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ABSTRACT
Caching is a common method for improving the performance of
modern web applications. Due to the varying architecture of web
applications, and the lack of a standardized approach to cache man-
agement, ad-hoc solutions are common. These solutions tend to be
hard to maintain as a code base grows, and are a common source of
bugs. We present Cachematic, a general purpose application-level
caching system with an automatic cache management strategy.
Cachematic provides a simple programming model, allowing de-
velopers to explicitly denote a function as cacheable. The result
of a cacheable function will transparently be cached without the
developer having to worry about cache management. We present
algorithms that automatically handle cache management, handling
the cache dependency tree, and cache invalidation. Our experiments
showed that the deployment of Cachematic decreased response
time for read requests, compared to a manual cache management
strategy for a representative case study conducted in collaboration
with Bison, an US-based business intelligence company. We also
found that, compared to the manual strategy, the cache hit rate was
increased with a factor of around 1.64x. However, we observe a sig-
nificant increase in response time for write requests. We conclude
that automatic cache management as implemented in Cachematic
is attractive for read-domminant use cases, but the substantial write
overhead in our current proof-of-concept implementation repre-
sents a challenge.

ACM Reference Format:
Viktor Holmqvist, Jonathan Nilsfors and Philipp Leitner. 2019. Cachematic
– Automatic Invalidation in Application-Level Caching Systems. In Tenth
ACM/SPEC International Conference on Performance Engineering (ICPE ’19),
April 7–11, 2019, Mumbai, India. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3297663.3309666

1 INTRODUCTION
Modern web applications are often utilized by millions of users and
the growth of the internet shows no signs of slowing down. Conse-
quently, an ever increasing amount of data needs to be processed
and served [16]. As web applications have become more and more
complex over time, the need for processing data in an efficient way
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has become of great importance. A general approach for improv-
ing performance in computer systems is caching. Caching can be
employed on multiple levels, for example in a network [22, 25],
in a computer or on a single CPU [8]. The purpose of a cache is
to temporarily store data in a place that makes it accessible faster
compared to if it was fetched from its original source [26].

Application level caching is the concept of caching data internal
to an application. The most common use case is caching of data-
base results, in particular for queries that are executed frequently
and involve significant overhead [24]. A challenge with application
level caching, and caching in general, is cache management, i.e.,
keeping the cache up to date when the underlying data changes,
and avoiding stale or inconsistent data being served from the cache.
One of many examples illustrating the complexity in cache manage-
ment is a major outage of Facebook caused by cache management
problems1.

A common method for cache management is (explicit) cache
invalidation. Cache invalidation works by directly replacing or re-
moving stale data in a caching system [19, 21] (as opposed to, for
instance, time based invalidation [1], which simply purges cache
entries if they have not been used for a defined time). However,
explicit cache invalidation requires that the system knows which
database results were used to derive the cache entry. Whenever
those resources are updated, the entry should be purged or up-
dated. Today, cache invalidation is implemented in the application
layer. Developers needs to explicitly purge invalid results, which is
cumbersome and error-prone.

In this paper we present the design, underlying algorithms,
and a proof-of-concept implementation of Cachematic, a general-
purpose middle-tier caching library with an automatic invalidation
strategy. Cachematic has been developed in collaboration with
Bison2, with the goal of improving cache management in their web-
based business intelligence solution. Cachematic automatically adds
SQL database query results to the cache, but, more importantly,
also tracks when these results become stale and updates stale re-
sults automatically. Due to technical requirements from Bison, the
Cachematic proof-of-concept has been implemented in Python for
the SQLAlchemy framework. However, the same concept can also
be applied to other systems. The system is enabled on method level
through code annotations, and does not require any other developer
input.

We evaluate the system through experiments with representative
workloads reflecting both, end user and administrator usage. We
find that Cachematic improves cache hit rates by 69% as compared

1https://www.facebook.com/notes/facebook-engineering/more-details-on-todays-
outage/431441338919
2https://bison.co/
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to the existing manual solution, leading to a median read request
response time that improved by a factor of 1.3. However, our cur-
rent implementation imposes a severe write request overhead. We
discuss reasons for this and potential remediation strategies, which
we plan to work on as part of our future work. However, given
that read request performance is much more important to Bison,
the company still intends to go forward with Cachematic, despite
present limitations.

The work underlying this paper has been conducted by the first
two authors as part of their thesis project at Chalmers University of
Technology. More information and technical details can be found
in the master project report [12].

2 BACKGROUND AND MOTIVATION
Application level caching is the concept of caching data internal
to an application, oftentimes database results. The cache is typ-
ically implemented as a key-value store or in-memory database,
using technologies such as Redis or Memcached [10, 18]. The basic
principle is that a key-value store provides O (1) performance on
retrieving cached results, which is substantially more efficient than
a typical database query.

Cache management is the process of keeping the cache up to
date when the underlying data changes, and avoiding stale or in-
consistent data being served from the cache. A common method for
cache management is cache invalidation. Cache invalidation works
by directly replacing or removing stale data in a caching system
[19, 21]. In order to determine when a cache entry is invalid, the
system needs to know what resources, such as database results or
data from other external sources, were used to derive the cache
entry. Whenever those resources are updated, the entry should be
purged or updated. A central aspect of cache invalidation, espe-
cially in the context of invalidation of cached database queries, is
the granularity of the invalidation process, which we illustrate by
the following example. A cache entry consists of a set of tuples
R from database relation T . With coarse-grained invalidation, the
cache entry could be invalidated by any update on the table T . In a
more granular setting, the cache entry could be invalidated only if
the selected tuples R are actually affected by an update. If the cache
entries consist of tuples from multiple relations with joins and com-
plex where clauses, the task of determining whether a cache entry
should be invalidated becomes more complicated. The desired level
of granularity strongly depends on the frequency of updates, and
fine-grained invalidation might involve significant overhead. The
balance of granularity and overhead has to be considered when
invalidating cache entries for optimal performance [2, 3].

