3.1 Terminology

We briefly introduce the NUMA topology for EPYC™ here. As
shown in Figure 1, a single AMD EPYC™ 7601 package consists of
4 dies, each die consisting of a pair of core complexes (CCX0 and
CCX1). Each complex consists of 4 cores sharing an L3 cache. Each
core supports two hardware threads (2-way SMT). A single die has
2 memory channels. Hence, each package supports 32 cores (or 64
hardware threads) and 8 channels of memory. The default NUMA
configuration (which we use for our studies) is called Channel
Interleaving, where each die is configured as a NUMA node, and
memory accesses are inter-leaved across the two memory channels
on the die. Hence a dual-socket system such as the one used for
our studies features a total of 8 dies (or NUMA nodes), as shown in
Figure 2. Further details of the NUMA topology for EPYC™ can
be found in [14].
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Figure 3: Performance scaling of Cassandra on baseline and tuned configurations for YCSB workloads A and C

4 CASSANDRA PERFORMANCE SCALING

In this section, we present performance scaling data for Cassandra,
as measured on our test system, while driving it with a set of YCSB
clients with the set up described in the previous section.

We compare the performance scaling of three configurations of
the workload. The first configuration, which we use as a baseline,
uses workload defaults for various components of the software
stack (Cassandra, Java, Linux™ etc.). We compare this with the
scaling behavior obtained on tuned configurations of the workload
designed keeping the hardware topology of the server in mind.
Details of these techniques and hurdles encountered in doing so
are presented in the next section. Figure 3 illustrates how total
throughput scales versus increasing hardware threads (expressed
in terms of die count) for YCSB workloads A and C (we omit the
others for brevity). The throughput is reported in terms of speedups
over the throughput obtained when running a single Cassandra
server on one die or NUMA node. For each workload, the figure
presents performance scaling for the following configurations:

o Base: This is an untuned configuration that relies on default
values throughout the SW stack. A single Cassandra server
is mapped to an increasing number of NUMA nodes.

o Tuning-1:In this configuration, except in the 1 die case, we
run 2 Cassandra servers on the machine. So ‘2D’ implies each
server runs on its own die, in separate sockets. ‘4D’ implies
each server gets 2 dies and the pair of dies each server runs
on belongs to the same socket. ‘8D’ implies each server gets
one entire socket.

o Tuning-2:In this configuration, we scale the number of servers
along with the available number of dies. So 1D is one server
on a single die, 2D is two servers on two dies within a socket,
and so on.

It is quite clear from the figure that the tuned configurations can
achieve higher scalability than the baseline. The most promising
scaling results are obtained with Tuning-2. For example, workload
A gains 7.6x (out of a theoretical 8x) from scaling up from 1 to 8 dies,
which represents a scaling efficiency of 94%. However, for reasons
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discussed later in the paper, there may be other factors to consider
when selecting a particular configuration. Even so, Tuning-1, a
more moderate approach, still achieves 4.7x scaling (vs theoretical
8x). Both of these are far superior to the baseline. For example, for
workload A, Tuning-2 achieves 1.44x and 2.55x speed up over the
baseline for single socket (4 dies), and dual socket (8 dies).

In summary these findings show that the baseline configuration
does not scale well on modern servers offering very large thread
counts. However by configuring the entire software stack in a man-
ner that is aware of the underlying NUMA topology of the server
hardware, it is possible to achieve significant improvements in
scaling and throughput performance.

5 BOTTLENECK ANALYSIS

In this section we identify some of the possible reasons behind the
lack of good performance scaling in the baseline deployment of
Cassandra.

5.1 Hardware Resource Utilization

The first step in this type of analysis is to determine whether limi-
tations on available hardware resources explain the lack of perfor-
mance scaling. Figure 4 illustrates how the out-of-the-box deploy-
ment utilizes primary hardware resources for the YCSB workloads
under single and dual socket configurations. Through most of the
rest of this paper, we present results for two of the YCSB workloads,
A (50% Reads and 50% Updates) and C (100% reads), for reasons of
brevity.

The results show that the lack of performance scaling cannot
be explained by lack of hardware resources. In the dual-socket
case, average CPU utilization is actually lower by 23 percentage
points compared to the single socket case. Further, the workload
does not stress the 8 channels of DDR-2400 memory, utilizing only
12% of theoretically available bandwidth on average. Client-server
communications over the 10 GigE network did not pose challenges
for the NIC, and disk usage under this configuration is negligible.
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Source0 Sourcel Source2 Source3 Source4 Source5 Source6 Source7
Dest 0 3% 2% 2% 2% 2% 2% 2% 2%
Dest 1 2% 2% 2% 2% 2% 2% 2% 2%
Dest 2 1% 1% 1% 1% 1% 1% 1% 1%
Dest 3 1% 1% 1% 1% 1% 1% 1% 1%
Dest 4 1% 1% 2% 2% 2% 2% 2% 2%
Dest 5 2% 2% 2% 2% 2% 2% 2% 2%
Dest 6 1% 1% 1% 1% 1% 1% 2% 1%
Dest 7 1% 1% 1% 1% 1% 1% 1% 2%

Figure 5: Distribution of memory reads across 8 NUMA nodes

These results suggest that better tuning of the application and
software stack may help obtain higher levels of utilization of the
underlying hardware, and hence, higher throughput performance.

5.2 NUMA Awareness

As explained in Section 1, the EPYC™ 7601 consists of 4 dies, where
by default, each die and its associated memory appears to software
as a NUMA node. The dual-socket server in our studies therefore
has 8 NUMA nodes.

The degree of NUMA awareness of software refers to the extent
to which it recognizes the variability of performance in accessing
local versus remote memory and adapts its memory allocation
accordingly. A well optimized software stack will allocate memory
from the node where it is most frequently accessed.

We measured the NUMA awareness of the workload using hard-
ware performance counters, collected on the server system while
Cassandra processes requests generated by the client. Our findings
are presented in Figure 5. The figure shows how memory read
requests are distributed over the 8 NUMA domains. For example
the column labeled "Source 0" shows us how often cores in NUMA
node 0 issued memory reads to addresses belonging to the 8 NUMA
nodes including its own. The percentage is relative to the total
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Figure 4: Cassandra resource usage (baseline configuration)

number of memory reads issued by Cassandra during its execution,
hence all the values taken together add up to a 100%.

The table indicates that requests that originate on any given
NUMA node are equally likely to access any of the NUMA nodes in
the system (including itself). The same study for a NUMA-aware
workload should have generated the identity matrix. Clearly, Cas-
sandra is unaware of the importance of optimizing for NUMA
locality, and significant performance opportunity is available here.

5.3 Lock Contention

Multi-threaded database workloads often face performance scaling
challenges due to locks. However, since Cassandra supports weaker,
or tunable consistency levels, we did not expect locks to be a first
order performance limiter.

However, profiling data collected using the Java Flight Recorder [6]
shows that indeed, locks are a major factor that results in poor scal-
ing as thread count increases. Figure 6 plots the number of collisions
for the two hottest locks against increasing number of hardware
threads. The plot uncovers very poor scalability, showing a 4X in-
crease going from 16 to 32 threads, and a 9X increase from 16 to
48.

Lock Count
= = [} [}
Q w Q w
o o o o

u
o

— ||
4 8 16 32 48
Thread Count

o

M java.lang.ref.Reference$Lock

io.netty.util. ResourceLeakDetectorSDefaultResourceLeak

Figure 6: Lock contention in YCSB/Cassandra with increas-
ing hardware threads
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Figure 7: Profiling hot spots indicate significant increase in
lock contention with threads

Figure 7 shows how the above behavior results in a skew in the
top contributors to profiling hot-spots as we scale up from 64 to 128
hardware threads. In particular, we observe that Java’s concurrent
lock package nearly doubles its contribution to total execution time.
We analyzed stack traces in more detail and determined different
sources of these locks. The first is a function that is part of Cas-
sandra’s metrics calculations. In fact in a yet unreleased version
of Cassandra, this has been recognized as a limitation, and fixes
are being been implemented in this area [3]. The other locks we
found were traced to the netty library, an Java-based networking
library used by Cassandra. Till such time these sources of locks are
identified and optimized by the community they can manifest as
scaling bottlenecks at high thread counts. In our work instead, we
focus on how to achieve good scaling on modern server hardware
in the presence of such limitations.