2.1 Manual Caching at Bison
The company Bison has developed an application-wide caching
system for the web API of their business intelligence platform. The
web API is implemented in Python and utilizes relational databases
as primary storage. The current caching system uses a simple de-
pendency table to keep the cache up to date with the database.
The system employs a decorator interface, similar to the cacheable
function interface proposed in this paper. The dependency graph is
managed manually by the developers, by specifying dependencies
as strings returned together with the result to be cached. Whenever

the database is updated, the relevant strings are looked up in the
dependency graph to identify cache entries to be invalidated.

@cache.decorator()
def funds(max_age=10):

query = sqlalchemy.text("""
SELECT * FROM fund
WHERE age_years > :max_age""")

funds = db.execute(
query, max_age=max_age).all()

# Add scoped primary key of each included fund
dependencies = ["fund:{}".format(fund.id)

for fund in funds]

# Global dependency to invalidate on new funds
dependencies.append("funds")

return funds, dependencies

Figure 1: Example of a cacheable function utilizing theman-
ual solution at Bison.

Figure 1 shows a cacheable function utilizing the manual solu-
tion, and illustrates how the dependency strings are commonly
generated. A dependency string is generated for each row returned
in the query, consisting of the primary key prefixed with the table
name to ensure uniqueness across tables. Additionally, a global
dependency for the table is appended to account for edge cases
where the cached entry cannot be identified by an existing row.

Bison has established developer guidelines for dependency gen-
eration, to ensure the same patterns are used throughout the appli-
cation. In many cases, in particular with complex queries, it is still
very hard to determine the dependency strings required to cover
all edge-cases.

def update_fund_age(fund_id, age_years):
query = sqlalchemy.text("""

UPDATE fund SET age_years = :new_age
WHERE id = :fund_id""")

result = db.execute(query,
new_age=age_years, fund_id=fund_id)

cache.invalidate("fund:{}".format(fund_id))

return result

Figure 2: Example function explicitly invalidating the cache.

Figure 2 illustrates the manual invalidation process, explicitly
invalidating hard coded strings as determined by the developers on
implementation. This solution has historically caused numerous
bugs in the Bison web application. Further, developers often over-
invalidate results to be on the safe side. For instance, they will often
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invalidate an entire table when simply invalidating a specific result
would have been sufficient. This leads to a loss of performance. The
goal of our work is to automate the cache management, avoiding
cache invalidation bugs and improving the performance for read
requests (queries).

3 CACHEMATIC
We now present our automatic application-level caching solution,
Cachematic, in detail. The design of Cachematic is based on a com-
bination of ideas from existing research and lessons learned from
the manual caching system that is currently in use at Bison. The
caching library is intended to eventually replace manual invalida-
tion.

3.1 Overview
A high-level architectural overview of Cachematic is provided in
Figure 3. Cachematic is enabled and configured through simple an-
notations in the application code. The actual library has two main
elements, a read request processor (handling SQL SELECT state-
ments) and a write request processor (handling data-modifying
SQL statements). The library interacts with two data storage sys-
tems, a SQL database which is the persistent data storage of the
system, and a key-value store, which is used as a cache. The goal
of any caching system is to serve as many query results as possible
from the fast key-value store, without leading to data inconsisten-
cies with the SQL database. Both, read and write query processors,
make use of four additional services, a SQL statement parser, a hash
function, which is used to map statements or SQL templates to keys
in the key-value store, a service representing the underyling data
dependency tree, and a function for serializing data that is to be
cached to the key-value store.

Application Code

….

End Users

Statement
Parser

Dependency 
Tree

Hash 
Function

Read Request 
Processor

Write Request 
Processor

SQL 
Database

Key-Value 
Store

Cachematic

Code Annotations

Serialization 
Function

Figure 3: Architectural overview of Cachematic.

We now discuss the Cachematic programming model, the basic
algorithms behind the read and write request processors, as well as
concrete implementation issues that we faced when building the
Cachematic proof-of-concept.

3.2 Programming Model
The current proof-of-concept for Cachematic is implemented in
Python. It is enabled by application developers on Python function
level, by annotating a function with @cache_manager.
cacheable. The library scans annotated functions for SQL state-
ments, and handles all statements that it finds. It should be noted
that even in a system using Cachematic, developers are free to man-
ually manage caching for a subset of queries, by simply not using
this annotation for specific functions. A simple usage example from
Bison is given in Figure 4.

@cache_manager.cacheable
def get_user(user_id, include_profile=False):

user_query = sqlalchemy.text("""
SELECT * FROM app_user
WHERE id = :user_id """)

result = db.execute(user_query,
user_id=user_id).first()

user = dict(result)

if include_profile:
profile_query = sqlalchemy.text("""

SELECT * FROM app_user_profile
WHERE user_id = :user_id """)

result = db.execute(profile_query,
user_id=user_id).first()

user['profile'] = dict(result)
if result else None

return user

Figure 4: Example of cacheable function fetching a user and
optionally it’s profile by executing two database queries us-
ing the SQLAlchemy Python library.

Note that the example contains multiple SQL queries, which is
quite common. Cachematic handles all SQL statements in a function,
independently as to whether they are executed all the time (as in
the case of the first query) or only based on a specific code condition
(second query). Further note that real-life queries are often defined
as templates, to be instantiated at runtime (i.e., :user_id in the
example).

Further note that the example contains only queries that do
not mutate the database state. Evidently, this is not always the
case. Cachematic needs to react differently to queries (for which
it primarily needs to determine whether the result can be served
from cache or not) than to, e.g., UPDATE statements, for which it
may need to invalidate existing cache entries. This is discussed in
the following.

3.3 Caching and Invalidation Algorithms
Algorithmically, Cachematic is based on three procedures: a caching
algorithm, a dependency management algorithm, and an invali-
dation algorithm. To optimize performance, invalidation is done
hierarchically in multiple steps.
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3.3.1 Caching Algorithm. The basic caching algorithm handles
determining whether a cached value exists for a given query, as
well as entering the return value from the SQL database in case
it does not. This process includes generating the cache key from
the function name and the arguments of the function call using
the hash service, and managing scope to capture read queries and
nested function calls to pass to the dependency algorithm. The
scope also prevents multiple equivalent calls to the same function
to be executed simultaneously. The cache algorithm is illustrated
in Algorithm 1.

Algorithm 1: The caching algorithm.
Input :Function to be cached f n and arguments

(a1,a2, ...,an )
Output :Return value of f n(a1,a2, ...,an )

1 k ← дenCacheKey ( f n,a1,a2, ...,an );

2 if scopeStarted (k ) then
3 wait until done;
4 end

5 cached ← дetCached (k );

6 if cached then
7 return cached ;
8 end

9 startScope (k );

10 result ← f n(a1,a2, ...,an );
11 storeCached (k, result );

12 (queries,nestedKeys ) ← endScope (k );

13 dependencyAlдorithm(k,queries,nestedKeys );

14 return result;

In essence, the caching algorithm generates a key (to be used in
the key-value store) from the query signature. If the cache (i.e., the
key-value store) contains a result for this key it is returned (lines 6
– 8). Otherwise, the result of the query is stored back to the cache
(lines 9 – 12), and the underlying dependency tree is updated (line
13). For this, we rely on the dependency management algorithm,
which is described below. Another core principle of our approach
is the usage of invalidation scopes, which avoid queries being eval-
uated multiple times against multiple write statements within the
same execution context. A deeper discussion of invalidation scopes
is provided in Section 3.3.5.

3.3.2 Dependency Management Algorithm. The dependency man-
agement algorithm is primarily used to handle queries, i.e., state-
ments that do not modify the state of the SQL database. Statements
that update results are handled by the invalidation algorithm, which
is discussed in Section 3.3.3. The dependency algorithm utilizes
meta data extracted from queries executed within the scope of a
cacheable function to construct a dependency graph.

The dependency data structure is modeled as a directed graph
consisting of nodes in three layers, hereafter called the dependency
graph, illustrated in Figure 5. The nodes in the first layer represent

c1

c2

c3

c4

q1

q2

q3

q3

k1

k2

k3

k4

Figure 5: Schematic overview of a dependency graph. c1, c2,
c3 and c4 are columns, q1, q2, q3 and q4 are queries and k1, k2,
k3 and k4 are function keys.

table columns, which are the entry points of the graph. The nodes
in the second layer represent queries. An edge is established from
the first to the second layer if a column occurs in a query. The nodes
in the third layer are cache keys generated by the cache algorithm,
using the hash service. A node in the third layer will have an
incoming edge from the second layer if a query was executed during
the scope of the cacheable function. If a cacheable function contains
a call to another cacheable function, an edge within the third layer
will also be established from the key of the nested function call to
the key of the parent call.

When queries are passed to the dependency management al-
gorithm, the query strings are parsed using the statement parser
to extract relevant meta data such as queried tables and columns.
The tables and columns are used in conjunction with the database
schema to include constraints such as primary and foreign keys
in the meta data. In addition, boolean expressions from “where”
and “join” clauses are converted to abstract syntax trees (ASTs)
for easier evaluation. The ASTs generated from “where” and “join”
clauses are also inspected to construct a set of tables filtered by
primary key and a column equality map. Canonical column identi-
fiers are produced by concatenating database identifier, table name
and column name. The extracted information is then used to build
the dependency graph. Nodes are added to the first layer for each
canonical column identifier, with edges to corresponding queries
in the second layer. Query nodes consist of the query string, pa-
rameters and query meta data extracted earlier including a hash of
the query results. The cache key generated for the call is inserted
into the third layer with edges from each query node and the cache
keys of nested function calls.

The dependency management algorithm is illustrated in Algo-
rithm 2. The algorithm begins by creating a key node, which is
added to the set of nodes to be added to the dependency graph.
Captured queries are iterated, and for every query the algorithm
extracts meta data, computes a query result hash, and generates
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Algorithm 2: Dependency management algorithm.
Input :Cache key k , captured queries Q and cache keys

of nested function calls N
Output :Nodes and edдes to be added to dependency

graph

1 knode ← KeyNode (k );
2 nodes ← {knode };
3 edдes ← ∅;

4 for q ∈ Q do
5 qmeta ← parseQuery (q);
6 qhash ← computeResultHash(q);
7 qnode ← QueryNode (q,qmeta ,qhash );
8 db ← dbId (qmeta );
9 table ← tableName (qmeta );

10 add qnode to nodes;

11 for c ∈ columns (qmeta ) do
12 cid ← db + table + c;
13 cnode ← ColNode (cid );
14 add cnode to nodes;
15 add (cnode ,qnode ) to edдes;
16 end

17 add (qnode ,knode ) to edдes;
18 end

19 for n ∈ N do
20 nnode ← KeyNode (n);
21 add nnode to nodes;
22 add (nnode ,knode ) to edдes;
23 end

24 return nodes, edдes;

a query node, which is added to the set (lines 5 – 10). For each
column in the query, a column node is generated and is added to
the set of nodes (lines 11 – 16). Furthermore, an edge is added from
the column node to the query node (line 15). An edge is also added
from the query node to the key node (line 17). Finally, a node is
added for every nested function call and consequently, edges from
these nodes to the key node (lines 19 – 23).

3.3.3 Invalidation Algorithm. The invalidation algorithm combines
information from the dependency graph with meta data extracted
from write statements to identify query candidates for invalidation
and eventually carry out the invalidation itself.

In contrast to queries, which are only processed in the scope of
cacheable functions, write statements executed in any scope must
be processed to ensure consistency. When a write statements is
received, the SQL statement is parsed and processed in a similar
fashion to queries, with some technical variations depending on
the type of statement. In the case of INSERT INTO and DELETE
FROM, all columns of the affected table are captured as the query
will result in an entire row being added or removed. For UPDATE,
only the affected columns are captured. Additionally, inserted rows
and new values are extracted for inserts and updates respectively.