6 MULTI-INSTANCE CASSANDRA WITH
NUMA BINDING

To help alleviate the issues around poor scaling within a Cassandra
server instance, we made two simple changes to our deployment.
The first was to deploy multiple server instances on the same phys-
ical server instead of one. Further, we deployed these in a NUMA
aware manner so as to maximize performance. We look at these de-
cisions in this section and their results, including how it uncovered
a performance opportunity in the Java Virtual Machine.

6.1 Multiple Server Instances

In our work, we chose to implement multiple Cassandra servers
on our dual-socket system. This can be realized in several ways,
based on whether the servers are isolated via virtual machines,
containers, or Linux processes. For example, it might be an attractive
proposition to create as many servers as there are NUMA nodes
on the system. However, this should be done keeping in mind the
amount of memory available per server, which depends on how
many of the total slots are populated. In our case, a fully populated
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system would allow for 256GB per server instance, which may be
sufficient for a variety of deployments. Also trade offs need to be
kept in mind around bottlenecks around networking and storage.
In our studies we considered two configurations: (i) one server per
socket, and (ii) one server per NUMA node (hence 4 servers per
socket, or 8 servers on the system). In each case, we ran the servers
on bare metal, i.e., as separate Linux processes.

6.2 NUMA Binding and JVM Bug

NUMA binding helps limit the threads of a computation to a prede-
fined set of cores or NUMA nodes. In addition, the memory accesses
they make are also, as far as possible, limited to a prescribed set
of memory channels or NUMA nodes. To do this we used both
numactl based directives in Linux to launch each server on a set of
NUMA nodes, and added -XX: +useNUMA flag (introduced in Java 6)
to our Java flags.

To our surprise, when we studied the performance of single
server instance bound to a single NUMA node, we did not achieve
the performance levels we expected. We analyzed the memory
access patterns using performance counter data (like those pre-
sented in Figure 5), and obtained the results reported in the first
two columns of Figure 8. We observe that that in spite of the above
directives, 75% of accesses still go to remote memory (either re-
mote memory channels within the socket, or remote channels on
the other socket). This indicated that the workload, in spite of
the NUMA directives, was not using memory in a NUMA-aware
manner.

This was root caused to a bug in the implementation of useNUMA
in OpenJDKS8. With the useNUMA flag, the JVM allocates as many
memory regions as there are NUMA nodes on the platform. These
memory regions are called 1groups (or Logical Groups) in Java.
The idea of these logical groups is to associate every NUMA node
with each group and bind those to respective NUMA nodes. This
way, the threads running on those NUMA nodes can access memory
bound to respective memory regions locally.

Debugging the above observation we determined that irrespec-
tive of the number of NUMA nodes that the application uses, Java
would allocate the maximum available logical groups on the plat-
form. Hence Java was effectively ignoring the numactl directive
provided to the application. For example, if Cassandra was bound
to one NUMA node (say 0), even then, the JVM during start up,
would allocate 8 logical groups. Due to this, only the first 1group
would be accessed by the node 0, and the rest would be left unused
or would result in remote accesses, depending on the size of the
memory heap requested.

After discovering this we implemented a patch to fix this in
OpenJDK. With this fix, during initialization, Java now allocates
exactly the number of lgroups as the number of NUMA nodes the
application is bound to. We tested the patch using Open]JDK8, and
it has been accepted for public release in OpenJDK11 [11].

The impact of the patch is shown in in columns three and four
in Figure 8: the remote memory accesses of Cassandra were almost
eliminated.

The resulting performance gains across all the YCSB workloads
are presented in Figure 9 for a single server instance bound to a
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Figure 8: NUMA traffic impact due to Java bug fix

NUMA node. On average, we observed between 26-28% improve-
ment in throughput across all the workloads underlining (a) the
importance of NUMA binding for this workload and (b) the value
of the fix to the Java Virtual Machine.