Updates and deletes can also contain “where” clauses, which are
again parsed into ASTs.

After processing the write query, the extracted columns are
looked up in the first layer of the dependency graph. For matching
nodes, edges are traversed to the next layer to identify correspond-
ing queries that will be considered for invalidation. Subsequently,
the queries are tested for invalidation using a series of tests, each a
more granular attempt to exclude the query from further testing.
The tests determine whether the query should be invalidated, ex-
cluded from invalidation or passed through for further testing. If
invalidation can not be determined with certainty by any test, the
query is passed to a final hash based test. In the final test, the hash
of the query results stored in the dependency graph, is compared
to a hash of the results after the write query has been executed. If
the hashes differ, the query results changed due to the write query
and any dependent function calls should be invalidated. Queries
with unchanged hashes are excluded from invalidation. This en-
sures invalidation correctness. These exclusion tests are described
in detail in Section 3.3.4.

Cache keys to be invalidated are retrieved by following the edges
from the queries marked for invalidation to the third layer of the
dependency graph and traversing the third layer recursively to
capture functional dependencies. Invalidation is carried out by
deleting the keys in the cache and removing associated nodes from
the dependency graph.

The invalidation algorithm is illustrated in Algorithm 3. To sum-
marize, the invalidation algorithm parses the write query (line 4)
and looks up the canonical column identifiers in the dependency
graph to find the corresponding nodes (lines 7 – 10). Each node,
representing a read query, is evaluated against the write query to
find if invalidation of the corresponding keys is necessary (lines 12
– 24). Keys marked for invalidation are extended with dependent
keys by following the edges in the dependency graph (lines 25 –
29). The keys are returned to the caller (line 30).

3.3.4 Hierarchical Invalidation. To reduce overhead of the invali-
dation algorithm, it is critical to reduce the number of queries that
are tested against incoming write statements. For this reason, a
hierarchical approach has been applied. This process starts with the
first layer of the dependency graph, by excluding queries without
matching column nodes. It continues with exclusion tests optimized
by query type.

The exclusion test for inserts is depicted in Algorithm 4. The
algorithm returns "yes", "no" or "maybe" to indicate whether invali-
dation is required and begins by extracting the AST of the "where"
clause of the read query (line 1). If there is no "where" clause, "yes"
is returned unless the read query is limited, in which case it needs
further evaluation and "maybe" is returned (lines 2 – 7). If the table
in the write query is filtered by primary key in the read query,
"no" is returned (lines 8 – 10). Each inserted row is now evaluated
against the "where" AST of the read query, by reducing the AST
and substituting variables for the values in the insert (lines 11 – 13).
If none of the variables in the AST are known, "maybe" is returned
(lines 14 – 16). If a row satisfies the AST and all variables are known,
"yes" is returned (lines 17 – 20). If a row satisfies the AST and some
variables are unknown, "maybe" is returned (line 21). If none of
these tests passed, "no" is returned (line 24).
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Algorithm 3: The invalidation algorithm.
Input :Captured write queryw and dependency graph D
Output :Set K of keys to be invalidated

1 Kdirect ← ∅;
2 Kindirect ← ∅;
3 Q ← ∅;
4 wmeta ← parseQuery (w );
5 db ← dbId (wmeta );
6 table ← tableName (wmeta );

7 for c ∈ columns (wmeta ) do
8 cid ← db + table + c;
9 nodes ← lookup cid in D;

10 add nodes to Q ;
11 end

12 for node ∈ Q do
13 (q,qmeta ,qhash ) ← node;

14 invalidate ← evaluate (w,wmeta ,q,qmeta );

15 if invalidate = yes then
16 keys ← lookup node in D;
17 add keys to Kdirect ;
18 else if invalidate =maybe then
19 if rhash , computeResultHash(q) then
20 keys ← lookup node in D;
21 add keys to Kdirect ;
22 end
23 end
24 end

25 for key ∈ Kdirect do
26 parents ← lookup key in D;
27 add parents to Kindirect
28 end

29 K ← Kdirect ∪ Kindirect ;

30 return K

A query where the primary key of a queried table is tested for
equality with a constant can never be affected by an insert into that
table [2]. A set of tables filtered by primary key, where no other
condition can satisfy the “where” clause, is included in the query
meta data stored in the dependency graph. In the first exclusion test
for inserts, queries are excluded from further testing by checking if
the table affected by the insert is contained within this set.

The second test for inserts involves evaluating the ASTs gener-
ated from the “where” clauses of the remaining queries. For each
inserted row, field references in the AST are replaced with matching
values from the row. The ASTs are then evaluated. If every AST
evaluates to false, the query can be excluded from further testing.

Evaluation of the query AST is the primary test for updates and
deletes, but no rows are available to substitute for fields in the
AST. However, equality conditions necessary to satisfy the “where”
clause of the write query can be extracted and substituted for the

Algorithm 4: Query evaluation for inserts.
Input :Write queryw , read query r and meta datawmeta

and rmeta
Output : Invalidation status yes,no ormaybe

1 rast ← whereAst (rmeta );

2 if rast = Nothinд then
3 if limited (rmeta ) then
4 returnmaybe;
5 end
6 return yes;
7 end

8 if tableName (wmeta ) ∈ pkFiltered (rmeta ) then
9 return no;

10 end

11 for row ∈ rows (w ) do
12 f ields ← expand (row, rmeta );
13 (reduced,unknowns ) ← reduceAst (rast , f ields );

14 if unknowns = All then
15 returnmaybe;
16 end

17 if evaluateAst (reduced ) then
18 if unknowns = None ∧ ¬limited (rmeta ) then
19 return yes;
20 end
21 returnmaybe;
22 end
23 end

24 return no;

fields in the query AST. If there is no “where” clause in the write
statement, it is certain the query is affected unless it is limited, and
it can be passed directly to invalidation.

This algorithm is specified more detailedly in Algorithm 5. The
evaluation algorithm for updates and deletes returns "yes", "no"
or "maybe" similarly to the evaluation algorithm for inserts. The
algorithm first extracts the AST of the "where" clauses for both the
query and the write query (line 1 – 2). If either of the ASTs are
empty, no comparison between the two can be made. In this case the
algorithm will check if the query includes a limit clause (line 4) and
in that case return "maybe". If no limit clause was included in the
query, the algorithm will return "yes". If both ASTs are not empty,
the two are compared to find common columns and the query AST
is then reduced based on the common columns (lines 9 – 10). If
neither of the columns used for filtering in the query is present
in the write query the algorithm returns "maybe". Otherwise, the
reduced AST is evaluated. If the evaluation returns true, there are
no unknown variables in the read AST and the query is not limited,
the algorithm returns "yes" (lines 14 – 16). If the evaluation of the
AST returned true, but there are unknown variables or the query is
limited, the algorithm returns "maybe". Lastly, if the algorithm did
not determine invalidation to be necessary or potentially necessary,
"no" is returned.
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Algorithm 5: Query evaluation for updates and deletes.
Input :Write queryw , read query r and meta datawmeta

and rmeta
Output : Invalidation status yes,no ormaybe

1 rast ← whereAst (rmeta );
2 wast ← whereAst (wmeta );

3 if rast = Nothinд ∨wast = Nothinд then
4 if limited (rmeta ) then
5 returnmaybe;
6 end
7 return yes;
8 end

9 f ields ← expand (equalityConditions (wast ), rmeta );
10 (reduced,unknowns ) ← reduceAst (rast , f ields );

11 if unknowns = All then
12 returnmaybe;
13 end

14 if evaluateAst (reduced ) then
15 if unknowns = None ∧ ¬limited (rmeta ) then
16 return yes;
17 end
18 returnmaybe;
19 end

20 return no;

3.3.5 Invalidation Scopes. It is necessary to avoid queries being
evaluated multiple times against multiple write statements within
the same execution context. This is handled through invalidation
scopes in Cachematic. Invalidation scopes work similarly to the
scope within a cacheable function in that it groups write queries
executed within the same context to be processed in bulk. By record-
ing write statements as they happen and deferring processing until
the scope ends, evaluation of queries can be remembered across
write statements. For example, if a query is marked for invalidation,
it is not necessary to evaluate it again, and it can be skipped for
the remaining writes within the same scope. Invalidation scopes
are also the basis of many implementation specific optimizations,
which have already been outlined in the invalidation algorithm in
Figure 3.

3.4 Cachematic Implementation
We implemented the ideas described so far in a proof-of-concept
Python library called Cachematic. Cachematic was designed with
three major goals in mind: portability, usability and performance.
Portability is achieved by using the adapter pattern to facilitate
communication with external storage, such as the database and
the key-value store. Usability is realized through a single-function
programming model, and automatic invalidation based on the al-
gorithms described earlier. By caching internal data structures to
reduce overhead, we attempted to improve performance for queries,
which was a primary goal of this work.

We implemented Cachematic in Python 2.7, and for the SQLAlchemy
SQL library. We use the SQLAlchemy event system3 to set up lis-
teners for the core events before_cursor_
execute and after_cursor_execute. The SQLAlchemy
adapter also implements the methods get_query_result_
hash and get_schema. The schema is necessary for post process-
ing parsed queries, as the schema holds primary and foreign key
information. The schema is also necessary to retrieve column in-
formation not available in the queries.

We used PostgreSQL4 as a SQL database and Redis5 as key-value
cache implementation, although our system is not dependend on
the specific databases being used. As a hashing function, we have
made use of the PostgreSQL implementation of MD5. Generating
the hash in the database removes network and mapping overhead
associated with fetching the entire result set to the application.

We are now in the process of releasing Cachematic as open
source software to the community, pending agreements with Bison.

3.4.1 SQL Parsing. The SQL statement parser, which is required
for multiple of the algorithms that Cachematic is based on, was
implemented using pyparsing6, a monadic parsing combinator li-
brary for creating recursive-descent parsers.We developed a custom
grammar based on an existing example for parsing SQLLite SELECT
statements. Our custom parser supports a large subset of Post-
greSQL’s dialect of SQL, including SELECT, INSERT INTO, UPDATE
and DELETE FROM statements, driven by the concrete needs of the
Bison web application. Supporting the entire SQL language includ-
ing various dialects would be a significant task, and was out of
scope for this proof-of-concept.

“Where” clauses are converted to ASTs trees using the Python
abstract syntax grammar from the ast module7. This is the gram-
mar used by Python itself, and can be compiled and evaluated using
the builtins compile and eval.

3.4.2 Scope Management. Cachematic keeps track of the current
scope to enable tracking of queries and nested function calls nec-
essary to build the dependency graph. A context interface with
a default implementation was developed to handle this. It keeps
a stack of cache keys, representing the scope of function calls. A
cache key is pushed on top of the stack when a scope starts and
popped when a scope ends, such that the cache key for the inner-
most function call is always on top of the stack. The context also
keeps track of queries and nested keys for each key on the stack.
Queries get recorded to the key on top of the stack whenever they
occur. Nested calls are captured at the end of every scope. If the
stack is not empty after popping a key, the popped key is captured
as a child of the key on top of the stack.

3.4.3 Serialization. A serialization module was developed to help
generate cache keys and serialize cached results. Part of the require-
ments for usage in Bison is that caching of values of user defined
types such as class instances, in addition to built-in types, is possible.
Serializing arbitrary objects using standard serialization formats
such as JSON in Python requires custom code per user defined type,
3http://docs.sqlalchemy.org/en/latest/core/events.html
4https://www.postgresql.org
5https://redis.io
6http://pyparsing.wikispaces.com/
7https://docs.python.org/2/library/ast.html
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which was not reasonable to do within the scope of this project.
Hence, we used the Python-specific serialization module pickle8,
which can handle arbitrary objects. Unfortunately, pickle has a bad
reputation for being insecure, as a malicious entity can perform
arbitrary code injection on de-serialization [7]. In order to avoid
this, a wrapper for pickle was developed, combining the serialized
object with a hmac [13] signature. The signature is generated from
the serialized object and a secret key, and is prepended to the output.
On de-serialization, the signature is compared to a newly generated
one before unpickling the serialized object and raises an exception
on mismatch.