(@]

(=}

50000 100000 150000 200000 250000 300000

B Open)DK8 with patch B OpenJDK8

Figure 9: Performance impact of OpenJDK useNUMA patch

7 RESULTS

In this section we first review the optimized performance of two
configurations: first, running two Cassandra instances (one per
socket), and then with as many instances as available NUMA nodes.

7.1 Two Server Instances

In Figure 10, the baseline (4D:18S) is the single, tuned server, with the
above JVM fix, mapped to a single socket. This is compared against
the performance of two Cassandra instances, one per socket (8D:2S).
We observe on average a 1.9X increase in throughput across the 5
YCSB workloads, demonstrating very high socket-level scaling effi-
ciency across a variety of inputs. On measuring hardware resource
utilization in this configuration for workload A, we observed 95%
CPU utilization and 30% utilization of available memory bandwidth,
a dramatic improvement compared to Figure 4, the untuned case.
Figure 11 presents the NUMA traffic distribution for this configu-
ration for the same workload. The higher values along the diagonal
imply a larger fraction of memory accesses are now local. The small
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values in the upper right and lower left triangles imply that cross-
socket memory accesses have been minimized. However, the upper
left and lower right triangles indicate that within a socket, there is
a greater than 50% chance that memory requests will cross intra-
socket NUMA boundaries, suggesting that additional performance
opportunities remain available.

25

2
15
1
. I I I I I
0
A B C D F

W4D:1S m8D: 25

Throughput Gain (X)

Figure 10: Performance scaling with one Casssandra server
per socket

7.2 Variable Server Instances

Figure 12 shows the performance scaling results obtained from
running as many Cassandra instances as available NUMA nodes,
with the JVM fix, binding each instance to a node. With 4 dies,
the average throughput gain across the workloads over the 1 die
case within a socket is 3.95x, which represents an in-socket scaling
efficiency of 98%. With 8 dies, the throughput gain on average is
7.3X, representing a system-wide scaling efficiency of 90%.

The NUMA traffic distribution for 8 servers processing workload
A is presented in Figure 13, demonstrating that with the optimized
mapping and bug fixes in the JVM, we were able to almost eliminate
all remote memory accesses, and hence achieve the scaling results
presented earlier.

8 CONCLUSIONS

In summary, our work has demonstrated methods to extract good
"scale-up" characteristics from Cassandra. We have illustrated that
a single server instance of Cassandra (i) does not scale well to
the large number of hardware threads on offer by modern server
systems, and (ii) is unaware of and fails to take advantage of the
underlying NUMA topology of modern server hardware that fea-
tures multiple such NUMA domains. In fact, the second limitation
applies to OpenJDK’s implementation of Java as well, which has
significant implications on a large class of enterprise applications.
In separate testing we measured that the fix that we described in
this paper results in 11% gain in performance on another enterprise
Java workload.

We demonstrated how by mapping Cassandra server instances
to NUMA domains and by improving the performance of OpenJDK,
Cassandra is able to extract excellent performance scaling charac-
teristics from a single system, achieving over 90% scaling efficiency
in both single and dual-socket configurations.
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Source 0 Sourcel Source2 Source3 Source4 Source5 Source 6 Source?7

Dest 0
Dest 1
Dest 2
Dest 3
Dest 4
Dest 5
Dest 6
Dest 7

Figure 11: NUMA traffic distribution with one Cassandra server per socket
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Figure 12: Performance scaling with up to 8 Cassandra servers

Source 0 Sourcel Source2 Source3 Sourced4 Source5 Source6 Source7

Dest 0 0.17% 0.18% L 0.15% 0.15%
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Dest 6 0.04%

Dest 7 0.13% 0.11% 0.16% . 0.11% 0.16%

Figure 13: NUMA traffic distribution with one Cassandra server per NUMA node
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Instance sizing for Cassandra servers is of course a more com-
plex issue. Database administrators should consider memory and
storage requirements per instance, availability, network bandwidth
usage and various performance metrics (average and p99 latencies,
for example) when choosing an instance size. We hope that our
work will provide useful guidance to administrators by highlight-
ing that in addition to these factors, the NUMA architecture of the
underlying servers, and NUMA awareness of the software stack
needs to be of primary consideration when designing and tuning a
deployment.
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