4 EXPERIMENTAL EVALUATION
In order to evaluate the usefulness and performance of Cachematic,
we have conducted measurement experiments using representative
workloads from Bison and a test installation of the Bison production
web application in Amazon EC2.

4.1 Experimental Setup
The main goal of our experiments was to evaluate the usefulness
of Cachematic in an industrial context. Our expectation going into
the experiment was that Cachematic would be able to cache more
requests than the manual solution (as developers sometimes would
forget to cache results, or implement manual caching suboptimally),
and that this would in turn significantly improve the response time
of read requests. However, due to the overhead imposed by runtime
evaluation of cache results (and the simple fact that caching does
not help with write requests per se), we expect write requests to
become slower. Hence, we have formulated the following three
research questions.

RQ1: Can Cachematic improve the cache hit rate w.r.t. manual
caching?

RQ2: Does using Cachematic improve the response time in read
requests w.r.t. manual caching?

RQ3: What overhead does Cachematic impose on write requests
w.r.t. manual caching?

ExperimentWorkloads. In close collaboration with application ex-
perts from Bison, we have defined the workload patterns described
in Table 1 to use for our experiments. These were considered by
Bison to be representative of production usage of the application.
For the purpose of this study it is not essential to understand the
semantics behind the vocabulary given in the table – descriptions
of tasks are primarily given as an illustration.

We created two types of workload patterns. User tasks simu-
late typical behaviors of a Bison end user. All of these tasks are
read-only. Conversely, admin tasks represent typical behaviors of
Bison administrators. These are a combinations of read and write
requests. All workload patterns consist of 2 or more consecutive
HTTP requests (denoted by Req. in the table). Further, patterns are
assigned a weight (column Wgt.). Patterns with weight 5 are, on
average, executed 5 times more often than patterns with weight 1.

8https://docs.python.org/2.7/library/pickle.html

Test Environment. We used AWS CloudFormation to provision a
testbed in AWS EC2. The testbed consisted of a RDS database of
type db.m4.large, four EC2 instances of type m5.large, and a Elas-
tiCache cluster with a single Redis node of type cache.m3.large.
The EC2 instances were provisioned with Ubuntu 16.04 as operat-
ing system, two as web servers running the Bison application, and
the other two are used as background workers in Bison, to offload
long-running tasks from the web servers. PyPy 5.8 was used as
python interpreter. The web servers ran the application through
Gunicorn 19.7.1, and the background workers used Celery 4.1.0.
The RDS database was running PostgreSQL 9.6.6. Another separate
instance was used for load generation. Data was collected in spring
2018.

Tooling and Setup. We used the Python-based open source load
testing tool Locust9 to execute our experiments. To answer RQ1,
we added a small modification to Locust to record whether a spe-
cific request was served from cache. To this end, we extracted and
recorded an HTTP header (x-cache-hit) which indicates if the
response data was served from the cache.

Our experiments were set up with 20 concurrent simulated users.
Based on discussions with application experts from Bison, we des-
ignated 4 admin users (primarily executing write requests) and
16 end users (exclusively executing read requests, as per Bison’s
internal application business logic). An experimental run took a
total of 60 minutes, with each user periodically executing one of
their designated tasks against the system. Each user was configured
with a 2-second delay between tasks. Each task comprised multiple
HTTP requests. Consequently, our setup comprised an average of
10 concurrent tasks per second, and 30 concurrent HTTP requests
per second.

4.2 Results
We now discuss the results of our measurements in these experi-
ments.

Cache Hit Rate. Answering RQ1, we have found that the existing
Bison system with manual caching leads to an overall cache hit rate
of 42% of requests in our experiment runs (i.e., 42% of requests can
be served from the cache rather than by querying the database).
Applying Cachematic improved the cache hit rate to 69%, or by a
factor of 1.64. Consequently, we concluded that using Cachematic
indeed improves the cache hit rate compared to the current
manual caching solution.

However, more interesting than whether the cache hit rate in-
creases is whether this improved cache hit rate also led to measur-
ably better user performance, i.e., whether the response time of
HTTP requests improved as well. For instance, it is possible that
the requests not hit by manual caching are not crucial to perfor-
mance, or that the additional overhead of caching is higher than
the performance gains. This will be investigated in the next two
sections.

Read Requests. We plot the response times for read requests (i.e.,
referring to the user tasks in Table 1) in Figure 6. Solid lines indicate
median response times, and the shading for each line indicates 25%

9https://locust.io
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Name Description Req. Wgt.

U
se
r
Ta

sk
s BrowseBenchmark User requests a list of available benchmarks; user randomly selects one of the available bench-

marks and requests the actual benchmark data
2 1

VehicleAnalysis User requests a list of all available vehicle entities; user selects a vehicle and requests a list of
available reporting dates; user selects one of the dates and requests meta information about
the vehicle; a number of analyses are performed on the vehicle, given the vehicle type, the
user’s selections, and other input parameters

4 5

A
dm

in
T.

UploadCashflow User selects a spreadsheet from a pre-defined set of spreadsheets with example data; spread-
sheet is uploaded through a number of sequential requests

4 5

DeleteEntity User requests a list of available entities; user selects one that it requests to delete it 2 1
ShareEntity User requests a list of available entities; user shares all available entities with another user 2 1
ChangeAttribute User requests a list of available entities; user selects a name and requests to update this name 2 1

Table 1: Representative workload patterns of for the experiment. Column Req. indicates the number of HTTP requests that
this pattern includes, and column Wgt. indicates the weight that this pattern is given during execution.

and 75% quartiles. We compare Cachematic to the current manual
caching solution, as well as, as a baseline, to disabling caching
alltogether. Data is aggregated in tumbling time windows of 30
seconds.
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Figure 6: Median response time with 25% quartile and 75%
quartile

Evidently, both caching solutions noticably improve read request
response time. Without caching, median response time fluctuates
around 75ms, with considerable variation. The 25% quartile (i.e., a
realistic best case for most users) is around 50ms, the 75% quartile
can go beyond 150ms. After a short warmup phase, using the man-
ual caching solution improves the median response time to a fairly
stable 37ms. The 25% quartile is around 25ms, and the 75% quartile
at around 110 ms. When enabling Cachematic, we are indeed able to
further reduce the median response time to around 28ms, which is
an improvement by a factor of 1.3. The 25% quartile is similar to the
manual caching solution, but the 75% quartile improves consider-
ably, going sometimes as low as 50ms. This reflects that the manual
caching solution sometimes “misses” caches which Cachematic is
able to handle.

In Figure 7 we depict the 90th percentile response times for read
requests, again without cache, with the manual caching, and using
Cachematic. This represents a worst-case analysis. We see that
initially, while caches are still warming up, the “no cache” setting
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Figure 7: 90th percentile response time for read requests

actually provides better worst-case performance. However, after
around 1250s of experiment time, web servers in the no-caching
setup start to overload, and we experienced timeout issues, as well
as higher and more variable response times. The caching solutions
overtake in performance at this point, and settled at a 90th per-
centile response time of around 150ms (Cachematic) and 200ms
(manual caching). Hence, we observe a similar speedup in the range
of a factor of 1.3.

We conclude that using Cachematic indeed improves the
user-observed performance (response time) in read requests
for Bison by a factor of 1.3 with regard to the existing man-
ual caching solution.

Write Requests. We now shift our attention to write requests,
i.e., the admin tasks in Table 1. However, observe that even these
workloads have some read components to them (e.g., before editing
an entity in Bison, it first needs to be found from the database).
Caching can be expected to actually decrease the performance of
write requests, but it may improve the performance of the read
components of the admin tasks. We again depict median, 25% quar-
tile, and 75% quartile performance in 30s tumbling time windows
in Figure 8.

We observe that write requests indeed drastically slow down
when using Cachematic compared to both, the no-cache as well
as the manual caching solution. Further, write performance of
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Figure 8: Median response time with 25% quartile and 75%
quartile

Cachematic is decreasing over time, which we have traced back to
problems with our cache expiration procedure in the experiments.
Interestingly, the manual caching solution (which does not need to
rely on an automatic cache management) is actually slightly faster
than using no caching at all, due to the improved performance of
the read requests in writing tasks.

We conclude that the current version of Cachematic imposes
a significant overhead to write requests at the time of study.
After careful analysis, we are confident that some of this overhead
is due to limitations in the implementation of the first version of
Cachematic, where we focused primarily on a proof-of-concept and
improving read performance. We now discuss these limitations in
more detail.

4.3 Discussion and Limitations
We have observed that Cachematic performs well on read requests,
but imposes a severe overhead on write requests. This is due to
three reasons, which we now elaborate.
• Firstly, the high overhead in certain write requests is due to
the execution of hash queries. For some write queries, none
of the exclusion tests will be able to determine invalidation,
and an expensive hash query will be executed. As the cache is
populated, and there are more read queries to test, the hash
queries will impose significant overhead. In future work,
we will experiment with faster hashing functions. Further,
we will improve our cache eviction strategy to decrease
the number of hashes to evaluate. Currently we used Redis
simple least-recently-used eviction, which was not triggered
at all in our experiments.
• Secondly, we observe that our experiments have included
a higher number of comparatively complex queries. In the
evaluation of other systems, such as AutoWebCache [4], the
authors highlight that most of the queries executed by the
benchmarks such as TCP-W and RUBiS are simple, and the
where clause often consists of a single equality condition. It

is highly likely that the overhead for write requests would
be significantly reduced if Cachematic was deployed in a
system with more simple queries (but these would not be
representative for the Bison application).
• Thirdly, Cachematic is currently in a proof-of-concept phase,
and not much time has been dedicated to optimizing write
performance in the implementation of the system.We expect
that significant performance improvements can be achieved
by re-engineering the implementation of the library with
write performance in mind.

After discussion with application experts from Bison, the com-
pany has decided to go forward with Cachematic. This is because
read request performance is deemed of substantially higher impor-
tance to the company’s baseline, as virtually all actual end user
interactions consist almost exclusively of read requests. However,
this substantial overhead in write requests needs to be taken into
account, and further engineering improvements along this line will
be necessary before production readiness.

4.4 Threats to Validity
It should be noted that our experiments are only representative
for a portion of the user behaviors in Bison. The workload used
for the evaluation is based on behaviors common for the users
of the Bison platform, which we have constructed together with
domain experts. Therefore, the workload is arguably a reasonable
representation of a real world scenario. However, readers should
not assume that our experiments are necessarily representative for
a different application.

Further, we have executed our experiments on AWS EC2, a public
cloud provider. Previous work has established challenges when
using such a system for performance testing [14], particularly as
clouds tend to provide a variable amount of systems resources [15].
However, we have repeated our experiments 15 times in the course
of our study, and have not experienced notable differences in the
outcomes. Hence, we consider this threat to be relatively small.

5 RELATED RESEARCH
We now present related research on the subject of application level
caching and, in particular, aspects of cache management and inval-
idation strategies.

[17] presents a study of ten open sourceWeb application projects.
The goal of the study was to extract information on how develop-
ers for the different projects handle caching. From the extracted
information, some guidelines and patterns were derived to help
developers in designing, implementing and maintaining applica-
tion level caches. The authors found evidence for a guideline they
call Keep the Cache API Simple. The purpose of this guideline is to
highlight the complexity in caching logic when it is spread over
an application. The consequence of not having a simple caching
API might be messy code and high costs of maintenance, which we
address directly using Cachematic.

Further, a multitude of papers describing automatic cache man-
agement strategies exist, most of which are implemented as middle-
tier caches that augment the database with a key-value store. De-
pendency based cache management is introduced in [6], as an opti-
mization for the caching system used in the 1998 Winter Olympics
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website. The main algorithm is called DUP (Data Update Propa-
gation). The algorithm describes the construction of a graph for
tracking dependencies between cached objects and underlying data,
called ODG, or Object Dependence Graph. The approach is very
general and applicable in almost any currently existing application.
It requires a considerable amount of responsibility from the appli-
cation utilizing it and has no specification of how dependencies are
supposed to be extracted nor in what granularity they should be
recorded. An extended version of DUP was implemented in the Ac-
cessible Business Rules framework (ABR) for IBM’s Websphere [9].
The paper extends DUP with a concrete process for automatically
constructing the ODG by analyzing SQL queries. It also extends the
graph by annotating edges (indicating dependencies) with values
used in the query where clause, enabling value-aware invalidation.

TxCache is a transactional caching system, where dependencies
are represented by invalidation tags [20]. A tag is a description
of which column has been referenced in the database to produce
a cached result. A tag consists of two parts separated by a colon.
The first part represents the database table and the second part a
potential referenced column. The second part indicates whether an
index equality lookup is performed. If the query is, for instance, a
range query, the second part is explicitly set to a wildcard. Each
executed query can have multiple invalidation tags. When a write
to the database is executed, the database sends a stream of invali-
dation tags to the cache. The cache can then identify which cached
invalidation tags are affected by the write and consequently iden-
tify affected cached entries. The system proposed in this paper
extends the transactional consistency guarantees of the database to
the cache. In order to achieve this, most of the cache management
logic is implemented in the database layer, through modifications
of PostgreSQL.

Another strategy is implemented in AutoWebCache [4], where
dependencies between read and write queries are established by
finding shared database relations and fields. If the queries share
any fields, a basic dependency is established and stored in a data
structure resembling the Object Dependence Graph used in DUP.
The algorithm also stores information about the database set re-
lated to the queries. When write queries are executed, the actual
intersection is evaluated in a more precise manner for each of the
dependent read queries using the stored information. A system
with a trigger based strategy for cache management is CacheGe-
nie [11]. The system generates database triggers to handle cache
invalidation. Database triggers are procedural code that is executed
automatically in response to events on a particular database rela-
tion. The used database triggers are simple, and their only task is
to notify the cache manager that rows have changed. The actual
cache invalidation is then implemented in the cache manager itself.
Triggers have to be defined for each query type (insert, update
and delete) for each database relation. Another interesting con-
cept implemented in CacheGenie is Semantic Caching. Semantic
caching involves exploiting the semantics of the database in the
cache management system, in order to automatically update cached
objects instead of invalidating. This can have performance benefits
over invalidation in systems with frequent writes, but limits what
objects can be cached to database results.

The idea of semantic caching is also employed in the approach
described in [2], by checking for containment of a query’s expected

result within already cached ones. This paper handles dependencies
between read andwrite queries by looking at shared fields, similar to
the basic dependency mechanism in AutoWebcache. An interesting
detail from this paper is an optimization for queries returning at
most a single row, which under certain circumstances can never be
invalidated by an insert.

A more formal approach to cache management is described in
[23]. The system, Sqlcache, is based on compile-time SQL analysis
and first-order-logic to create a sound mapping from each update
operation (insert, update or delete) to read queries they affect. This
mapping is then used to transparently add caching with automatic
invalidation. Essentially, the implementation uses the filter vari-
ables in the where clause of an SQL query and the filter variables
together with the update vector for database updates to determine if
invalidation is necessary. The authors provide a proof of soundness
for cache invalidation using quantifier-free first order logic based
on the these three situations.

CachePortal, is a cache management system described in [5]. The
system largely depends on a sniffer module which task is to log
http requests, database queries and mappings between requests and
database queries. When a database update query is captured, the
query is analyzed to conclude which cached entries need to be inval-
idated. Whether to invalidate a cached entry or not is determined
by comparing the update query to each select query executed to
compute a cached entry.

For our work on Cachematic, we have taken various technical
and conceptual aspects from a number of these influential research
works on caching, and adopted them to our’s and Bison’s needs. Par-
ticularly, we have adopted the notion of cache dependency graphs,
as originally presented in [6], as formal basis for our own cache
invalidation algorithms. We also adopted the granularity present in
AutoWebCache [4] (i.e., invalidating based on table and row scopes).
Finally, the trigger-based approach pioneered by CacheGenie [11]
is the basis for how we implemented the Cachematic proof-of-
concept. Our main contribution was to adapt and integrate these
pre-existing ideas into a common Python library, which is easy to
use for industrial developers, thereby transferring this research into
practice.

6 CONCLUSIONS
We have presented the design, algorithms, and a proof-of-concept
of Cachematic, a general-purpose middle-tier caching library for
Python. Cachematic has been built for, and in close collaboration
with, Bison, a company building a web-based business intelligence
platform. The primary goal of the library is to relieve develop-
ers from having to manually manage and invalidate application-
level cache entries, which has been high-effort, low performance,
and bug-prone in the past. Cachematic uses a simple, annotation-
based programming model, which makes it easy for developers
to integrate into existing systems. The heart of Cachematic are a
dependency management and an invalidation algorithm. In our
experimental results, we have shown that using Cachematic in-
deed improves the cache hit rate and read request performance
by a factor of 1.64 and 1.3, respectively. However, due to the nec-
essary automated procedures and limitations in cache expiration
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procedures, write requests appear to be very slow in the current
proof-of-concept implementation of Cachematic.

Consequently, our primary ongoing work is to improve per-
formance in write requests, with the ultimate goal of integrating
Cachematic into the Bison production environment. To this end, we
are working towards improving the implementation of the system
with write requests in mind, as so far we focused primarily on read
requests. Further, we are working on releasing the library to the
community as an open source tool.
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